
On Developing a Meso-theoretical Viewpoint of Complex Systems by 
Exploring the Use of Artificial Neural Networks in Modeling Wildfires 

 
Ronald J. McCormick1 

 
1Senior Ecologist, Compliance Services International 

Tacoma, Washington, USA 
Phone: +01 253 272 6345 Fax: +01 253 272 6241 

Email: rmccormick@complianceservices.com 
 

Presented at ForestSAT Symposium  
Heriot Watt University, Edinburgh,  

5-9 August 2002 
 
 

ABSTRACT 
Modeling wildfire spread patterns is a complex problem involving long-term fuel 
accumulation (site history) with short-term thermodynamics. The two dominant 
approaches to modeling wildfire spread patterns are fine-scale and mechanistic or 
broad-scale and probabilistic. Mechanistic approaches scale locally (micro-theory) 
to what keeps a fire burning while fire spread in probabilistic models is constrained 
by the rate of percolation across the fuel landscape (macro-theory). Changing spatial 
and temporal scales of fire environment variables lead to the inherent 
unpredictability found in middle number systems. Extant fire models lose predictive 
power when subtle shifts in environmental variables cause a qualitative change in 
fire behavior. This is usually a result of the fire environment scaling beyond the 
range of mechanistic fire spread equations or below the statistical power of regime 
calculations. Artificial neural networks (ANNs) are designed for problems with 
cross-scale relationships that produce nonlinear changes in system behavior (meso-
theory). Even though the system appears middle number, the ANN recasts system 
structure until, at an appropriate level of analysis, prediction becomes possible. The 
difficulty with ecological systems is they invite being cast as complex, and complex 
systems require different causal models. A systems approach incorporates the 
explanatory power of positive and negative feedbacks and the recognition of 
emergent system behavior. Because complex systems do not invite definitive 
answers, we use models like ANNs to offer prediction with good explanatory power 
without heavy data requirements and complicated module interactions. An ANN-
based wildfire spread model was developed for the Great Lakes Region of the 
United States that integrates across scales of fire environment variables. Preliminary 
results support the proposed meso-theoretical fire environment definition and ANN-
based modeling approach. 
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1.0 INTRODUCTION 
The results presented here continue from a previous work that outlined the theoretical aspects of meso-scale 
modeling in general, and proposed a specific approach to developing a meso-scale wildfire model (McCormick 
et al., 2000). Readers are encouraged to review this previous work, as much background theory is not included 
here. This paper expands upon specific meso-scale model considerations by describing a generalized framework 
of meso-theoretical approaches to ecological modeling of complex systems. This document also outlines model 
development and testing methods, and presents some preliminary results. 



1.1 Modeling and Middle Number Systems 
Much of what we do as humans and as ecologists is formulate models about systems. Models are intellectual 
constructs for organizing experiences (Allen and Starr 1982). Most models are informal thoughts about how the 
material world works based on our observations of it. Informal models guide us in developing research questions 
or making predictions such as how soon that thunderstorm will arrive to douse the fire in the barbeque pit. When 
informal observation is translated into logical, internally consistent rules or algorithms, they are considered 
formal models that describe some aspect of the material system (Allen 1998). The knowledge base for a material 
system may be extensive, but complete knowledge is not possible (Rosen 1991) and complete encoding of what 
is known is usually impractical. Formalization involves deciding what aspects of the system are vital in 
producing a good quality representation and which are less necessary or informative. The formalization process 
is probably the most difficult and important part of modeling. A formal model’s operation (decoding) informs us 
about the verity of the assumptions comprising it (Allen 1998). 

This paper is less an investigation into wildfire modeling and more an investigation of how modern ecologists 
approach the analysis of meso-scale processes with a certain strategic ineffectiveness. Specifically, the extensive 
literature on wildfire and wildfire modeling clearly shows that current approaches to meso-scale wildfire 
modeling mostly involve rescaling existing models. Rescaling extant models exists locked inside a certain 
strategy, and is therefore fundamentally limited. Simple rescaling of reductionist approaches can produce quite 
workable solutions within a narrow scale range. However, to solve meso-scale problems in this manner invites 
casting systems as middle number (Weinberg 1975). Often, entry into a middle number domain occurs without 
the investigator noticing. Failure of the rescaled model typically elicits a tactical response, a quest for more 
detailed data, ever more complicating the original models (e.g., Liu, 1998). Such failures should elicit instead a 
reassessment of strategy (Rosen 1981). The approach to wildfire modeling presented here is a strategic 
departure. While the specific discussions, arguments and examples contained herein concern wildfire, the sub-
text is the use of ANNs to deal with middle-number systems. The focus is not the resultant model, it is how 
stepping outside of the limits of current models helps to model systems of great scale and high complexity. 

1.2 An Introduction to Artificial Neural Networks 
Haykin (1994) defines a neural network as “. . . a massively parallel distributed processor that has a natural 
propensity for storing experiential knowledge and making it available for use.”  ANNs acquire knowledge by 
learning from examples and store that knowledge as synaptic weights in connections (networks) between 
processing nodes (neurons). ANNs have the ability to model complex functional relationships by recognizing 
patterns in system variables. The pattern emerges through positive feedbacks that eventually press against global 
constraints that define structure. ANNs reduce the need to write “rules” based on expert knowledge. Neural 
networks determine these rules by mapping directly from input to output with a blind, but effective, search 
strategy (Sui 1994). A trained network can respond non-linearly to input values, where a small change in one or 
several inputs can result in an exponentially greater output response. Conventional modeling techniques do not 
readily do this unless the relationships are known a priori. Since their inception, artificial neural networks have 
been trained to perform tasks that appeared impossible for conventional computer programming techniques, for 
example, steering a car under new or unknown conditions, reading hand-written postal zip codes, or recognizing 
spoken language. 

Conceptually, neural networks are quite simple and can be represented as graphs composed of a series of linked 
nodes that represent biological neurons and their connections. Multi-layer, feed-forward networks are acyclic 
and have a series of nodes arranged in layers (input, hidden and output), with links between every node in 
adjacent layers. Each link in the network has a numeric value (weight), the strength (value) of which relates to 
the local node’s effect on the whole network. Input values are multiplied by the weights of the input links 
leading to each node in the hidden layer. Each node in the hidden and output layers performs two functions: a 
linear summation of the weighted inputs and then a nonlinear transformation of that sum using an activation 
function. The activation function produces an activation value for each hidden node that is “fed forward” to the 
output layer. The nodes of the output layer also calculate a weighted sum, and the activation function produces 
the output value. 

There are two types of learning in neural networks, supervised and unsupervised. Unsupervised learning does 
not use target (output) data. For this study, fire burn patterns (target data) were available, so supervised training 
of the ANN fire models was possible. Any number of nodes can be in each network layer. For a given input 
space/output space, there is an optimal hidden layer size that provides the best mapping between the two spaces 
using the fewest nodes. A trained ANN with too many hidden nodes will memorize (overfit) the training set, 
impairing its ability to generalize about new input data vectors. Too few nodes will not learn all of the training 



data. Each node can be considered as learning the function that transforms the coordinates of a cluster of input 
data to the coordinates of the corresponding output data cluster.  

1.3 Review of Extant Fire Models 
We model fire primarily to better manage fire and its effects on ecosystems, communities and landscapes. Some 
fire models are stand alone while others are modules within larger land cover dynamics models. Extant fire 
models operate at many scales, use different predictive equations, and produce numbers or maps representing 
fire frequency, severity, spread rate, burn pattern or risk. Maissurow (1941) conducted one of the earliest studies 
of fire regime in the Great Lakes States, focusing on  northern Wisconsin and adjacent lands in the Upper 
Peninsula of Michigan, USA. He concluded that 95% of the forests studied originated following fire disturbance. 
One of the early quantitative studies of fire fundamentals and fire behavior was conducted by Fons (1946) in 
California. Having an engineering background, he approached the understanding of fire from a physical and 
chemical viewpoint. Initial field studies of fire had too many uncontrollable factors, so Fons moved into a wind 
tunnel and created fuel beds of uniform materials and known densities. From fires started in these test beds he 
developed equations and relationships based on eight fundamental variables. In essence, he considered fire 
spread to be the result of ignitions of fuel particles from adjacent burning fuel particles. His equations model the 
spread of fire as sequential ignitions through time. The eight fundamental variables controlling successive 
ignitions are difficult or impossible to measure in the field. Relationships were developed showing how those 
variables typically measured in the field influenced the fundamental variables and ultimately the rate of spread of 
a fire. 

1.3.1 Behavior Models 

Fons’ engineering approach to fire modeling has remained predominant in the field. The majority of fire models 
in use today are based on fire spread relationships developed by Rothermel  (1972) in the U.S., Van Wagner 
(1969) in Canada, and McArthur (1966, as reported in Baines, 1990) in Australia. Fire geometry models were 
proposed by Anderson (1983), Van Wagner (1969), and French, et al. (1990). Much work has been done to 
improve upon (Rothermel, 1983; Andrews, 1986; Rothermel, 1993; Beer, 1993) and implement (Rothermel, 
1991; Vasconcelos and Guertin, 1992; Catchpole, et al., 1993; Bessie and Johnson, 1995; Finney, 1996) 
Rothermel’s original equations. McArthur’s (1966) original fire spread rules were converted to equations by 
Noble et al. (1980, as reported in Baines, 1990), and have been field tested (Baines, 1990; Marsden-Smedley and 
Catchpole, 1995). 

Rothermel’s equations require a description of fuel which includes depth, loading, percentage of dead fuel, 
moisture of extinction, heat content, surface area to volume ratio, mineral content, silica content, and particle 
density (Marsden-Smedley and Catchpole, 1995). Required environmental variables include wind speed at half-
flame height, slope and fuel moisture content (live and dead). Models based on Rothermel’s equations perform 
adequately in predicting the fine detail of fire physics and chemistry, but often give simple treatment to the 
climatological and geographic aspects of fire spread. Rothermel’s equations are only valid for surface fires. 

Anderson’s (1983) equations for determining the shape of a fire are limited to uniform fuels, uniform slope and 
uniform wind speed, conditions rarely available in nature (Clarke, et al., 1994). To compensate for certain of 
these limitations Finney (1996) used 17th Century Dutch mathematician Christian Huygens’ principle of light 
wave propagation (French, et al., 1990; Knight and Coleman, 1993) in FARSITE to model movement of a 
vectorized fire front and better correct for the fire front shape at any given time step. Other variations on the 
elliptical fire spread model have been proposed (Richards and Bryce, 1995). 

1.3.2 Other Approaches to Modeling Fire 

Other recently developed models have taken advantage of raster-based simulation concepts (e.g., cellular 
automata (CA) and nearest neighbor decision rules) to incorporate concepts of diffusion  (Clarke, et al., 1994), 
percolation (Green, 1993), or contagion (Li and Apps, 1996; Hargrove, et al., 2000) in spreading fire across a 
landscape. CA are an n-dimensional array of cells with values that represent the global state of a variable. Each 
cell is a computer and updates its state at each time step based on the state of its neighbors. This limitation to 
interactions only between immediate neighbors makes computerization of CA very easy, and the efficient 
processing is often used to model complex systems (Karafyllidis and Thanailakis, 1997). Most CA models of 
fire spread require some estimate of the burn potential for each cell prior to running the model. The probabilities 
are often stochastic in nature, and multiple runs are used to develop a map of fire risk. Cellular automata have 
been implemented in fire models using Rothermel’s (or others) rate of spread (Ball and Guertin, 1992; 



Karafyllidis and Thanailakis, 1997), Huygens principle (French, et al., 1990), nearest-neighbor movement rules 
(Bryant, et al., 1993; Ratz, 1995) and invasive epidemic processes (Green, et al., 1990). 

1.4 Analysis of Extant Fire Modeling Approaches 
Most wildfire models in use today (Rothermel, 1983; Andrews, 1986; Finney, 1993; Green, et al., 1990; Clarke, 
et al., 1994; Hargrove, et al., 2000) operate by encoding endogenous fire processes (e.g., rate of spread). 
However, results from some fire spread models suggest that different, upper-level elements are controlling under 
varied environmental conditions (Green, et al., 1990). Through repeated simulations these models can determine 
the degree to which a given landscape is connected, that is, able to sustain fire propagation, based on some 
critical threshold value (Green, 1994; Turner, et al., 1989). Turner and Romme (1994) and others (Simard, 1991; 
McKenzie, et al., 1996) discuss the need for a link between fine-scale mechanistic and broad-scale probabilistic 
wildfire models. They point directly to the essential need for model prediction of when synoptic weather, 
landscape pattern, or fire-line thermodynamics provides the more important constraint on wildfire spread. 

In the preceding discussion I have focused on the fundamental aspects of  no specific fire model, rather I have 
sought the unifying principles that each attempts to use in prediction. While each fire model has different, 
specific input requirements, any model of wildfire will require, in general, fuel, weather, and topography data 
(Fons, 1946). What is usually neglected in mechanistic models of wildfire is the overlying landscape structure 
and variable climate that serves as context for and constraint on disturbance processes (Allen and Hoekstra, 
1992; Holling, et al., 1996; Simard, 1991). Alternatively, fire regime and historical range of variation are 
powerful concepts for forest management, ecosystem assessment and system design (Swanson, et al., 1994). 
However, analyses of regime, equilibrium, and successional dynamics have been limited in scope, and usually 
fixed in scale, often inappropriately mapping different factors at the same scale. 

Complex ecosystem models usually only incorporate two hierarchical levels (Holling, 1995). Stochastic 
modeling of fire regime sets intermediate variables of fuel and weather as the lower-level context. Alternatively, 
physically-based fire models code low-level, fast combustion processes, then scale-up to forest stands. Local 
anthropogenic alterations of the biosphere are now connecting globally, crossing scales and ecological 
disciplines. Human society is now acting on a scale and at a rate equivalent with ecosystems, and our models 
must start to include variables from more than two hierarchical levels. The difficulty to this point has been 
connecting processes that have operating rates of different orders of magnitude (Allen and Starr, 1982). 
Computer encoding each process with it’s own time step would produce a very complicated model. Also, while 
the details of a single process may be captured and encoded, details of cross-scale interactions of two separate 
processes may not be known or knowable. 

2.0 STANDING AT THE CROSSROADS OF FIRE SCALE AND FIRE THEORY 
A classification of fire models can take almost any form. Weber (1991) used three classes based on the internal 
structure of the model, Crookston, et al. (1999) placed models in a matrix of interactions between two processes, 
while Gardner, et al. (1999) ordered models with respect to perspective taken and understanding gained. 
McKenzie, et al. (1996), present yet another approach to classifying fire models using theory and the range of 
associated operational scales. I have chosen the perspective that there are only two general wildfire spread model 
classifications: fine-scale mechanistic or broad-scale probabilistic. The crossroads referred to in the heading of 
this section relate to the terms scale and theory, and the modification of those terms with micro, meso and macro. 
Mechanistic approaches (micro-theory) scale locally (micro-scale) to what keeps a fire burning. Fire spread in 
probabilistic models (macro-theory) is constrained by the rate of percolation across a landscape (macro-scale). 
Additions, refinements and modifications to existing models continue in an effort to address fire and it’s effects 
at different scales, but the theoretical basis remains the same. Ostensibly meso-scale models use micro-theory 
models for prediction (e.g., FIREMAP and FIRE-BGC), or macro-theoretical relationships for determining fire 
extent (e.g., DISPATCH and VAFS/LANDSIM).  

Little substantive change in the general field of wildfire spread modeling has occurred in the last 30 years. Most 
certainly, existing fire spread models have been refined or expanded, with additional modules providing 
expanded capabilities, such as the crown fire and spotting simulation segments of FARSITE (Finney, 1999). Fire 
sub-processes in landscape simulation models continue to grow in complexity, though some still use physically-
based models for fire spread (e.g., Urban, et al., 1999; Sessions, et al., 1999; Keane, et al., 1996). Baker (1999) 
presents a frank discussion on our lack of fundamental knowledge of the depth and complexity of most 
disturbances, despite the plethora of disturbance models. He points out limitations inherent in grid and vector-
based fire spread algorithms, and suggests the need for expanding our modeling efforts beyond current 



approaches and incorporating external factors as well as local considerations. McCormick, et al., (2000) arrive at 
a similar conclusion. The problem with micro-theory and macro-theory models is that they seek to understand 
the process of disturbance, not necessarily predict well where disturbance will spread. The ANN-based model 
described here seeks a meso-theory of wildfire spread that will work at any scale of interest to ecologists. 

3.0 MODELING WILDFIRE SPREAD PATTERNS 

3.1 Wildfire Data Sets 
Fire records for 11 fires that occurred during the summers of 1998 and 1999 on the Huron National Forest, 
Michigan, USA (Huron) were acquired. These records consisted of fire start location and a GPS-based fire 
perimeter, along with administrative details such as fire start time, stop time, date, cause (human-related or 
other), personnel and equipment used, and a cost analysis. Additionally, all readily available digital data were 
collected from the Huron Ranger districts the fires occurred on. The primary ecological and environmental 
variables collected for the area surrounding each fire include: Landsat TM imagery from 10 May 1993 and 25 
August 1991; USGS 7.5 minute DEM data, Digital Orthophoto Quarter Quadrangle imagery; river/road 
locations; stand type and stocking density; ownership boundaries; ecological landtype associations 
(ELTs/LTAs); early settlement vegetation maps; classified land cover from AVHRR imagery; daily weather 
records from 1995 to 1999; and 30-year monthly climatic averages for precipitation and minimum and maximum 
temperature. 

The primary significance of these data was their ready availability to fire management personnel on any forest 
ranger district in the Michigan, Wisconsin, or Minnesota. A main tenet of this modeling effort was to use data 
that did not require extraordinary effort to acquire (e.g., Keane, et al., 1999). Spatial data sets were converted to 
a modified Albers Equal Area Conic projection. All digital coverages were displayed over a common base layer 
and checked for locational accuracy. Non-spatial data were sorted for each fire and checked for missing values. 
Vector coverages of the final fire perimeters were converted to 10 m raster coverages. A 10 m raster size was 
determined to best represent shape of smaller fire perimeters (e.g., Busch) while also minimizing the total 
number of pixels of the larger fires. In addition to these data, an x/y coordinate relative to the fire start 
coordinate was calculated for each pixel and used as input data. 

3.2 Trials Using Data Subset By LTA 
The known fire data were stratified into test data sets consisting of 72 and 28 percent of the total pixels in the 
evaluation area, which included the known burn area plus a surrounding buffer. Initial ANN models were 
developed using 28 percent of all the data from all 11 fires. After training, a single neural network was used to 
predict burn probabilities for the remaining 72 percent of all the fire data. Results for the 11 fires ranged 
between 86 to 95 percent accurate in making a “no burn” prediction for individual fires where there was no burn, 
and 90 to 99 percent for “burn” predictions. These results are quite good, but not unexpected. Since the 28 
percent data set was stratified across the entire range of variation of the input data set, the ANN model had 
“seen” exemplars of all possible input combinations of the data type discussed in Section 3.1. Thus, there were 
no unexpected input vectors, and the ANN produced solid results for all the fires. 

Five fires occurred within the same ecoregion, and presented the best chance of using a subset of data to train a 
network, and a second, independent subset to test the network. The five fires were named Anniversary, Busch, 
Cooperation, Fuelbreak, and Mile and a Half (Mile). The fires were initially divided into  training and testing 
groups of roughly equal size. The first set (ABC) contained all pixel data from the Anniversary, Busch, and 
Cooperation fires (4719 pixels, 68 acres). Data from the Fuelbreak and Mile fires (6304 pixels, 82 acres) 
comprised the second set (FM). 

Two networks were developed, one using the ABC data set for training with the FM data set used for testing, 
and one using FM to train and ABC to test. The networks were able to learn and predict quite well for the 
training data as shown in the top three fire maps in Figure 1. What both networks failed to do was predict with 
any accuracy for the test fires, as shown by the bottom two maps in Figure 1. From looking at the fire 
environment variable values, it was hypothesized that wind direction may be having an undue influence on 
prediction accuracy for these trials. The ABC fire complex had wind directions ranging from southwest to 
southeast whereas the FM data consisted of east and northeast winds. A new training subset was made of the 
ABCF fire data with only the Mile fire used for testing the network, as the wind direction for the Mile fire fell 
within the range of values for the ABCF fires. 



Using all the ABCF input data, numerous ANN models using the new topology and various hidden node 
numbers were trained and tested on the Mile fire. While there were some networks that predict quite well, the 
overall results indicated that the networks were very sensitive to the initial random weight values and there were 
insufficient input exemplars to adequately adjust the weights. Furthermore, prediction in the upper quarter of the 
Mile fire changed significantly, but only outside the known fire boundary. From looking at the original data 
coverages, it was apparent the area north of the northern Mile fire boundary reflected a change in available input 
data. Stand type, stocking density and year of origin data were not available for the southern 3/4's of the Mile 
evaluation area since it occurred mostly off of Huron property. So, while the prediction within the fire boundary 
remained good in many cases, once outside the known burned area the network was uncertain as to whether to 
start a fire or not. An alternative explanation is that the predictions within the fire boundary are actually poor, 
since the network was getting values of -1 (no data) at many of the input nodes instead of stand age, density and 
year of origin data. The apparent sensitivity and instability of the networks, presumably a result of initial weight 
values and missing test data, prompted a thorough reconsideration of both the data and network structures. If 
wind was the only problem with the ABC-FM trials, then the results of the ABCF-M trials should have been 
much better than observed. 

3.3 Altering Inputs To Improve Prediction 
With no other changes in neural network topology possible, what were assessed to be minor environmental input 
variables were removed. The pruning of input data was done to reduce the required number of network weights. 
Every input parameter removed reduced the number of weights by a factor of nine times the number of hidden 
nodes. Since the ABCFM fires were all on the same LTA, that input variable was deleted. Ownership was 
deemed a minor variable and deleted as well. Trained networks were providing no better prediction with the 
LTA and ownership variables removed, so a second reassessment of the problem suggested deleting all except 
very basic input variables. Essential inputs were determined to be wind speed and direction, elevation, absolute 
x/y coordinate, and the spectral reflectance values contained in the DOQ and TM layers. Approximately 100 
network training trials were conducted, of which one particular model with 12 hidden nodes did a very good job 
of learning the ABCF training data as well as predicting the Mile, Airport, and Tuttle Marsh test data (Figure 2). 
The Airport and Tuttle Marsh fires occur on the same subsection as the ABCFM fires but on different LTAs. 

4.0 CONCLUDING DISCUSSION 
The models developed to-date are supportive of the meso-scale fire modeling theory outlined above. However, 
at this point these models are not yet fully operational, and comparative analyses to prove or disprove 
hypotheses seem premature. Inputs to all of the ANN models developed to-date contain information on the 
known fire burn area and boundary (i.e., a priori knowledge of where the fire will spread to). Each input pixel 
knew the fire burn status of neighbor pixels. Using the known arrangement of the fire front to make a burn/no 
burn decision for a given pixel is a very reasonable approach for modeling fire at any scale. However, to really 
prove the efficacy of these ANN models, neighbor burn status must come from predictions from the ANN 
model, not from known fire boundaries. To develop a fully operational meso-scale ANN fire model several 
issues need to be addressed. As is evident from the results shown in Figure 2, accurate predictive fire models are 
possible using ANNs, and a fully operational model should produce output of similar accuracy. Training of the 
models could still occur in a manner similar to that described in this document, though some external changes in 
model operation would need to be made. Three possible changes involve thresholding, a mixture of models, or 
neighborhood smoothing.  

The ANN predicts a decimal burn probability estimate ranging from 0 to 1, but the networks were trained using 
integer values of 0 (no burn) or 1 (burn). A reasonable approach for using these ANN-predicted output values 
would consist of thresholding the output prior to their use in the model (e.g., a prediction from 0 to 49 percent 
would be set to 0, from 50 to 100 percent to 1). The actual (decimal) predictions could still be saved for analysis, 
while the model would receive input values in keeping with those it was trained on. A "mixture of experts" 
modeling approach (Principe et al., 2000) could include both fuzzy logic and decision rules to select which of 
many networks would be used for burn predictions based on input variable values and burn configuration. One 
model mixing approach could include averaging the output from two or more networks. Furthermore, decision 
rules that select between models would solve the problem of loss of predictive accuracy when crossing 
ecoregional boundaries (i.e., Airport and Tuttle Marsh fires, Figure 2). Neighborhood smoothing (e.g., majority 
filtering) could be used after an initial presentation of the queued pixels to a network. 



4.1 Model Variables 
Broad-scale environmental variables such as AVHRR, early settlement vegetation, surficial geology, ownership 
and LTA were originally collected for, and some actually used in, ANN model development. These variables 
were not providing a useful signal from which the network could generalize and were subsequently deleted from 
the input data vector. 

In contrast to almost all other wildfire spread models, an indicator of precipitation or fuel moisture was not used 
in these models. Fuel moisture is an important variable for micro-theory fire models, and climate/precipitation 
regime is important to macro-scale fire modeling theory. Results presented here show that wind is an effective 
meso-scale variable for the climate leg of the fire environment triangle. Fuel moisture is very specific to fuel size 
class. Details of the spatial variation of these fuels cannot be known for modeling at meso-scales. Fuel moisture 
is a synthetic indicator of short-term rainfall and is too fine and fast a variable, as long-term precipitation 
average is too coarse and slow a variable for easy inclusion in this scale of model. 

4.2 Fire Models and Scale 
The meso-theoretical approach for modeling wildfire as described in this document proposes and follows 
through on a very specific level of analysis. The primary assumption of “if fire starts today it will go 
somewhere” underlies the ANN fire modeling structure. Operationally, the decision as to whether this 
assumption is true for any given time-frame is necessarily made external to the ANN models and prior to 
sending a fire start location to the queuing program. Thus, the specified meso-scale ANN models are best placed 
within macro and micro-scale models that take into account processes operating at finer or broader scales.  

Within the defined level of analysis for these ANN fire models, wind speed and direction, the highly spatially 
variable information on fuels (contained in TM and DOQ spectral reflectance values), and elevation are the most 
appropriately scaled variables, given the goal and intended use of these models. The great reduction of this set of 
input variables is telling of other scales of fire modeling theory. Apparently, variables derived from primary data 
are presenting a very synthetic estimate of human understanding of what is present in the natural system. In the 
end, these synthetic classifications present mostly noise and confusion to the neural networks and, thus, are not 
useful in searching the relationship surface between inputs and outputs. 

For this document, in keeping with accepted parlance and tradition, I have referred to the different fire modeling 
approaches in terms of scale (fine, meso and broad). However, I find it is more useful to think of extant fire 
models, and modeling in general,  in terms of underlying theory. Fine-scale mechanistic models are essentially 
working from micro-theory, the pyrolysis of twigs in a simple, unvarying environment (i.e., no wind, no slope). 
Broad-scale probabilistic models approach fire from a macro-theoretic standpoint, namely statistical distributions 
based on relatively long-term observations of environmental phenomena. ANNs are not restricted to meso-scale 
representations, and allow for a meso-theoretical modeling approach. 

It is the underlying theoretical approach that limits both mechanistic and probabilistic models, in the realm of 
fire spread modeling and when seeking explanation of many other ecological problems. Our training as 
ecologists, and the conventions followed within a given paradigm, often lead us to try and solve problems from 
an inappropriate theoretical basis. I was not the first person to look at fire modeling and see that a blending of 
fine-scale and coarse-scale models had not been effective in addressing fire at meso-scales. But, identification of 
the issue, while important, was only the first half of the solution. As in Rosen (1981), redefining the strategy of 
meso-scale fire model development was the vital aspect that had not yet been effectively done. My hope is that 
this document is an effective and strategic redefinition of what it means to model wildfire using meso-theory. 
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Figure 1. Predicted burn probability results 
for five fires on the Huron National Forest, 
Michigan, USA. Anniversary, Busch and 
Cooperation fire data were used to train a 
single ANN. The top three fire maps 
represent results from the final ANN training 
iteration, and the bottom two fire maps 
represent predicted burn/no burn status from 
the trained ANN. Gray or red within the 
known fire perimeter (black line) is “good” 
(predicted burn where burn occurred), while 
green or yellow outside the fire perimeter is 
“good” (predicted no burn where no burn 
occurred). While the final training run (top 
three maps) shows very good prediction, the 
test runs show almost complete failure of the 
model to distinguish burned versus unburned 
areas. 

 

 

 

 

 

 

 

Figure 2. Final model prediction results for 
the Mile, Airport and Tuttle Marsh fires, 
using a trained 12-hidden node ANN with 
wind speed, wind direction, DOQ, DEM, TM 
and absolute x/y distance from fire start as 
inputs. Training fires were Anniversary, 
Busch, Cooperation, and Fuelbreak.  The 
Mile fire occurred on the same landtype as 
the training fire, while the Airport and Tuttle 
Marsh fires occurred on different landtypes.  
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