First records of *Hygrophoraceae* from Panama including a new species of *Camarophyllus* and a new veiled species in *Hygrocybe* section *Firmae*

Lodge, D.J.1** and **Ovrebo, C.L.2**

1Center for Forest Mycology Research, US Department of Agriculture, Forest Service, Northern Research Station, Luquillo, PR 00773-1377
2Department of Biology, University of Central Oklahoma, Edmond, OK 73034

Six species of *Hygrophoraceae* were collected on Barro Colorado Island, representing the first fully documented records for the family from Panama. A species with a pink pileus and stipe, a glutinous partial veil, and dimorphic spores and basidia, *Hygrocybe roseopallida* Lodge & Ovrebo sp. nov. is described in *H.* section *Firmae* from Panama, and a more strongly pigmented form is also reported from Costa Rica. Hyphae of the outer veil are connected to the appendiculate pileipellis margin while those of the inner veil emanate from the lamellar edge. Partial veils have not been previously reported in *Hygrocybe* s.s. (i.e., excluding *Camarophyllus*). Additionally, four other species of *H.* section *Firmae* are newly reported here from Panama: *Hygrocybe batistae*, *H. hypohaemacta*, *H. chlorochlora* and *H.* cf. *earlei*. The latter species differs from the type of *H. earlei* by having a white stipe and larger spore Q. Finally, we describe a second new species, *Camarophyllus panamensis* Lodge & Ovrebo sp. nov., which resembles *C. ferrugineovalbus* (Singer) Singer, but differs in having an orange stipe and much larger spores.

Keywords: Agaricales, Basidiomycota, Central America, fungal taxonomy, neotropical fungi

Article Information
Received 16 March 2008
Accepted 13 June 2008
Published online 30 September 2008
Corresponding author: Clark L. Ovrebo; e-mail: covrebo@ucok.edu
This manuscript was prepared by a USA Government employee and is therefore in the public domain, and not subject to copyright.
The Center for Forest Mycology Research in Madison, WI, is maintained by the USDA Forest Service, Forest Products Laboratory, in cooperation with the University of Wisconsin, while the lab in Puerto Rico is maintained by the USDA-FS International Institute of Tropical Forestry.

Introduction

The *Hygrophoraceae* can form a common mycological component of tropical regions, as extensively documented in the Greater and Lesser Antilles (Dennis, 1953; Pegler and Fiard, 1978; Pegler, 1983; Lodge, 1999; Lodge and Pegler, 1990; Cantrell and Lodge, 2000, 2001, 2004; Courtecuisse and Fiard, 2004). In this paper, we report on six species in the family that were collected by the second author from seasonally wet forest on Barro Colorado Island (BCI), Panama (previous studies see Desjardin and Ovrebo, 2006; Ovrebo and Baroni, 2007). Five species, one of them proposed as a new species, have dimorphic spores and basidia, and thus belong to *H.* section *Firmae*, with one proposed as a new species. The new species, *Hygrocybe roseopallida*, has a fibrillose-glutinous partial veil, which is the first report of this feature in the genus *Hygrocybe sensu stricto*, though glutinous veils are found in species of *Hygro-chorus* and *Camarophyllus*. Re-examination of *Hygrocybe hypohaemacta*, also in section *Firmae* and reported here for the first time from Panama, suggests it may also bear a glutinous veil. The sixth species represents a new species of *Camarophyllus*, *C. panamensis*. The collections reported here represent the first fully documented records of *Hygrophoraceae* in Panama. Color photographs are provided for two of the species, *Hygrocybe batistae* Singer and *H. roseopallida* (Figs 1-2). Future collecting in Panama at different elevations should reveal how common the family is throughout the country. Information on BCI can be found in Buyck and Ovrebo (2002).
Table 1. Sources of collections used for molecular analyses of nuclear ribosomal DNA sequences (ITS and partial LSU.)

<table>
<thead>
<tr>
<th>Hygrocybe species</th>
<th>Section</th>
<th>Genbank No.</th>
<th>Source</th>
<th>Collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. coccinea (Schaeff.) P. Kumm.</td>
<td>Coccineae</td>
<td>EU435146</td>
<td>Denmark</td>
<td>Boertmann 2002/8</td>
</tr>
<tr>
<td>H. chlorophana (Fr.) Wünsche</td>
<td>Chlorophanae</td>
<td>EU435148</td>
<td>Denmark</td>
<td>Boertmann 2002/9</td>
</tr>
<tr>
<td>H. glutinipes var. rubra Bon</td>
<td>Chlorophanae</td>
<td>EU435149</td>
<td>USA (NC)</td>
<td>DJL-TN-9 2005 = CFMR db NC-9</td>
</tr>
<tr>
<td>H. hypohaemacta (Corner) Pegler</td>
<td>Firmae</td>
<td>EU435150</td>
<td>Belize</td>
<td>DJL, BZ-1903</td>
</tr>
<tr>
<td>H. occidentalis var. scarletina Pegler & Fiard</td>
<td>Firmae</td>
<td>EU435151</td>
<td>Puerto Rico</td>
<td>Cancerel, PR-6493</td>
</tr>
<tr>
<td>H. roseopallida Lodge & Ovrebo</td>
<td>Firmae</td>
<td>EU435152</td>
<td>Panama</td>
<td>Ovrebo 4073</td>
</tr>
</tbody>
</table>

Materials and Methods

Macroscopic observations on fresh basidiomes were made by CLO. Sections were cut by hand and mounted in 3% KOH or Melzer’s reagent. Size ranges of spores for the new species were based on ocular micrometer measurements of 20 spores. Placement of *H. roseopallida* within *Hygrocybe* was explored using analyses of nuclear ribosomal DNA sequences. DNA was extracted from dried specimens using a modified CTAB extraction method and cleaned with glass milk. The ITS and an adjacent 322 bp fragment of the large subunit (LSU) of *H. roseopallida* were sequenced by J.-M. Moncalvo, an ITS sequence for *H. glutinipes* var. *rubra* from the Great Smoky Mountain National Park was obtained by DJL and K. Hughes, and the remaining reference sequences from *H. chloochlora*, *H. coccinea*, *H. hypohaemacta* and *H. occidentalis* var. *scarletina* (ITS plus partial LSU) were obtained by DJL (Table 1). Sequences were deposited in Genbank (Table 1). Sequences were edited with Sequencher 4.5 and then aligned using Clustal X followed by manual alignment in MacClade. Only 348 alignable bp surrounding four conserved motifs in the ITS were used. Although single bp deletions were recorded, most were excluded in analyses as they occurred in highly variable, parsimony-uninformative regions. PAUP was used to obtain Neighbor Joining trees and perform phylogenetic analyses. A heuristic search using Maximum Likelihood settings was used with TBR branch swapping (73 trees generated) followed by bootstrap analysis (1000 replicates) using the same parameters, first unrooted and then rooted with *H. coccinea*.

Results

Camarophyllus panamensis Lodge & Ovrebo, sp. nov. (Figs 3-8)

Mycobank: 511071

Etymology: for country of Panama.

Camarophyllum ferrugineoalb similiis, sed pileo colore aurantiaco magis vivido, *stipite* aurantiaco-rubro (non albo), *quoad* formam fusiformi (non cylindrico atque ad apicem sursum patenti), *basidiosporis* majoribus, 9-10.6 × 6.2-8 (non 4.2-6.3 × 3.2-5 µm) differt.

Holotypus: Ovrebo 4102, Insula Barro Colorado, Panama (PMA).

Pileus 20 mm diam, slightly depressed at center, margin inrolled and scalloped, sulcate-striate, orange, opaque, not viscid. *Lamellae* white, decurrent, thick, forked, distant. *Stipe* 50 × 6 mm in dried specimen, orange-red in middle, yellow at apex and base, flattened, subfusiform, dry.

Habit, habitat and distribution: solitary, on soil. Known only from the type locality.

Specimen examined: PANAMA: Province of Panama, Gatun Lake, Barro Colorado Island, Wheeler Trail, 15 August 2001, Ovrebo 4102 (PMA).
Commentary: This species resembles *Camarophyllum ferrugineoalbus* (Singer) Singer, (an earlier name for *Camarophyllum umbrinus* var. *clarofulvus* Lodge & Pegler) in having an orange pileus and white decurrent lamellae, but it is readily distinguished by having a reddish yellow instead of a white stipe, brighter pigments in the pileus, a fusiform stipe and much larger spores (9-10.6 × 6.2-8 vs. 4.2-6.3 × 3.2-5 μm). The bright pigments of the basidiome are more typical of the genus *Hygrocybe*, but the highly interwoven trama (Fig. 6) that gives rise to the opaque appearance, and the long narrow basidia (Fig. 4) clearly place *C. panamensis* in *Camarophyllum* (the DNA analysis has not yet been done). The structure of the pileipellis (Fig. 8) and the presence of a medial strand of nearly parallel hyphae in the lamellar context (Fig. 7) are similar to those found in *C. ferrugineoalbus* and *C. umbrinus*. *Camarophyllum panamensis* has a more gracile aspect than *C. ferrugineoalbus*, with a pileus diameter to stipe ratio near 1:2 versus 1:1 for *C. ferrugineoalbus*. Although some specimens of *Cuphophyllum neopratensis* Courtec. & Fiard (2004) are gracile with pileus colors similar to those of the new species, *C. neopratensis* differs from *C. panamensis* in lacking chains of short...
broad hyphal elements in the pileipellis, the presence of encrustations on the pileipellis hyphae, and smaller spores (5-7 × 4.5-5.5 µm). While only a single basidiome of *C. panamensis* was found, the species is so distinct that it should be easily recognized among subsequent collections.

Hygrocybe batistae Singer, Atas do Instituto de Micologia 2: 20. (1965).

Habit, habitat and distribution: Subcaespitose, on soil in wet and seasonally wet forests. Reported from Brazil, Colombia, Puerto Rico, and Panama; probably widespread.

Commentary: *Hygrocybe batistae* is characterized macroscopically by the non-perforate, often rugulose to rugose, reddish orange or yellow pileus, white lamellae and caespitose fruiting habit; microscopically by the coralloid hyphae in the pileipellis and dimorphic basidia and spores. It was originally described from Brazil and is also known from Colombia and Puerto Rico (Lodge and Pegler, 1990; Cantrell and Lodge, 2001).

Habit, habitat and distribution: Solitary, on soil. Apparently widespread in the Caribbean Basin, including northern South America.

Specimens examined: PANAMA: Province of Panama, Gatun Lake, Barro Colorado Island, Lake Trail, 28 May 2000, Ovrebo 3919 (PMA).

Commentary: This species is distinguished by the smooth green to yellowish green pileus and stipe, pale green to yellowish green lamellae, and the dimorphic spores and basidia that place it in *H. section Firmae*. It is the only all-green species in this section. This taxon was originally described from Martinique (Pegler, 1983) and has also been reported from Guadeloupe and Puerto Rico (Lodge and Pegler, 1990; Cantrell and Lodge, 2001) in the Caribbean, and Veracruz in southeastern Mexico (Montoya *et al.*, 2005). The sizes of the basidiomes and macro- and micro-spores of collections from Panama and the Antilles (Lodge and Pegler, 1990) were similar. Additional records on the internet from northern South America include a collection from Cauca, Colombia (A.E. Franco Molano 417, 6 May 1990, NY 34684), and an annotated photograph from Saül, French Guyana.

Pileus 30 mm diam, umbonate with an uplifted margin, pale reddish yellow, orange, or orange-yellow; surface smooth, shiny. *Lamellae* pale yellow, with a white edge, adnexed, nearly free. *Stipe* 40 × 4-5 mm, flared slightly at apex and base, pure white, smooth, silky.

Spores vaguely dimorphic, macrospheres broadly ellipsoid, few subglobose or ellipsoid and slightly constricted, 7-9(-10) × (4.5-)5-7 µm, [x̄ = 7.6 × 5.6 µm, Q = 1.1-1.6(-1.9), mean Q = 1.46]; microspores broadly ellipsoid, 5.8-7 × (3.2-)4-5 µm (x̄ = 6.4 × 4.4 µm, Q = 1.2-2.1, mean Q = 1.5). *Basidia* dimorphic, 4-sterigmate: macrobasidia 24-46 × 6.8-10(-15) µm; microbasidia 22-30 × 5-6.2(-7) µm. *Hymenial cystidia* absent; lamellar edge fertile but basidia mixed with sterile elements (hyphal end-cell type) with medallion basal clamp connections, rarely with secondary septum. *Hymenophoral trama* of parallel hyphae 23-105 × 6-15 µm, septa oblique on tapered ends or right-angled on non-constricted septa. *Pileipellis* with an intermittent thin gelatinous coating over hyphae (2-)6-10(-12) µm diam. *Clamp connections* found throughout, often of the medallion type.

Habit, habitat and distribution: Solitary, on soil. A rare fungus known previously only from Cuba and Trinidad.

Commentary: *Hygrocybe earlei* appears to be a cryptic member of *H. section Firmae* in which dimorphism of the basidia and spores is subtle. *Hygrocybe earlei* was described from Cuba by Murrill, and has also been reported from Trinidad by Dennis (1953). *Hygrocybe laboyi* S.A. Cantrell & Lodge and especially *H. flavocampanulata* S.A. Cantrell & Lodge, but differs from both in having a pale reddish yellow or orange-yellow rather than...
spectrum yellow pileus, and shorter macrospores [6.8-9(-11) vs 11.2-16.8 µm]. The collection from Panama is atypical, and differs from the type in having a white rather than a cream or pale yellow stipe and macrospores that are narrower and slightly longer [7-9(-10) × 5-6.2(-7) vs 6.8-8.4 × 5.8-7.2] with a larger Q (1.1-1.92 vs 1-1.38; mean 1.46 vs. 1.14). Macrospores in Dennis' collection 161 from Trinidad (Fig. 21) were intermediate between the type from Cuba and the Panama collection [Figs 18 and 12, respectively; RWG Dennis 161 from Trinidad macrospores 6.8-9.5(-11) × 5.6-5.7(-7), $Q = 1.01$-1.66, mean $Q = 1.23$]. Hesler and Smith (1963) indicated that both of Dennis' collections from Trinidad (i.e., RWG Dennis 50 and 161) were better referred to $H. subflavida$ (Murrill) Pegler. The type of $H.
subflavida however, has broadly adnate lamellae with a decurrent tooth rather than adnexed to nearly free lamellae. Furthermore, the annotations by Hesler (1 July 1960) of RWG Dennis 161 at Kew indicated the spores were 9-14 × 7-9 rather than 5-9.5 × 4.4–7 µm in measurements by DJL. The spore dimensions in Hesler's annotation match those for RWG Dennis 50 that was mounted on the same page and was originally determined as H. earlei, (Dennis, 1953), but is referable instead to Hygrocybe konradii var. antillana Lodge & S. A. Cantrell (Cantrell and Lodge, 2000). We therefore surmise that Hesler accidentally annotated RWG Dennis 50 twice, labeling one set of notes as belonging to RWG Dennis 161.

Habit, habitat and distribution: Solitary, on soil in wet and seasonally dry forests. In Singapore and Korea in SE Asia; widespread in the neotropics in the Caribbean and northern South America.

Specimen examined: PANAMA: Province of Panama, Gatun Lake, Barro Colorado Island, Balboa Trail, 14 August 1997, Ovrebo 3637 (PMA).

Commentary: *Hygrocybe hypohaemacta* is characterized by the glutinous pileus and stipe, scarlet pileus, white, free lamellae and dimorphic basidia and spores with globose or subglobose macrospores. It was originally described from Singapore (Corner, 1936) and has been reported in the neotropics from Puerto Rico (Lodge and Pegler, 1990), Jamaica and the US Virgin Islands (Cantrell and Lodge, 2001) in the Greater Antilles, Martinique in the Lesser Antilles (Pegler and Fiard, 1978; Pegler 1983), and Colombia (Franco-Molano and Uribe-Calle, 2000), French Guyana (Courtecuisse, 1989) and Venezuela (Dennis, 1961) in northern South America. Systematists have so far been unable to distinguish disjunct populations of *H. hypohaemacta* in the neotropics and SE Asia based on morphology. *Hygrocybe hypohaemacta* var. boninensis (Hongo) Hongo from Japan differs substantially from the original concept and should probably be considered as a separate species. Molecular comparisons with sequences from SE Asian material are necessary for resolving both of these issues. Some recent collections from Puerto Rico (Lodge, unpublished) appear to have a glutinous partial veil, originating as a break between the glutinous layers of the pileipellis and stipitpellis. Courtecuisse (1989) noted the appendiculate pileus margin (denticulée festonnée) in *H. hypohaemacta* from French Guyana. The appendiculate gelatinous margin and possible points of former attachment on the glutinous layer on the stipe may be seen in several specimens in a photograph from French Guyana posted on a web site (http://jlcheype.free.fr/classification/Guyane/Guyane.htm).

Hygrocybe roseopallida Lodge & Ovrebo, sp. nov. (Figs 1, 25-33)

Mycobank: 511072

Etymology: *roseus* (L.) – rose-colored; *pallidus* (Latin) – pale colored; referring to pileal color.

Species haece in combinatione unica pileo roseolo, volva partiali praesenti, basidiis dimorphis, basidiosporis subglobosis vel late ellipsoideis procreantibus, macrosporis 1-12 × 8-9 µm, microsporis 6-7 × 5-5.5 µm imprimis distinguitur.

Holotypus: Ovrebo 4053, Insula Barro Colorado, Panama (PMA).

Pileus 15-30 mm wide; buttons hemispheric, expanding to plane, often slightly depressed and occasionally perforated at the center; surface dull and waxy-greasy feeling when dry, apparently viscid when wet, often with debris clinging, glabrous, faintly translucent-striate at very edge, dull light pink overall when young, at maturity light pink with white margin, slightly hygrophanous and drying lighter, not discoloring; context 1-2 mm thick, translucent dull pink, young specimens with watery context when cut; odor and taste nondescript. *Lamellae* 1-3 mm wide, adnexed, white, not discoloring, crowded; edge often uneven or eroded; lamellulae numerous but not in distinct tiers. *Stipe* 20-70 × 2-6 mm, equal or tapered in lower third to a rounded base, terete or slightly flattened, occasionally with a longitudinal groove, glabrous, slightly greasy feeling, probably viscid when wet, translucent white, occasionally light pink at the apex, hollow. *Partial veil* fibrillose-membranous, probably also viscid or glutinous when fresh, leaving an annulus composed of a low ridge of remnants near stipe apex, white.

Spores dimorphic; macrospores 10-12 × 8-9 µm (\(\bar{x} = 10.7 \times 8.7 \mu m, Q = 1.17-1.28, \text{mean} \ Q = 1.23\)), subglobose or broadly ellipsoidal in profile and face view; microspores 6-7 × 5-5.5 µm (\(\bar{x} = 6.5 \times 5.2 \mu m, Q = 1.09-1.4, \text{mean} \ Q = 1.23\)).

$Q = 1.26$), elliptic, broadly elliptic or subglobose in profile and face view, smooth, thin-walled, hyaline, uni- or pluriguttulate, inamyloid, acyanophilic. Basidia dimorphic: macrobasidia 41-48 × 12-17 µm, 4-sterigmate, clavate, hyaline, guttulate; microbasidia 31-38 × 7-8.5 µm 4-sterigmate, clavate, hyaline, guttulate. Hymenial cystidia absent. Lamellar trama not gelatinized, composed of long parallel hyphae with tapered ends, cells (32-130-260 × 4-19(-22) µm, mixed with some disorganized narrow hyphae (2-3 µm); hyphae hyaline, inamyloid. Subhymenium of interwoven hyphae 3-4 µm wide. Pileipellis an ixocutis 160-170 µm deep, of parallel or interwoven hyphae 4-7 µm wide, cylindric, often wavy, smooth, hyaline, thin-walled, with a thick gelatinous coating. *Hyphae of pileus trama* up to 17 µm wide, hyaline. Stipitipellis 10-15 µm thick, composed of a thin ixocutis 5-15 µm deep, of cylindrical, hyaline hyphae that are 2-7 µm wide, appressed and parallel or occasionally interwoven (from veil?); caulocystidia not seen. *Hyphae of stipe trama* 3-15 µm wide, cylindrical or swollen, hyaline, occasionally faintly incrusted. *Hyphae of partial veil* 4-12 µm wide, outer ones thickly coated with gel, cylindric, hyaline, smooth, thin-walled, arranged parallel to one another or in places twisted and interwoven; inner veil elements arising from context hyphae near the lamellar edge and having an expanded base and conspicuous vacuoles (Figs 25, 32). Clamp connections large, of the medallion type, abundant throughout.

Habit, habitat and distribution: scattered, gregarious, occasionally subcaespitose, on soil. Known in Central America from Costa Rica and Panama.

Specimens examined: COSTA RICA: Osa Peninsula, Puntarenas, 24 August 1936, coll. R. Sándola, Dodge & Goerger (FH); ibid., 27 August 1936, coll. R. Sándola 10612, Dodge & Goerger (FH); same location, 1 Sept 1936, coll. R. Sándola, Dodge & Goerger (FH). PANAMA: Province of Panama, Gatun Lake, Barro Colorado Island, Miller Trail, 28 May 2000, Ovrebo 3912 (PMA); Fausto Trail, 8 August 2001, Ovrebo 4053 (Holotype, PMA: Isotype, NY); same location, 11 August 2001, Ovrebo 4073 (PMA); same location, 15 August 2001, Ovrebo 4101 (PMA); Fairchild Trail, 14 August 2001, Ovrebo 4087 (PMA); Donato Trail, 16 August 2001, Ovrebo 4105 (PMA, CSU).

Commentary: The presence of dimorphic basidiospores and basidia and the molecular analyses are consistent with the placement of *H. roseopallida* in *Hygrocybe* section *Firmae*. The glutinous pileus and subglobose basidiospores suggest an affinity of *H. roseopallida* with *H. hypohaemacta*, though it differs from the latter in having a pink rather than scarlet pileus and an obvious annulus. In analyses of all seven taxa in Table 1, *H. roseopallida* and *H. hypohaemacta* were placed together in the Neighbor Joining trees for alignable parts of ITS sequences and for combined ITS and LSU sequences (Figs 34 and 35, respectively). Unrooted trees and trees rooted with *H. coccinea* had the same topology, and only a single tree was retained in each analysis. Phylogenetic analysis of the combined ITS and LSU fragment (102 parsimony informative characters among 677 bp) produced a single tree that had 52% bootstrap support for the clade representing Section *Firmae*, which was comprised of two clades, one with *H. occidentalis* and *H. chloochlora* (100% bootstrap support), and the other with *H. roseopallida* and *H. hypohaemacta* (76% bootstrap support). The molecular analyses are therefore consistent
Hygrocybe roseopallida is unique to *H. section Firmae* in having a pink pileus and in possessing an obvious annulus, although a re-evaluation of *H. hypohaemacta* suggests it may also possess a glutinous partial veil (see comments under *H. hypohaemacta*). The combination of pink basidiomes with a glutinous annulus and subglobose basidiospores is new for the section. Previously described species of *Section Firmae* are red, orange, yellow, green, purple, brown or gray in color, and none are pink. Material collected by R. Sándola in the...
Fig. 34

Section Coccineae

86%

H. coccinea

H. glutinipes var. rubra

Section Chlorophanae

58%

H. hypohaemacta

H. roseopallida

Section Firme

81%

H. cf. chloochlora

H. occidentalis

Fig. 35

Section Coccineae

H. coccinea

H. glutinipes var. rubra

Section Chlorophanae

76%

H. roseopallida

H. hypohaemacta

H. cf. chloochlora

100%

H. occidentalis

Fig. 36

H. coccinea

Section Coccineae

H. glutinipes var. rubra

H. chlorophana

76%

H. hypohaemacta

52%

Section Firme

100%

H. roseopallida

H. cf. chloochlora

H. occidentalis

Figs 34-36. Trees showing placement of Hygrocybe roseopallida based on nrDNA analyses (bootstrap values are shown at the nodes; branches with values above 80% bolded). 34. Neighbor Joining tree obtained from ITS sequences. 35. Consensus tree generated by Branch & Bound search of ITS sequences. 36. Phylogram of the most parsimonious tree from the Branch & Bound analysis based on sequences of the ITS and a partial LSU fragment.
Osa Peninsula of Costa Rica and deposited at
the Farlow Herbarium by Dodge and Goerger
resembles collections from Panama in all
respects except for stronger pigmentation, with
colors near the center of the pileus described as
Corinthian Red to Corinthian Pink or Coral
Pink, and fading to white at the margin.

The origin of the veil material is interest-
ing. The inner velar hyphae that extend from
the lamellar edge are perhaps analogous to the
hyphae that separate the lamellae from the
partial veil in some species of Amanita. Veil
hyphae originated in the lamellar context (Fig.
32a), parting the hymenium at the lamellar
edge (Fig. 32b) and protruded beyond the edge
(Fig. 32c). Similar veil hyphae were found in
the collection of H. hypohaemacta that was
sequenced (Table 1) but these differed from
corresponding hyphae of H. roseopallida in
lacking a guttulate expanded base, and consist-
ing of single cells rather than chains of cells.
The origin of the outer, gelatinous veil material
in H. roseopallida is apparently an extension of
the thick, gelatinous ixocutis of the pileipellis
(Fig. 25), and might represent a portion of a
peronate universal veil. Gelatinized hyphae
were found in a section through the veil (Fig.
32d) but their origin could not be traced. While
the original notes on the collections from
Panama did not indicate they were viscid, the
presence of a thick gelatinized ixocutis of the
pileipellis and the thin ixocutis of the stipiti-
pellis indicates they may have been viscid at
some time; notes on the Costa Rican collect-
ions indicated they were viscid.

Acknowledgements

CLO thanks the Smithsonian Tropical Research
Institute for granting permission to collect on Barro
Colorado Island. Field work by CLO in Panama was
funded by a Mellon Comparative Research Grant
administered by the Organization for Tropical Studies
and Smithsonian Tropical Research Institute, and by the
Joe C. Jackson College of Graduate Studies and Research,
University of Central Oklahoma; funding in
Costa Rica was provided by the Jackson College of
Graduate Studies. Collection of reference material in
Belize (H. hypohaemacta and H. chlochlora) by DJL
was supported by the US National Science Foundation's
Biotic Surveys and Inventories Program grant DEB-
0103621 to the Research Foundation of the State
University of New York, College at Cortland, in
cooperation with the Forest Service, U.S. Department
of Agriculture, Center for Forest Mycology Research. For
help in obtaining Belizean collections for sequencing,
DJL thanks Dr. B. Ortiz-Santana for assistance in the field;
Mr. C. Popper and staff of the Five-Sisters Lodge,
and Mrs. J. Grant and Mr. E. Romero of the Programme
for Belize together with the staff of the La Milpa Station
for permission to collect and facilitation of our stay; and
Dr. L. Quiroz, Ms. N. Rosado, Mr. H. Mai, and Mr. J.
Pinelo of the Conservation Division of the Belize
Forestry Department for assistance with collecting and
export permits. Collecting by DJL and sequencing of H.
glutinipes was supported by the Agaric Diversity in the
Great Smoky Mountains National Park grant DEB-
0338699 from the US National Science Foundation to
the University of Tennessee. We are grateful to Drs. J.-M.
Moncalvo and Rytas Vilgalys for sequencing H.
roseopallida, and Dr. K. Hughes for contributing cloned
ITS sequences of H. glutinipes. We also thank Dr. D.L.
Lindner, Dr. M. Banik and Mr. J. Haight for assistance
in cloning H. hypohaemacta and H. occidentalis. Dr. D.
Boertmann was instrumental in providing recent
collections of the type species for Hygrocybe Sections
Coccineae and Chlorophanae (H. coccinea and H.
chlorophana) from Denmark for sequencing. We thank
Dr. Donald Pfister of the Farlow Herbarium at Harvard
University for loans of collections made by Dodge and
Goerger in Costa Rica. Finally, we thank the following
pre-reviewers of the manuscript who provided valuable
comments on earlier versions: Drs. M.C. Aime, S.A.
Cantrell, B. Ortiz-Santana and T.J. Baroni.

References

Buyck, B. and Ovrebo, C.L. (2002). New and interesting
species of Russula species from Panama. Mycologia 94: 888-901.
of the Greater Antilles: Hygrocybe subgen.
Hygrocybe. Mycological Research 104: 873-878.
Cantrell, S.A. and Lodge, D.J. (2001). Hygrophoraceae
(Agaricales) of the Greater Antilles: Hygrocybe
subgenus Pseudohygrocybe section Firmae.
Cantrell, S.A. and Lodge, D.J. (2004). Hygrophoraceae
of the Greater Antilles: Section Coccineae.
Mycological Research 108: 1301-1214.
Corner, E.J.H. (1936). Hygrophorus with dimorphous
basidiospores. Transactions of the British
mycologique des environs du Sau Pararé
(Arataye) et de l’inselberg des Nourages (Guyane
Française). I. Introduction. II. Hygrophoraceae.
Cryptogamie Mycologie. 10: 181-216.
neopratensis un nouvel Hygrophore des Antilles.
Bulletin de la Societe Mycologique de France
120: 441-462.
Dennis, R.W.G. (1953). Some West Indian collections
referred to Hygrophorus Fr. Kew Bulletin 2: 253-
267.

