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ABSTRACT

Wildfire occurs over a wide range of spatial and
temporal scales.  Typically, patterns of wildfire spread
are modeled using fine-scale, mechanistic equations or
broad-scale,  probabilistic equations.  Both modeling
approaches use some form of fuel, climate, and
topography variables.  Mechanistic approaches look at
the small scale constraints (e.g., percent of moisture in
fuel) that enable a fire to keep burning.  In probabilistic
models fire spread is determined by the size and
connectedness of fuel patches distributed across the
fire landscape.  Both approaches assume the fire
behavior environment is a simple system that can be
described with simple equations, but that assumption
holds true only over a very narrow range of scales.  A
complex systems approach to modeling fire behavior
involves not only knowing what variables are
constraining fire growth at a fine scale but also which
constraints are absent at a broad-scale, allowing a fire
to spread unchecked.  Possession of highly detailed
information on system variables will not inform you
where the system is going because small changes in the
context will change the importance of certain variables.
What is important are the cross-scale relationships
between the upper-level context and lower-level
constraints to the predictor variables of the model.
Existing fire models lose predictive power when subtle
shifts in environmental variables cause qualitative
changes in fire behavior, that is, when the system’s
behavior changes scale.  Artificial neural networks
(ANNs) are designed for problems with cross-scale
relationships that produce non-linear changes in system
behavior.  The ANN  framework provides a
comprehensive integration across scales of fire
environment variables.  The ANN is able to determine
the equations describing those cross-scale interactions
and better predict where a fire will spread as a result.
This better predictive capacity is needed in light of
global climate change and increasing human habitation
in rural areas.

INTRODUCTION

The need for a meso-scale wildfire model stems from
a Forest Service initiative to assess and analyze fire-
regulated ecosystems in the northern Great Lakes
States.  Forest Service research activities in the Lake
States have included fire occurrence factor analyses
(Cardille 1998) and disturbance regime mapping for
certain subsections within Province 212 (Keys, et al.
1995).  A useful fire model should be appropriate for
use on National Forests and surrounding lands within
the Province and facilitate the development of
alternative strategies for ecosystem management.
Linking the model to a forest succession model will aid
in planning and evaluating burning as a land
management practice.

We model fire to better manage fire and its effects on
ecosystems, communities and landscapes.  Some fire
models are stand-alone while others are modules within
larger land cover dynamics models.  Extant fire models
operate at many scales, use different predictive
equations, and produce numbers or maps representing
fire frequency, severity, spread rate, burn pattern or
risk.  A meso-scale fire model is needed for several
reasons.  Many fire models were originally developed
for the conifer-dominated forests of the western U.S.
Ecosystem differences (e.g., wind/elevation
interactions, landform and cover type characteristics,
etc.) may make these model structures inappropriate for
the Great Lakes ecoregion.  Wildfire modules within
larger forest succession models lack the resolution
required for most forest-level management and
planning efforts.  Increasing human presence on and
around forested lands in the region raises the potential
for conflicting land management scenarios (Plevel
1997).  Therefore, forest land managers recognize the
need for a wildfire model specifically applicable to the
northern Great Lakes ecoregion.



Figure 1. A neural network processing unit. (Adapted
from Russel and Norvig 1995)

Figure 2. A single-hidden layer feed-forward
artificial neural network (Adapted from Russel and
Norvig 1995)

The unique aspect of this model is the use of an
artificial neural network (ANN) as the decision-making
engine.  An ANN-based wildfire model is distinctive in
comparison to contemporary models.  Extant fire
models have their strong points, but ANN models offer
advantages for some data availability and field
situations in two ways.  First, they integrate
relationships between fire environment variables (fuel,
topography and climate) relating to fire behavior that
occurs at multiple spatio-temporal scales.  Second, they
allow the capture and analysis of cover, landform and
climate interactions that may be unique in time and
space with respect to predicting fire spread.

The ANN  model structure should be robust in
predicting wildfire burn patterns over the range of fire
environments present in the ecoregion.  Traditional
modeling approaches require that the rules relating
input to output be known a priori.  Accuracy of the
predicted variables relies on the precision of the input
variables, so a lack of data for one component module
or equation will cause the whole model to fail.  In
contrast, ANN models need no explicit statement of the
rules (they will be learned via inductive reasoning), are
fault tolerant (due to redundancies within the network),
and can function with noisy or partial data.

ARTIFICIAL NEURAL NETWORKS

Haykin  ( 1994) defines a neural network as “. . . a
massively parallel distributed processor that has a
natural propensity for storing experiential knowledge
and making it available for use.”  Artificial neural
networks acquire knowledge by learning from
examples and store that knowledge as synaptic weights
in connections (networks) between processing nodes
(neurons).  ANNs have the ability to model complex
functional relationships predefining the behavior and
interactions of all the pertinent components (i.e., the
rules are not known).  The pattern emerges through
positive feedbacks that eventually press against global
constraints that define structure.  ANNs reduce the
need to write “rules” based on expert knowledge.
Neural networks determine these rules by mapping
directly from input to output with a blind, but effective,
search strategy (Sui 1994).  A trained network can
respond non-linearly to input values, where a small
change in one or several inputs can result in an
exponentially greater output response. Conventional
modeling techniques do not readily do this unless the
relationships are known a priori.  Since their inception,
artificial neural networks have been trained to perform
tasks that appeared impossible for conventional
computer programming techniques, for example,
steering a car under new or unknown conditions,

reading hand-written postal zip codes, or recognizing
spoken language (Dukelow 1994).

Basic ANN Architecture

Conceptually neural networks are quite simple and can
be represented as graphs composed of a series of linked
nodes (Figure 1) that represent biological neurons and
their connections.  Multi-layered, feed-forward
networks are acyclic graphs and have a series of nodes
arranged in layers (input, hidden and output), with links
between every node in adjacent layers (Figure 2).  Full
connectivity is not a requirement for a functioning
neural network.  There are typically only one input and
one output layer.  A network with one hidden layer can
learn most continuous functions, while multiple hidden
layers can learn discontinuous functions (Russel and
Norvig 1995).  Each link in the network has a numeric
weight, the strength (value) of which relates to the local
node’s effect on the whole network.  Input values are

multiplied by the weights of the input links leading to
each node in the hidden layer (Figure 1).  Each node in
the hidden and output layers performs two functions: a
linear summation of the weighted inputs and then a
nonlinear transformation of that sum using an
activation function (Russel and Norvig 1995).  The
activation function produces an activation value for
each hidden node that is “fed forward” to the output
layer.  The nodes of the output layer also calculate a
weighted sum, and the activation function produces the
output value.



QUALITATIVE ANALYSIS OF THE
FIRE ENVIRONMENT

Wildfire occurs over a continuous spatio-temporal
range (Simard 1991; Turner and Dale 1991).  The
elements of the fire environment triangle - fuel, weather
and topography - also vary continuously over the range
of scales that wildfire occurs.  Approaches to modeling
wildfire spread patterns are either fine-scale
mechanistic or broad-scale probabilistic (McKenzie,
Peterson and Alvarado 1996).  While both approaches
correlate observed fire behavior with fuel, climate, and
topography variables, they only work within a narrow,
fixed-scale range.  Mechanistic approaches scale
locally to what keeps a fire burning, while fire spread
in probabilistic models is constrained by the rate of
percolation across the landscape.  To work within a
meso-scale range, both approaches extrapolate model
results up- or down-scale, or aggregate fire
environment variables to the desired scale of analysis.
Extrapolating up-scale from physically-based equations
or down-scale from statistically-derived landscape
variables results in less predictive power because the
relationships between the fire environment variables
change in a complex, non-linear manner as the scale
shifts away from that of the original model.  Changing
spatial and temporal scales of fire environment
variables leads to the inherent unpredictability found in
middle number systems (Weinberg 1975; Allen and
Starr 1982).

Small number considerations, like our planetary
system, are predictive because one can account for the
behavior of each component with one equation for each
part.  Large number systems, e.g., the gas laws, have so
many parts (N > 6.02x1023, Avogadro's number) that
statistical techniques are employed to predict overall
system behavior based on the assumed average
component.  Middle number systems lie between the
domains of these two approaches; there are too many
components to account for the behavior and
interactions of all the parts, but too few to permit the
assumption of uniform behavior.  Middle number
systems are extremely sensitive to initial conditions
because any component or process may enter into
feedback and come to dominate system behavior.

Fire literature has focused on either the constraints on
fires raging or the constraints on fires surviving, but not
both sets of constraints.  Each class of model is
predictive to a limited degree.  What is needed, and
what ANNs provide, is prediction in the context of
both sets of constraints simultaneously.  Switching
constraints, however, means predicting within a middle
number domain where one set of constraint factors is

historical, and the other can be captured in a relatively
mechanistic account.  Since history and mechanism are
not compatible, our meso-model cannot be purely
mechanistic or probabilistic.  In the middle number
domain, fixed scale simulations or fine-scale,
physically-based models lack sufficient flexibility and
miss important dynamic interactions.  Predictive
modeling of fire behavior involves knowing what
variables are constraining fire growth or which
constraints are absent allowing unchecked positive
feedback between fire and fuel.  Extant fire models lose
predictive power when subtle shifts in environmental
variables cause a qualitative change in fire behavior.

Most modeling approaches select and theorize about
environmental parameters based on observations and
expert knowledge. Parameters are calibrated using
reasonable assumptions and probabilities to incorporate
processes that are well understood or easily encoded.
Once calibrated, parameters are dealt with as constants
in models.  This fixes the scale over which the model is
valid and limits the resolution.  On average, working
models behave as expected and give solid results when
parameters do not exceed their normal range.  Models
often fail to predict larger events because those events
lie beyond the averaged model parameter values and
the process is initiated by a low probability,  but
ecologically possible, alignment of environmental
conditions.  Fixed-scale models are often inflexible,
only valid within a narrow state space, and provide
inadequate responses during conditions when the
modeled system switches from being controlled from
below by internal processes to being controlled from
above by external constraints.

System Scaling

O’Neill, et al. (1986) show that hierarchy theory (Allen
and Starr 1982), when applied to ecosystem processes
and functions, can provide a useful approach to
situations that appear middle-number.  By empirically
determining and hierarchically ordering the system rate
variables, we limit the imposition of predetermined,
human-based scales on our analyses.  In discussing fire
and insect effects on boreal forest ecosystems, Holling
(1981) describes a simulation model that requires
equations with 78 variables to predict adequately
spruce budworm dynamics in only one forest patch.
With 393 patches in the affected area, a comprehensive
simulation model would contain more than 30,000
variables.  Using a topological approach, the 78 local
variables reduced to three rate sets relating to
budworms (fast, months), foliage condition
(intermediate, years), and crown volume/hectare (slow,
decades).



Figure 3. Fire environment manifold. (Adapted from
Holling 1981)

Figure 4.  Time and space scales for the boreal forest
and their relationship to some of the processes which
structure the forest.  Contagious meso-scale
disturbance processes provide a linkage between
macro-scale atmospheric processes and micro-scale
landscape processes. (Adapted from Holling, et al.
1996)

While the topological approach is qualitative in nature,
it is very instructive in understanding how and why
system dynamics change with a change in variable
values.  Where the simulation model provides detailed,
essentially mechanistic, explanations of what happens
in the system, its complexity precludes understanding
how and why results are produced.  Holling (1981)
presents a similar topological analysis of fire (Figure
3).   Fire intensity is the fast variable, fuel intermediate,
and trees slow.  This simple model shows an
equilibrium manifold (solid line) where the region to
the left of the line represents conditions where self-
sustaining fire is not possible.  Along the curve and to
the right, fuel conditions and fire intensities are
sufficient to sustain combustion.  The line at B
represents the average intensity of random ignition
events.  Fuel conditions less than A do not allow
sustained fire under any intensities.  As fuel condition
increases toward C, the regular, random ignitions
would result in a self-sustaining fire whenever C was
reached.  Fire suppression or changing climate deflects
the lower arm of the equilibrium manifold upward,
preventing sustained combustion at lower fuel
conditions (slow variables constraining fast).  Over

time tree crown cover increases, creating conditions
capable of sustaining a crown fire, a significant change
in state of the intermediate variable.  Eventually a hot,
dry year will occur, and while fast atmospherics still
control the fast fire variables, previous slow variable
constraints have set the stage for large scale
conflagration (Figure 3, E to F).  The manifold in
Figure 3 assumes that tree density, the slow variable, is
in some type of equilibrium; the manifold aids in
understanding why a landscape experiences regular and

periodic fires of moderate intensity (D) despite
frequent, random ignitions. 

Fire behavior always involves the question of what
variables will be controlling, providing the constraints
on fire, or which constraints are absent, allowing
unchecked positive feedback between fire and fuel.
Fixed-scale simulations or fine-scale, physically-based
models lack sufficient flexibility and will miss
important dynamic interactions.  Management use of
these models will result in surprise (Holling 1986).  By
ignoring spatial aspects and folding other temporal
variables into only three,  topological analyses offer an
understanding of fire behavior at any spatial scale (e.g.,
needle, tree, stand, forest).  Atmospheric variables can
also be represented as fast (relative humidity,
precipitation), intermediate (seasonal temperature and
annual precipitation), or slow (climatic averages over
decades or centuries) (Figure 4).

Fire models based on Rothermel’s (1972) equations use
fast atmospheric variables to predict fire intensity with
fuel models that implicitly incorporate intermediate and
slow climatic variables (Figure 4).  Rothermel’s
analysis (Rothermel 1991) of model predictions during
the 1988 Yellowstone fires shows how reliant the

equations are on fast/fine scale information.  Extant
models appear to map between fire and landscape but
only weakly to atmosphere, or between fire and



atmosphere but only weakly to landscape.  These
models make only simple connections between the
elements in Figure 4 over a narrow scale range.  An
adaptive model would seek connections across multiple
scales, creating pathways among all levels of slow-
intermediate-fast and micro-meso-macro variables.

It is easy to extrapolate the manifold line (representing
a compression of the other variables in a complex fire
environment,  Figure 3) to an n-dimensional space, and
hypothesize that subtle shifts in several variables will
shift the bottom of the manifold up or down, crossing
B at different locations.  This complex view of fire is
well modeled with ANNs, since fast, intermediate and
slow variables can be somewhat isolated within the
network, having only minimal connectance to other
portions of the network. The ANN framework
provides a comprehensive integration across scales of
biotic and abiotic variables.  The actual equations
describing those cross-scale interactions are contained
in the weights of the network.

EXTANT FIRE MODELING
APPROACHES

All fire models look at fire spread from the standpoint
of the flames pushing the fire front along if fuels are
available or wind is strong enough.  Results from some
fire spread models suggest that different upper-level
elements are controlling under varied environmental
conditions (Green, Tridgell and Gill 1990; Gardner, et
al. 1996).  Through repeated simulations these models
can determine the degree to which a given landscape is
connected (i.e., able to carry a fire), when it is above or
below some critical threshold value (Green 1994;
Turner, et al. 1989).  Information on percolation
thresholds is needed for fire management of present-
day landscapes and should be incorporated into
wildfire models.  Indeed, Turner and Romme (1994)
and others (Simard 1991; McKenzie, Peterson and
Alvarado 1996) discuss the need for a link between
fine-scale mechanistic and broad-scale probabilistic
wildfire models.  They point directly to the essential
need to be able to determine when landscape pattern or
fire-line thermodynamics provides the more important
constraint on wildfire spread.

Wildfire models (e.g., Andrews 1986; Finney 1996;
Gardner, et al. 1996; Clarke, Brass and Riggan 1994)
operate by encoding endogenous fire processes (e.g.,
rate of spread, intensity, etc.).  While each fire model
has different, specific input requirements, any model of
wildfire will require, in general, fuel, weather, and
topography data (Fons 1946).  What is usually
neglected in mechanistic models of wildfire is the

overlying landscape structure and variable climate that
serves as context for and constraint on disturbance
processes (Allen and Hoekstra 1992; Holling, et al.
1996; Simard 1991).

For simplicity ecosystem models usually only
incorporate two hierarchical levels (Holling 1995).
Incorporating fire regime into these model sets
intermediate variables of fuel and weather as the lower-
level context; the model then simulates effects on
forests with variation in climate (both, higher-level,
slower-acting variables).  Alternatively, physically-
based fire models encode low-level, fast combustion
processes and scale-up to stands and forests.  Local,
human impacts on the biosphere are having global
effects (e.g., rising CO2 levels), crossing scales and
ecological disciplines.  Human society is now acting on
a scale and at a rate equivalent with ecosystems, so our
models must start to include variables from more than
two hierarchical levels.  The difficulty in modeling
these effects has been in connecting processes
operating at vastly different rates (Allen and Starr
1982).  Encoding each process with its own time step
would be cumbersome and lead to very complicated
models.  Even if the computer code could capture the
details of a single process, the cross-scale interactions
of different processes are not likely to be known or
knowable.

Other Approaches to Modeling Fire

Other recently developed models have taken advantage
of raster-based simulation concepts (e.g., cellular
automata (CA) and nearest neighbor decision rules) to
incorporate concepts of diffusion (Clarke, Brass and
Riggan 1994), percolation (Green 1993b), or contagion
(Li and Apps 1996; Gardner, et al. 1996) in spreading
fire across a landscape.  CA are a 2-dimensional array
of cells with values that represent the global state of a
variable.  Each cell is a computer and updates its state
at each time step based on the state of its neighbors
(Green 1993a).  Limiting interactions to immediate
neighbors makes CAs easy to computerize, and the
efficient processing is often used to model complex
systems (Karafyllidis and Thanailakis 1997).  Most CA
models of fire spread require some estimate of the burn
potential for each cell prior to running the model. The
probabilities are often stochastic in nature, and multiple
runs are used to develop a map of fire risk.  Cellular
automata have been implemented in fire models using
Rothermel’s (or others) rate of spread (Ball and Guertin
1992; Karafyllidis and Thanailakis 1997), Huygens’
principle (French, Anderson and Catchpole 1990),
nearest-neighbor movement rules (Bryant, et al. 1993;
Ratz 1995) and invasive epidemic processes (Green,



Figure 5. Equilibrium diagrams. (Adapted from
Holling, et al. 1995)

Tridgell and Gill 1990).  Clarke et al. (1994) present a
unique method of fire propagation in a CA.

Using only local rules means that the emergent pattern
often represents what is physically possible, though not
necessarily ecologically allowable (Allen and Hoekstra
1992).  CA fire models often produce distorted or
unnatural fire boundary shapes (French, Anderson and
Catchpole 1990; Ball and Guertin 1992).   By using
only nearest neighbor rules, CA models do not
incorporate a context, the ecological constraints that
limit the total range of physically possible to a smaller
subset of ecologically allowable structural and
organizational configurations.  The ANN model, while
grid-based, makes local decisions but also incorporates
information from the surrounding landscape to provide
a context.

CONCEPTS OF ECOSYSTEM
CHANGE

Humans, fire, wind, disease and insects are the major
agents of change in forests.  Fire is a perturbation at the
scale of a tree, while at the scale of a forest, fire is an
integral, endogenous ecosystem process (Allen and
Starr 1982).  While fire kills individual trees, it initiates
a cycle of stand renewal, often ensuring the survival of
the tree species.  Fire operates over multiple spatio-
temporal scales, and characteristics of the variables that
control fire behavior also vary in time and space.
Topography is relatively stable over time but exhibits
great spatial variation.  Fuel and climate vary in both
time and space.  Fuel is stored energy on the landscape
(Sapsis and Martin 1993).  Fuel state describes the
moisture content of live and dead fuels.  Change in fuel
state can be rapid (daily) or intermediate
(seasonal/annual).  Fuel type refers to species, spatial
arrangement (vertical and horizontal) and density.  Fuel
accumulation after a fire is generally a slow process
that can continue for 100 years or more, although some
disturbances (insect outbreaks, disease, windthrow)
will cause more rapid fuel accumulation.

Fire alters the condition and arrangement of abiotic and
biotic elements on a landscape, and species respond to
the changed environment.  The type of vegetation that
returns after a fire determines in part when fire will
return and how severe its effects will be.  This positive
feedback loop between species and fire can develop
into a relatively stable system over time, assuming that
large scale climate (the upper-level constraint) remains
constant.  With shifting climate, human impacts and
exotic invaders, present day fire regimes cannot be
readily discerned from historical data (Schoonmaker
1998).  Management must decide what ecological

effects they want to produce with fire, and determine
an appropriate fire regime to meet those expectations
(Pahl-Wostl 1998).  The scale of the underlying
disturbance regime(s) and the physical space on the
landscape required for disturbance processes to occur
are important factors to consider when developing any
meso-scale model of fire.

Rowe (1983) identified five life history mechanisms
that plants use in response to different fire regimes.  In
areas that experience a range of fire severities, a
species may employ several of these strategies to
survive.  Fire suppression favors avoiders and results in
densely stocked, late successional forests.  The key
point is species are not the relevant entities with respect
to fire regime, rather Rowe’s strategy categories are.
Fire interval will equilibrate through positive feedback
with vegetation (ordered along Rowe’s strategy
categories) to maintain fire intensity and severity.  Fire
intensity is a fast, local variable (low level dynamics).
The lag in the period over which fuel accumulates on
the landscape (intermediate variable in space and time)
acts to constrain intensity.

To achieve environmental constancy (i.e., an
equilibrium) one is required to fix scale in space and
time.  By averaging variability in time and graininess in
space, an emphasis is placed on nature as a constant
over time.  This leads to management policies that are
unprepared for and surprised by change (Holling 1986).
Figure 5d represents an equilibrium-centered view of
the material world where the ball, i.e., environmental
variables, always returns to a single stability point
following disturbance (Holling, et al. 1995).  A more
dynamic view of change (Figure 5a) incorporates



multiple stability points.  Equilibrium views assume
linear causation wherein a small change in an
environmental variable causes only a small change in
system state.  Multiple stable equilibria indicate spatial
and temporal variability and nonlinear causation.
Planning and policy derived from an equilibrium basis
will not recognize stable configurations beyond the one
in which the system resides.  Continual, constant
environmental change displaces the ball short distances
over time (Figure 5b), yet the system state appears to be
within the same basin of attraction (linear change in
environmental variables).  Further small changes in the
environment result in a sudden, nonlinear change in
state, with the system moving to another stability point
(Figure 5c), a surprise from the equilibrium viewpoint
(Holling 1994).

COMPLEX SYSTEMS: A POINT OF
DEPARTURE

Mechanistic models of single processes are often
powerfully explanatory in regard to the behavior of
individual system components, but attempts to
assemble satisfactorily predictive, unified models from
these components have been largely unsuccessful
(Ulanowicz 1997).  The ability to predict whole system
behavior from mechanistic models fails because it is
impossible to anticipate and account for the effects of
every subtle aspect of system behavior.  Current
ecosystem and disturbance models are constructed in
an explicit manner, defining exactly how modules and
equations and variables react and interact.  The whole
system in its infinite detail is not the right referent; the
focus should be on prediction with regard to
phenomena (Allen and Hoekstra 1993).

The questions asked of ecological systems often
generate middle number models (O'Neill, et al. 1986).
Attempts to seek mechanistic causes for overall system
behavior through the approaches favored by traditional
hard science cannot yield explanations and quantitative
answers that are definitive when a middle number
system is invoked.  Funtowicz and Ravetz (1994) have
noted that cause and effect explanations have limited
power because in complex systems these categorical
distinctions disappear.  Ecological systems invite
casting them as complex, and complex systems require
different causal models.  A complex systems approach
incorporates the explanatory power of positive and
negative feedbacks and the recognition of the
emergence of hierarchically self-organizing and self-
sustaining structures to characterize system behavior
(Holling, et al. 1996).  Because complex systems do not
permit the definitive answers of traditional hard science
approaches, a methodology of complex systems is

needed to provide soft answers with good explanatory
power.

Disturbance regime and landscape equilibrium are
powerful concepts in understanding community and
ecosystem development through time.  Quantifying
regime or equilibrium require that space, time, or both
be fixed so that the concepts are scale dependant
(O'Neill, et al. 1986).  There is also the assumption that
climate and vegetative composition do not change
significantly.  Regimes are typically presented as
averages for a landscape when they actually come from
multiple disturbances of varying severity, size and
season.  Regime-based models are very instructive in
the analysis of historic landscapes or gaining insight on
potential future patch dynamics.  They are not,
however, highly informative for current forest
management and planning, because the forested
landscapes and vegetative communities from which the
regimes derive no longer exist (and probably will never
again), the spatial presence of species on the landscape
has changed, new species have been introduced, native
species have been greatly reduced or eliminated,
climate has changed or is currently changing, humans
have greatly increased ignition sources, and human
intervention (suppression) alters final fire size and
shape.  Fire regime needs to be predicted from a model,
not be an element within a model  (Li and Apps 1996).

ANN models address these concerns.  The non-linear
response nature of ANN architecture facilitates
learning and generalization on a wide range of input
and output values (Haykin  1994).  An ANN can accept
categorical data as well as continuous.  Assumptions
about the distribution and independence of the input
data are not as vital to constructing an effective
network as they are to more conventional statistical
analyses (Sui 1994).  The changing spatial and
temporal scales of fire environment variables used in
modeling wildfire in the Lakes States present the
modeler with all the problems inherent in middle
number systems.  Employing ANNs allows modeling
the meso-scale fire environment in a highly powerful
and predictive manner.  Even though on the face of it
the system appears middle number, the ANN explores
system structure until, at an appropriate level of
analysis, prediction becomes possible.  The ANN
recasts the parts of the question so that behavior
becomes reliable.  It filters out middle number
specifications by elimination of pathways that do not
provide repetitive behavior.



Fuel Models

Rothermel's original equations assume that the fire is
burning through a uniform fuel, across a flat terrain,
and with no wind.  These simplifying assumptions
made the original specification of fire behavior
equations possible.  Mechanistic fire models based on
Rothermel's  equations inherited those simplifying
assumptions.  Fire behavior research over the past 30
years has dealt primarily with how to translate the
relationships found in the simple fire environment of a
test laboratory to the very complex fire environment
found in the outside world.

We need to accept that the highly controlled conditions
found in a fire behavior laboratory are rarely if ever
found in human managed ecosystems.  The landscapes
that humans manage fire on have highly complex fuel
associations, variable terrain, and unpredictable
weather conditions.  A new theory of meso-scale fire
modeling must start with the foundational assumption
that the fire environment is complex and varied.
Predictions in fire environments beyond Rothermel's
fine-scale equations are accomplished by adding
modifying parameters to the original equations.  This
elaboration of structure is considered mere
complication by Allen, et al.  (1999).  The proposition
here is an elaboration of organization when assessing
real fire environments.  Our hierarchical
complexification, as distinguished from complication
by Allen, et al. (1999), in the analysis of fire accepts
and incorporates the differing spatio-temporal
resolution of the fire environment variables.  Input data
can be maintained within a GIS as close as possible to
original scale and resolution, and ANNs can be used to
learn the cross-scale relationships between those fire
environment data.  What it all comes down to is we
collect very fine-grained field data on fuel composition,
and then dilute the precision of those data by lumping
them into fire behavior fuel models that fit known
equations.  The lumping hides switching constraints
inside the aggregates, generating middle number
effects.  ANNs preserve the original data resolution and
develop a complex, continuous function to describe the
fuel landscape.

It is ironic that the decades-long effort to produce a
spatially-explicit  model that accurately predicts fire
behavior has pushed input data requirements beyond
that which the typical end user is able to provide.  Fuels
vary continuously across the landscape, but current
concepts of fuel models require human judgement to
assign fuels to discrete categories.  Each evaluation
becomes a separate constraint on the model.  What is
needed is a new theory of fuel models to inform a

complex systems methodology that integrates the three
elements of the fire environment triangle into a robust,
continuous description of fire fuel.

Since one cannot directly measure fire behavior fuel
models (FBFMs) in the field, Keane et al. (1999)
hypothesized that FBFMs could be related to the
biophysical environment, species composition, and
stand structure.  Results show that while one can
accurately map the biophysical, species and stand
properties, the relationship between these elements and
FBFMs is not well known and thus the derived fuel
model layers had low accuracy.  A knowledgeable and
experienced team achieved only a 50-70% accuracy
rate in developing FARSITE input layers on 1.5 million
acres of the Gila Nation Forest (Keane, et al. 1999).

Results from the Gila National Forest mapping effort
indicate that a different approach to describing fuel on
the landscape is necessary.  Fire environment variables
should be mapped at a resolution appropriate for the
variable in question and kept as close as possible to that
original scale.  FBFM categorization, via multi-step
classification and aggregation procedures, dilutes the
precision of the original data.  Fuel landscapes are
composed of more than the vegetation on them; that
vegetation also has a history associated with it
(Havlicek 1999).  FBFMs can be modified to
incorporate short-term weather, but climatic factors
vary during the entire lifetime of the vegetation, subtly
(or not so subtly) influencing fuel loading.  The cross-
scale interactions between landscape and climatic
processes need to be directly addressed in any model of
fire fuels.

As discussed earlier, artificial neural networks are very
appropriate for use in analyzing data where the
relationship between the inputs and outputs is not well-
known.  How the fuel landscape was influenced by
climate during its early years of development versus its
middle or later years is not easily quantified, but can be
inferred from weather records, past and present
vegetative spectral response, landscape  position,
timing and type of non-stand replacing disturbances
(harvesting, disease, pests, residential development),
and inventories of current field conditions (e.g., the
three aspects mapped with reasonable accuracy on the
Gila National Forest).  Using an ANN, spectral data
from Landsat TM or other remote sensing platform
(historic and current imagery) could be input directly,
along with field-based mapping of other fire
environment variables.

Raw digital numbers  from unclassified satellite
imagery are the closest we can come to a continuous



Figure 6.  Holling’s figure-8 model of ecosystem
change.

valuation of landscape fuels, and various sensors
integrate spectral response over different spatial and
temporal scales.  When sub-five meter imagery and
radar data become readily available, spectral
characterization of fuel landscapes would be possible
over almost the entire range of human fire management
interests, allowing the development of a consistent,
hierarchically-organized, multi-scale fuel model
developed for the continent but scalable to regional and
local considerations.

To further establish the context in which the fuel
landscape  developed, additional model input layers
may include: surficial geology or soil texture; Landtype
Association (LTA) (Jordan, et al. 1996); precipitation
(day, week, month and yearly totals); hydrography;
elevation, slope and aspect; time since last
fire/disturbance; land use/ownership; fire suppression
regime; road density; and human population/housing
density.  Some or all of these elements may be
important context for or constraints on fire spread.
This floating scale approach to fire and fuel modeling
has implications for local, regional and state forest
planning, and also can be useful in rapid assessments
of fire risk, pointing to areas requiring more finely-
scaled analyses.

CONCLUSION

Over the last decade, C. S. Holling developed and
refined  (Holling 1986; Holling 1992; Peterson, Allen
and Holling 1998) a four-box model describing how
ecosystems function (Figure 6).  The first two boxes
refer to the classic ecosystem life cycle stages, from
colonization after a disturbance (Box 1: exploitation)
through succession proceeding toward climax (Box 2:
conservation).  This cycling of vegetation from
disturbance to climatic/edaphic climax and back to
disturbance was the traditional view of ecosystem
succession in the first half of the 20th century
(Clements 1936).  Studies from various researchers in
the early 1980's have served to shift our understanding
of succession to a more dynamic process (Holling
1992).

Holling (1992) makes four points: 1) following
disturbance and during succession, invasion by
persistent species can be highly variable and dependant
on many random factors; 2) early and late successional
species can and will maintain a presence on the
landscape through time; 3) disturbance events of
varying sizes are part of the ecosystem and affect the
timing of succession; and 4) there are multiple potential
climax types (stable attractors), and some disturbances
can move an ecosystem between attractors (Kay 1993).

Recognizing that there is not a unique successional
pathway for a given landscape prompted Holling
(Holling 1986) to add two additional elements to the
model, release or creative destruction (Box 3) and
reorganization (Box 4).

The release and reorganization phases of the model
have the greatest influence on what successional
pathways will recur in the system after disturbance.
The accumulation of a large amount of stored capital
(e.g., biomass) and organization (e.g., structure and
feedback) in the conservation phase eventually leaves

the system overconnected (Allen and Starr 1982) and
susceptible to some agent of change (e.g., fire).  The
shift from conservation to reorganization is rapid.  The
post-disturbance, weakly connected system is now free
to exploit the released capital and begin the exploitation
phase again.  If there is sufficient capital (e.g., organic
matter, nutrients) and information (e.g., seed source)
left in the system and its surroundings following
disturbance, succession may return to its predisturbance
trajectory (O'Neill, et al. 1986).  If the disturbance is
great in extent or severity (i.e., most of the capital or
information is lost)  the system can change qualitatively
from one successional pathway (attractor) to another
(Ulanowicz 1997).  The arrows into and out of Box 4
signify the possibility for change in ecosystem
processes, an escape to another basin of attraction
where a qualitatively different four-box model
describes the system.

The four-box model of birth, growth, death and
renewal processes spans many scales.  The figure-8
describing processes within a single forest stand has
smaller figure-8's nested within it (e.g., individual tree
birth, growth, death and decomposition) while the stand
figure-8 is nested within a larger, regional-scale four-



box model. The S-curve dynamics and multiple
disturbance types, incorporated into the four-box
ecosystem model, would show that disturbances can act
serially to effect a change greater than would have
occurred if each disturbance was modeled
independently.

Holling (1986, 1995) presents different viewpoints that
aid in understanding whence come societal perceptions
of ecology and how these relate to management.  An
equilibrium-centered view assumes nature is constant
or only changes slowly so human knowledge and
technology can keep up - resources are never limited
(Nature Cornicopian) because we invent substitutes.  A
second view is that of dynamic, Nature Resilient, with
multiple stable states, variability, heterogeneity and
instability - it accepts that complete knowledge of the
system is unattainable and management must allow
variation and maintain resilient structures in the process
of extracting benefits.  From this viewpoint we can
chart a course of societal change and management that
transitions to a sustainable human presence.
Alternatively, Holling’s four-box model focuses more
on Nature Resilient with nested cycles of order and
collapse, renewal and innovation.  A final, emerging
viewpoint, Nature Evolving, comes out of the more
recent sciences of chaos, complex systems analysis,
self-organizing systems, nonlinear behavior and
discontinuous change.  

From analyses of historical management practices and
modifying Holling’s four-box model, Gunderson, et al.
(1995) present a general model of ecosystem
management.  A cycle of four phases is described: 1)
exploitation (management to facilitate progress); 2)
canalization (management is static, while ecosystem
changes with society); 3) crisis (environmental
surprises and social conflicts arise); and 4)
reorganization (management learns and adapts to new
configuration).  The Nature Evolving viewpoint seeks
interdisciplinary, adaptive institutions that understand
that constraining natural variability reduces the
resilience of ecosystems (Holling 1995).

The history of fire management in the U.S. has
experienced several of these cycles on a local and
national basis.  With global climate change, El Nino
events, and six billion people demanding resources
from our forested lands, fire’s role as a management
tool is probably approaching crisis.  The inevitable
reorganization phase will need adaptive models.  We
anticipate that our approach to wildfire modeling will
have significant impact on how we manage fire-
susceptible lands and human actions on them.  With
proper design, the model interface will allow fire

managers to update the ANN with each new fire,
allowing the model to change incrementally with time
(hopefully tracking fire regime changes in real time).
The influence of short-term (days or weeks) and long-
term (years or decades) climate, vital environmental
constraints, could be assessed and directly incorporated
into the ANN.  These evolutionary abilities of the
model will prove useful in light of the uncertainties of
global climate change.  Furthermore, by decomposing
the ANN weights we hope to find the environmental
factor thresholds that, once crossed, allow fires to
escape suppression and control efforts.  An ANN-
based modeling approach will determine what factors
control fire on a given LTA, watershed or forest, and
whether those factors are the same or different on each
landform analyzed.

Recognition and characterization of the emergent
properties of wildfire (Green 1993b) with changing
controlling factors are vital to developing long-term
ecosystem management strategies.  By not
incorporating these concepts managers will continue to
be surprised by, and unprepared for, catastrophic
wildfire events.
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