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An Evaluation of the STEMS 
Tree Growth Projection System 

Margaret R. Holdaway, Mathematical Statistician 
and Gary J. Brand, Research Forester 

In 1975, research was begun at the North Central 
Forest Experiment Station to develop a system to 
project tree growth in the Lake States region. The 
tree growth projection system developed (USDA For- 
est Service 1979a) represented just one component 
of a broader Forest Resources Evaluation Program 
(FREP). The original projection system (which we 
will call GTR49) has been modified several times; 
the current version is STEMS, Stand and Tree Eval- 
uation and Modeling System (Belcher et al. 1982). 

STEMS is an individual tree, distance-indepen- 
dent model that can be used to project diameter growth 
and mortality for any species mixture and stand 
structure. Growth and mortality coefficients have 
been developed for the major tree species in the Lake 
States region (Michigan, Minnesota, and Wisconsin). 
However, because the current version of STEMS con- 
tains an incomplete regeneration submodel, it should 
not be used to project forest stands where seedlings 
are an important component. 

results can provide the basis for users to evaluate 
the model for their own specific purpose. 

The purposes of this paper are (1) to provide a 
brief preliminary analysis of how well the perform- 
ance of STEMS compares with GTR49, and (2) to 
report the results of an analysis of the STEMS tree 
growth projection system for a wide range of forest 
conditions and identify its main strengths and weak- 
nesses. These conditions encompass a wide range of 
forest types, species, time intervals, stand densities, 
and site qualities. Evaluations concentrate on three 
key variables-tree d.b.h. (evaluates the growth 
component of the model), number of trees per acre 
(evaluates the mortality component), and stand basal 
area (evaluates the entire model). The analysis was 
performed on a systematic sample from the calibra- 
tion data base as well as on five independent data 
sources. The results are presented in a simple format 
that can be interpreted without specialized statis- 
tical knowledge. Belcher, Holdaway, and Brand (1982) 
have previously reported some preliminary results 
of STEMS' 

Before any model can be used effectively, it must 
be evaluated. The purpose of model evaluation is to 
increase one's "confidence in the predictive capabil- 
ities of the model" (Schaeffer 1980) or to compare 
"its agreement with the real-life system it is in- 
tended to represent" (Goodall 1972). In the model 
evaluation process the primary questions include, 
who is going to use the model and their purpose for 
using it. As a result, model evaluation is very sub- 
jective and there is no absolute test of validity. 

Model evaluation should not attempt to determine 
whether or not a model is acceptable. Because models 
are used for many different purposes-e.g., studies 
on competition and succession change, updating in- 
ventories, studying the impact of different cutting 
prescriptions-acceptability will depend on the use. 
For this reason, a more appropriate approach to model 
evaluation is to present an extensive body of quan- 
titative information on the model's performance. These 

EVALUATION PRINCIPLES 
Evaluation Philosophy 

Modelers need not be concerned with proving the 
"truth" of a model because no model will behave 
exactly like the system it is modeling. All models 
are imperfect; a t  best they are a simplification of 
extremely complex biological and ecological proc- 
esses (Goodall 1972, Goulding 1979, Pilgrim 1975, 
Taylor 1979, Valentine 1978). The objective, then, of 
the evaluation process is not to accept or reject the 
model as true or false but to determine the quality 
of the predictions (Goodall 1972). There is no abso- 
lute test of validity or accuracy of a model but only 
subjective judgments based on the proposed use of 
the model, the acceptable level of errors, the avail- 
ability of alternative models, and other user-related 



practical considerations. Therefore, we will not be 
concerned with hypothesis tests but with quantita- 
tive statements about accuracy and precision. 

Furthermore, models can be expected to fail on 
some occasions due to oversimplification of assump- 
tions and relations, rarely encountered situations 
that have not been properly modeled, or extreme 
conditions that have not been considered. Therefore, 
it is unwise to base an evaluation of the model's 
performance solely on prediction errors averaged over 
all plots without regard to the more subtle discrep- 
ancies. A modeler needs to identify those areas in 
which the model produces fairly reliable results (called 
the range of applicability) and to highlight the weak 
areas (Goulding 1979, Pilgrim 1975, and Taylor 1979). 
One way to do this is to examine patterns of residual 
errors for various time intervals and various initial 
conditions (Pilgrim 1975, Taylor 1979). These pat- 
terns give much more information about the ade- 
quacy of the model than any single test of signifi- 
cance. It is also important to consider the model's 
performance outside the range of the calibration data 
and to determine whether the results are consistent 
with current knowledge. So modelers are not just 
concerned with how well the model functions, but 
also with the range of conditions over which it func- 
tions well. 

Once the user has determined where and under 
what conditions the model performs adequately, he 
can judge the model's practical value. This may be 
a more desirable criterion of acceptance than a sta- 
tistical measure or test that gives little information 
on exactly what is happening (Pilgrim 1975, Goodall 
1972, Goulding 1979). Thus, the critical question is 
not whether the model is valid but whether it is 
useful (Mankin et al. 1975). 

Therefore, recognizing the subjective, user-depen- 
dent nature of model evaluation, our approach is to 
provide a general overview along with a detailed 
analysis to assist the user in making that evaluation. 

Calibration Data and 
Independent Data 

We believe model evaluation should begin by ex- 
amining the model's performance on the calibration 
data base. Any marked bias would indicate a basic 
flaw in the mathematical model used to describe the 
system. Leary et al. (1979) presented three problem 
areas that may cause this bias: 
(1) the mathematical equations fail to describe parts 

of the process, 

(2) model components are combined incorrectly (i.e., 
additive or multiplicative), and 

(3) the numerical constants obtained from the cal- 
ibration are in error. 

If the model fails a t  this stage, the model will need 
to be refined before proceeding with further model 
evaluation. 

A projection system that performs well on cali- 
bration data may still fail to satisfactorily fit inde- 
pendent subsets of the region. Therefore, the model 
should also be tested against independent data be- 
fore its performance can be accurately assessed 
(Schaeffer 1980, Taylor 1979). This data should cover 
as wide a range of conditions as possible. 

Comparison of Models 
There is no universally accepted criterion against 

which the model's performance can be compared; val- 
idation is never absolute. Furthermore, we often 
compare the relative performance of two alternative 
models. This is how models are progressively devel- 
oped and improved (Goodall 1972). The new model 
replaces the old if it is judged to perform better. 

When comparing alternative models, it is unlikely 
that one model will give better predictions for all 
variables over a full range of stand conditions and 
forest types. For the user, the choice of a model will 
depend on which variables are more important, the 
amount of bias and variability in the predictions, the 
seriousness of the problem areas, and many other 
less obvious factors. The appropriate weighting of 
these various considerations depends on the pur- 
poses for which the model is to be used and is often 
very subjective and arbitrary (Goodall 1972). For the 
model developer other important considerations in- 
clude the simplicity of the model, the ease of recal- 
ibrating the model, and the number of unknown coef- 
ficients to be estimated. 

Data Base Differences 
Differences between the calibration and valida- 

tion data bases should be carefully considered when 
evaluating the model. For example, the types of plots 
used for the calibration may be different than those 
used for the validation or new conditions may occur 
that are outside the range of the calibration data. 
Problems can also arise if the geographical location 
of the calibration data is different from the area where 
the projection system is applied. 

Can the yields observed on experimental plots be 
duplicated on general forest land? The tree growth 



model coefficents were developed mainly from re- 
search plots. Such plots usually are chosen for their 
good location and minimum natural damage and also 
have been carefully managed so the result is a more 
uniform stand than would be found on general forest 
land. Consequently, we would expect the model coef- 
ficients to overpredict production when applied to 
general forest land. Bruce (1977) has noted these 
growth differences but concludes that "no single magic 
number" can be used to adjust for it. 

Another problem may arise if the model has some 
weak areas that have no effect in one predictive sit- 
uation but that surface in another-the model may 
be valid for one "range of conditions" but invalid for 
another (Schaeffer 1980). For example, if the data 
used to calibrate the model did not include very small 
trees and the model was later used to project growth 
on these trees, the results may be seriously in error. 
This type of problem can be evaluated by comparing 
various initial conditions on the calibration data base 
and on subsequent validation data sets. 

Not only may a model be invalid under a certain 
range of conditions but also for different geograph- 
ical locations due largely to climate and soil fact0rs.l 
How can these location differences be handled, es- 
pecially when the model is applied outside the region 
in which it was calibrated? One factor in choosing a 
model form should be the ease in adjusting the coef- 
ficients so that they can be altered to account for 
local conditions. An adjustable model needs to be 
fairly easy to understand and should not require 
complex manipulations to change the amount of 
growth or the relative allocation of growth to trees 
on a plot. 

EVALUATION ATTRIBUTES 
Accuracy and Precision 

The quality of the predictions made by a tree growth 
projection system can be analyzed in terms of both 
accuracy and precision. Predictions with small sys- 
tematic errors are said to be highly accurate. A com- 
mon measure of accuracy is the mean error. The mean 
error can be misleading, though, if there are large 
offsetting positive and negative random errors. 
Therefore, a measure of variability is also needed. 
Predictions with small random errors are considered 
to be highly precise and hence will be reproducible. 
The standard deviation (or its square, variance) is 

lThis aspect of the validation process is highly 
complex and we will not discuss it in this paper. 

the most common of the many measures of precision. 
Our results will include both accuracy and precision 
using the mean and standard deviation of the pre- 
diction errors. 

Evaluation Variables 
Judgments about a tree growth model's perform- 

ance should be based on key variables. We wanted 
to choose a set of variables that covered the most 
important aspects of stand and tree growth and that 
were directly estimated quantities. At the stand level, 
the key variables we use are stand basal area per 
acre (BA) and number of trees per acre (NT). Not 
only is BA an important stand attribute, but it is 
also an important component in estimating volume. 
NT is used to evaluate the mortality component, which 
is important because mortality greatly influences 
overall model performance. At the tree level, the 
variable we use is tree d.b.h. (DBH), which is im- 
portant in management strategies, tree volumes, and 
mortality estimates. Modelers may find this detailed 
tree level analysis especially beneficial. Therefore, 
throughout this paper we will evaluate how well the 
model predicts BA and NT at the stand level and 
DBH at the tree level. 

Components 
When a model has been built from components 

describing a number of separate processes, it is in- 
formative to evaluate the model in a way that will 
show how well each process is working. In GTR49 
and STEMS, DBH measures how well the growth 
component functions and NT measures how well the 
mortality component functions. BA, a combination 
of the two, measures how well the model functions 
as a whole. Errors in predicting BA can be due to 
problems in the growth component andlor mortality 
component. BA prediction could be very good even 
with large, but cancelling, errors in both DBH and 
NT. Therefore, i t  is the indepth evaluation of the 
separate growth (DBH) and mortality (NT) compo- 
nents that provide the clearest picture of how the 
system is operating. 

A secondary component also needs to be tested. 
Whenever tree crown ratio is unknown, it is esti- 
mated using a crown ratio function. Errors resulting 
from this approximation are studied in an indepen- 
dent analysis of the crown ratio function. 

Time Effect 
Continuous growth models will predict nearly per- 

fectly over very short time intervals. The longer the 



prediction interval, the less accurate the prediction the growth model produces plausible results when 
will be (Goodall 1972). Consequently, if the time in- extended far beyond the time frame in which it was 
tervals used in the evaluation vary greatly, it may calibrated. 
be difficult to make any justifiable conclusions. Two 
obvious choices can be made: (1) only use data from All the results presented in this paper have been 
plots with similar time intervals or (2) standardize standardized to 10 years except those presented in 
all results to a common time interval, such as 10 the section on error decay and long-term projections. 
years. We have taken the second approach to make 
full use of the data. Then, we can compare plots with 
different measurement lengths or pool results to- 
gether for a general overview. To standardize the 
time effect we assumed that error decay (the way 
error changes over time) is linear. We will evaluate 
this assumption in greater detail later in the paper. 

Besides standardizing the time effect for most as- 
pects of this study, we also analyzed the time effect 
in two ways. The first approach is an analysis of error 
decay on a property with at  least three measure- 
ments. From this it is possible to analyze how ac- 
curacy and precision behave over time. The second 
approach is a long-term projection to test whether 

METHODS AND 
PROCEDURES 

Data Bases 
The calibration data base consisted of tree mea- 

surements from permanent growth plots in the Lake 
States (fig. 1) (Christensen et al. 1979h2 The plots 
ranged in size from 0.1 to 0.5 acre. On many of the 
plots only trees more than 5 inches d.b.h. were re- 
measured (but this diameter limit was as low as 0.6 
inches on some plots and as high as 9 inches on 
others). 

Figure 1.-Geographical location of the calibration data and the five validation data sources 
used to test the projection system. Counties are shaded if they contain at least one plot. 



The data from the Lower Peninsula of Michigan 
are entirely red pine and jack pine plantations. The 
Wisconsin data are mostly northern white-cedar and 
natural hardwood stands (oak-hickory type in the 
south and west and northern hardwoods in the north). 
There is also a red pine plantation adjacent to the 
Upper Peninsula of Michigan and a white spruce 
plantation about 150 miles southeast of it. The 
northern Minnesota studies include natural and 
planted red pine and jack pine stands, and natural 
quaking aspen, white pine, and black spruce stands. 

We systematically sampled every fifth calibration 
plot to yield 293 plots with approximately 7,700 live 
trees. Only those trees that were alive at  the first 
measurement and were both predicted alive and ob- 
served alive at  the last measurement were analyzed 
at the tree level. On the calibration sample, the av- 
erage initial age was 48 years, the average initial 
tree diameter was 6.6 inches, and the average time 
from initial to final measurement was 20 years (fig. 
2). The SO+ class for initial age contains observa- 
tions up to 144 years. The validation data base came 
from five independent sources or properties in the 
Lake States (fig. 1): 

(1) Cloquet Experimental Forest of the College of 
Forestry, University of Minne~ota;~ 

(2) Chequamegon National Forest, Wi~consin;~ 
(3) Nicolet National Forest, Wi~consin;~ 
(4) Hiawatha National Forest, Michigaq4 
(5) Manistee National Forest, Mi~higan .~  

The Cloquet plots were all one-seventh acre with 
diameters of all trees more than 4.9 inches recorded. 
The National Forest plots were 10-point clusters of 
variable radius plots with measurements on trees 

2We wish to thank the followingpersons for making 
information available to us andlor helping collect field 
measurements: Carl Tubbs, Dick Godman, Gus Erd- 
man, Gib Mattson, John Benzie, Paul Latdly, and Bob 
Barse, North Central Forest Experiment Station; Rod 
Jacobs, USDA Forest Service, State & Private For- 
estry; Alan Ek,  University of Minnesota, College of 
Forestry; Wisconsin Department of Natural Re-  
sources; John W. Moser, Purdue University; A. B.  
Johnson, Owens-Illinois Corporation; and Cal Stott, 
USDA Forest Service (retired). 

3Dietmar Rose and the staff of the Cloquet Forestry 
Center made the past measurement data available 
and assisted i n  the 1976 remeasurement. 

4The data for the four National Forests were pro- 
vided by The Renewable Resources Evaluation Unit 
at the North Central Forest Experiment Station. 

1.0 inch in diameter and larger. All National Forest 
plots were measured roughly 10 years after the in- 
itial measurement. 

The total validation data base from the five prop- 
erties contained 822 plots with nearly 11,200 trees. 
The average initial age of the plots was 46 years 
(only 2 years younger than the calibration data), the 
average initial diameter was 8.2 inches, and the av- 
erage time interval was 13 years (much shorter than 
the calibration data) (fig. 2). Again the 80 + class for 
initial age contains observations up to 196 years. 

Each plot in the two data bases contained site 
index, stand age, measurement dates, and a list of 
trees. Each tree in the list had a species code, tree 
factor (trees per acre represented by the tree), and 
crown ratio code5, plus for each measurement a di- 
ameter and status code (alive, dead, or cut). 

Basic Projection Data 
We used the following steps to assemble the pro- 

jection data. 
(1) Project the growth from the years of the first 

measurement to the year of the last measure- 
ment, using the tree and stand characteristics at 
the first measurement as initial conditions for 
the projection. 

(2) Remove a tree from the projection tree list in the 
same year it was observed to have been cut. 

(3) Add a tree to the list of trees being projected in 
the same year it was observed to be an ingrowth 
tree. 

(4) Write one output file of stand information con- 
taining initial conditions along with final pre- 
dicted and observed conditions. 

(5) Write a second output file of similar information 
for each tree carrying along pertinent stand 
information. 

(6) Use these two files as the basic data for analyzing 
and summarizing the projection results at both 
the stand and tree levels. 

The basic analysis involved calculating the error (i.e., 
predicted minus observed value) for a given attribute 
(DBH, NT, and BA) and then standardizing this error 
to 10 years using the equation: 

(predicted attribute-observed attribute) 
x 10. 

number of years in measurement interval 

5Throughout this paper crown ratio is expressed 
as a code integer. A crown ratio falling between 1 and 
10 percent was coded as 1,11-20 percent was coded 
as 2, ... and 91 -100 percent was coded as 10. 
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Figure 2.-Distribution of 293 calibration plots and 822 validation plots in the Lake States by 
initial conditions for both stand and tree attributes. 

With this equation a n  overprediction is a positive 
error and a n  underprediction is a negative error. An 
accuracy and precision analysis was performed by 
calculating the mean and standard deviation of the 
10 year errors over each class of interest such as 
forest type, species, property etc. If the predictions 
were perfect, all errors, and their mean and standard 
deviation, would be zero. The farther the mean and 
standard deviation are from zero, the greater the 
bias and the variability, respectively. 

Model Differences 
It is important to understand the basic differences 

in the two models before evaluating them. The orig- 
inal model, GTR49, is a stand component model. Each 
tree list is broken down into a maximum of four 

species groups and each species group into two size 
classes. These divisions are called components and 
hence the name "stand component" model. Each stand 
component is projected as a whole and later the com- 
ponent's growth is allocated to the individual trees. 
The current version, STEMS, contains an individual 
tree model that uses similar equations but deals with 
individual trees, not components of trees. Belcher et 
al. (1982) presents a detailed description of the model 
changes in STEMS, but the main differences be- 
tween the two models are as follows: 

(1) Growth potential-the same function and coef- 
ficients are used in both growth models but in 
STEMS they are applied to individual trees not 
stand components. (Both functions use site index 
and crown ratio as variables in this equation.) 



(2) Site index-GTR49 used a single plot site index 
for all trees on the plot while in STEMS each 
species is given a site index. The conversion 
equations used to predict species site index from 
the plot site index were provided by Carmean 
(1979) and Carmean and Vasilevsky (1971). 

(3) Crown ratio function-the GTR49 stand com- 
ponent approach has been replaced by an indi- 
vidual tree submodel in STEMS.'j 

(4) Modifier function-the GTR49 stand component 
submodel has been replaced by an individual tree 
modifier function7 that includes an upper limit 
on the stand basal area. 

(5) Interaction-GTR49 attempted to account for 
interaction between species classes in the mod- 
ifier function, whereas STEMS does not. 

(6) Allocation rule-this function in GTR49 has been 
removed, and its role is now handled by the mod- 
ifier function in STEMS. 

TEST RESULTS AND 
DISCUSSION 

Model Comparison 
In this section we will present a very general ov- 

erview of the predictive ability of the two models 
using both the calibration and validation data bases 
(table 1). 

6The crown ratio function is reported in an un- 
published manuscript by the senior author. 

7The modifer function is reported in  an unpub- 
lished manuscript by the senior author. 

A comparison of the performance of the two mod- 
els using the calibration data shows both models 
doing well with little difference between them. How- 
ever, the STEMS model produces lower standard de- 
viations so it is slightly more precise. The perform- 
ance of the two models on the calibration data base 
doesn't reveal any basic mathematical flaw in either 
model. 

The performance of the two models for all the val- 
idation properties together shows similar positive 
mean DBH errors in 10 years. STEMS shows a small 
NT error whereas GTR49 underpredicts NT an av- 
erage of 10 trees per acre in 10 years. This under- 
estimation of NT combined with the positive DBH 
error results in a more accurate estimate of BA for 
GTR49 than for STEMS, even though STEMS is bet- 
ter on the growth and mortality components sepa- 
rately. In looking at the precision analysis, using the 
standard deviations, STEMS is slightly more precise 
than GTR49 for all three key variables-NT, DBH, 
and BA. 

A more detailed analysis also showed that the 
models performed similarly, but we found three cases 
in which GTR49 did not predict as well as STEMS. 
GTR49 overestimated tree DBH's on stands with in- 
itial basal areas less than 25 square feet per acre, 
and it underestimated NT (overestimated mortality) 
on stands with more than 800 trees per acre or with 
basal areas of more than 150 square feet per acre. 
The two problems in the mortality component rep- 
resent an increase in NT error of about 60 trees per 
acre, but these conditions only occur on 6 percent of 
the stands. 

Table 1.-Summary of the mean and standard deviation of the errors in 10 years for GTR49 and STEMS.  
The errors are evaluated for the attributes of tree d.b.h. (DBH), number of trees per acre (NT) ,  and stand 
basal area per acre (BA). Errors are computed as predicted attribute minus observed attribute. 

Errors 
(10 years) Calibration Validation 

All Cloquet Chequamegon Nicolet Hiawatha Manistee 
GTR49 STEMS GTR49 STEMS GTR49 STEMS GTR49 STEMS GTR49 STEMS GTR49 STEMS GTR49 STEMS 

MEAN 
DBH (~nches) 0 0 2 - 0 0 3  0 1 3  0 1 1  0 1 5  0 0 6  0 0 4  0 1 3  0 0 6  0 0 9  0 1 5  0 0 9  0 2 4  0 2 8  
NT (treeslacre) 4 6 -10 2 4 6 -17 16 -33 -18 -11 5 - 6  2 
BA (sq ft /acre) 1 3  6 1 9  3 5  4 7  4 2  - 0  4 7  - 2 5  8 1 2 2  3 8  5 0  

STANDARD DEVIATION 
DBH (inches) 52 46 73 63 62 54 75 63 85 69 81 67 78 69 
NT (treeslacre) 36 37 81 78 20 20 105 108 103 104 116 100 72 66 
BA (sq ft lacre) 1 1 6  1 0 1  1 4 6  1 3 4  9 7  9 4  1 3 7  1 3 3  1 5 1  2 4  1 7 3  1 4 2  1 8 7  1 9 0  

NUMBER OF PLOTS 293 822 292 123 145 114 148 

NUMBER OFTREES' 7,702 11,182 4,572 1,587 1,775 1,720 1,528 
'Values given are forthe STEMS model. 



One other major problem was found. A 100 year 
projection of red pine using GTR49 predicted basal 
areas of more than 450 square feet per acre with no 
apparent leveling off. 

The two models differ in complexity. Schaeffer 
(1980) states "the simplest model which can be ac- 
ceptably validated is deemed more suitable than the 
more complex model." Important in evaluation com- 
plexity is the ease in: 
(1) calibrating or recalibrating the model, 
(2) understanding the various components of the 

model, 
(3) programming the model and understanding the 

projection program, and 
(4) adjusting the model for specific user needs. 
In all four of these areas we judged STEMS to be 
clearly preferable. GTR49 has some complex parts 
that were hard to calibrate and understand. Consid- 
ering the factors of performance and model com- 
plexity, we recommend STEMS. 

A more detailed description of STEMS' perform- 
ance provides confidence and cautions in its 
application. 

STEMS' Model Performance 
Accuracy analysis 

Growth component (DBH errors). We will first 
evaluate the growth component at  a broad level by 
analyzing DBH errors by species for all the valida- 

tion properties (table 2). Most species on the vali- 
dation properties have a slight positive bias (over- 
estimate growth). Those species with a mean DBH 
error of more than 0.30 inches in 10 years are: white 
spruce (0.32)' northern white-cedar (0.37), basswood 
(0.38), white ash (0.35)' and other red oak (0.76). 
However, all of these species have small mean DBH 
errors on the calibration data. Taking a weighted 
average of the validation and calibration totals shows 
only other red oak (at 0.74) with an error of more 
than 0.30. Northern white-cedar is the only species 
with consistently high values on all five validation 
properties. Diameter growth for all species combined 
shows a small but consistent overprediction on all 
five validation properties. In addition, diameter 
growth on one property, Manistee in lower Michigan, 
shows a clear overestimation for most species. 

Mortality component {NT errors). Information on 
the mortality component is provided by the NT er- 
rors (table 3). Overestimating the number of live 
trees on a stand indicates that the mortality function 
is killing too few trees (underestimated mortality). 

The four National Forests have variable radius 
plots with small trees (1 to 5 inch) measured on a 
0.01 acre fixed radius plot. If even one of these small 
trees is assigned the wrong status by the mortality 
function, the estimated number of live trees per acre 
would be altered by 100 trees. This is the main rea- 
son why the errors were so much larger for these 

Table 2.-Summary of the mean d.b.h. errors (inches) by Lake States species in  10 years using the STEMS 
model. The  number of tree observations appears in  parenthesis. Positive values are overpredictions. 

Species Calibration Validation 

All Clocluet Che~uamegon Nicolet Hiawatha Manistee 

- - 

All' - .03(7,702)  .11(11,182) .06(4,572) .13(1,587) .09 (1,775) 

'Includes ali species on the property 

8 



Table 3.-Summary of the mean number of trees errors (treeslacre? by Lake States forest types in  10 years 
using the STEMS model. The number of plots appears in parenthesis. Positive values are overpredictions. 

Forest type Calibration Validation 

All Cloquet Chequameoon Nicolet Hiawatha Menistee 

Jack pine 
Red pine 
White pine 
White spruce 
Balsam fir 
Black spruce 19 (29) -182 
Tamarack - 
N. white-cedar 
Hemlock 
Lowland hdwds. 
N. hardwoods - 2  (135) - 
White oak I: ($1 - 3  (15) - - - - 
Northern 

red oak 2 (10) 68 (15) - 
- 

116 (4) 
- 

95 (1) 
- 

58 
Oak-pine -33 (10) - 
Oak-hickory -36 (35) - -300 (1) - - -28 (34) 
Aspen 5 (30) 26 (23) 31 (12) 
Paper birch 5 (3 3 (36) -21 (8) 8 (9 2 (1) 

All 6 (293) 2 (822) 6 (292) 16 (123) -18 (145) 5 (114) 2 (148) 

four properties than they were for either the cali- 
bration data or Cloquet. If the mortality function is 
accurate, these deviations should average out over 
all properties. This can be evaluated by checking the 
"all validation" results. 

Five forest types are in error by more than 30 
trees in 10 years-balsam fir (31), lowland hard- 
woods (32), oak-pine (-33), oak-hickory (-36), and 
northern red oak (68). Limited data were originally 
available to calibrate these particular forest types, 
and note that three of them include the oak species. 
When looking at the individual property results, 

northern red oak is clearly the worst. Even though 
jack pine had a large error (45) on the calibration 
data, it did well on the validation data. 

Overall model (BA errors?. The B A  errors provide 
information on the complete model, i.e., how well the 
growth and mortality components work together (ta- 
ble 4). For all the validation properties, the forest 
types with BA errors more than 9 square feet in 10 
years are balsam fir (9.5), black spruce (9.4), north- 
ern white-cedar (9.1), and lowland hardwoods (19.6). 
The marked overestimation of lowland hardwood 
species is also evident on the calibration data. In all 

Table 4.-Summary of the mean basal area errors (sq. ft./acre) by Lake States forest types in  10 years using 
the STEMS model. The number of plots appears in parenthesis. Positive values are overpredictions. 

Forest type Calibration Validation 

All Cloquet Chequame~on Nicolet Hiawatha Manistee 

Jack pine 4.4 (7) 5.2 (6) 4.0 (20) 2.9 (15) 
Red pine 
White pine 
White spruce 
Balsam fir 
Black spruce 
Tamarack 
N. white-cedar 
Hemlock 
Lowland hdwds. 
N. hardwoods 
White oak - - . 9  (15) 
Northern 

red oak 10.1 (4) 25.0 (1) 1.8 (2) 5.3 (8) 
Oak-pine - - -22 1 (1) - . 3  (9 
Oak-hickory 3.4 -15.0 (1 - 
Aspen (30) 4.0 (231 
Paper birch (36) - . 3  (8) - '73 1 ( 9.2 

All .6 (293) 3.5 (822) 4.2 (292) 4 7 (123) .8 (145) 2.2 (114) 5.0 (148) 



problem cases mentioned above limited data were 
available to calibrate the model. 

Error patterns. Error patterns in the growth com- 
ponent for the three key variables-DBH, NT, and 
BA-over various initial conditions shows that the 
problem areas in the validation data generally occur 

- - - C A L I B R A T I O N  

- V A L I D A T I O N  

\ (12) 

where there are few observations (figs. 3 and 4). Er- 
rors in these classes should cause little difficulty un- 
less projections are to be made in these extreme 
ranges. Because much more variability exists in 
classes with few observations, caution needs to be 
exercised when emphasizing these trends. 

.o 
75,., l oo  125-150L\ 175+ 

- . l  I N  I T I  AL BASAL AREA \\A 

.2 

1 

.o 

-. 1 TREE S I T E  I N D E X  

Figure 3.-The mean d.b.h. errors in  10 years plotted against selected initial tree and stand 
conditions. The  percent of the observations in each class for the validation data is given in  
parentheses. 
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Figure 4.-The (a) mean number of trees errors and (b) the mean basal area errors in  10 years 
plotted against selected initial stand conditions. The percent of the plots in  each class for the 
validation data is given in  parenthesis. 

It would seem logical to include age in the list of 
initial conditions evaluated. However, age is not al- 
ways an accurate variable. For example, when a plot 
has been clearcut, the new age becomes zero even 
though a few undesirable old trees may still remain. 
Thus a plot listed as 5 years old could have an av- 
erage diameter of 12 inches. Consequently we have 
not included age. Many of the same results can be 
obtained by studying average diameter trends. 

Some potential problem areas surfaced on both 
the calibration and validation data. One such area 
is the excessive growth put on trees in stands with 
large initial average diameters and to a lesser degree 
on trees in stands with very low average diameters 
(fig. 3). This evidence is based on few trees. On the 
initial basal area graph, there is a very slight trend 
to overgrow low basal area stands on the calibration 



data. This trend is clearly magnified on the valida- 
tion data. (Recall that we had much more data in 
the low basal area range on the validation properties 
(fig. 2).) For tree site index a noticeable curvilinear 
trend appears in the errors for the validation data, 
although, because of the distribution of the data, the 
model performs well for 79 percent of the trees. This 
same trend also appears in the calibration data, but 
at  a mean DBW error of 0.2 inches lower. Likewise, 
a curvilinear trend similar to that for tree site index 
appears for crown ratio code. Tree site index and 
crown ratio code are handled in the same term of the 
growth potential function so these results indicate 
that the functional form chosen does not adequately 
describe the biological mechanisms at work. 

The initial relative d.b.h. (relative d.b.h. = d.b.h.1 
average d.b.h.1 for the validation properties shows a 
clear increasing trend with a marked overgrowth of 
overstory trees (relative d.b.h. greater than 1). This 
trend is bothersome because even a small over- 
growth will be magnified with longer projections. 
The trend tapers off for very large relative values 
and so becomes somewhat self-correcting. Because 
this trend is not evident for the same class of trees 
on the calibration data, the problem is likely due to 
a difference between the data bases. "Extreme" un- 
derstory trees (i.e., relative d.b.h. 0.4 or less) are 
sharply underestimated on the calibration data and 
somewhat underestimated on the validation data. 
This would account for the slight underestimation 
of DBH for trees with small initial diameters. 

The problem areas are due to difficulty with the 
form of the equations used to estimate the various 
growth components or to a limited amount of data 
to calibrate against. The main problems indicate pos- 
sible model weaknesses in how the crown ratio and 
site index are incorporated into the growth potential 
and how competition (as measured by basal area and 
possibly relative diameter) is handled in the modifier 
function. However, the various parts of the growth 
component are so interrelated that correcting one 
problem often introduces difficulties with another 
part of the model. Those cases where difficulties are 
clearly evident occur from 10 to 20 percent of the 
time, often under somewhat extreme conditions. 

No trends emerge from the error patterns for the 
mortality component when evaluating both the val- 
idation and calibration data (fig. 4a). However, NT 
variability increases for stands with low average d.b.h. 
and with high number of trees. Both results are log- 
ical in that a greater number of trees will magnify 
NT errors. 

Finally, performance for the entire model, as mea- 
sured by the mean BA error (fig. 4b), shows no clear 
trends. However, errors in the growth and mortality 
components may cancel each other or combine to 
heighten an already noticeable trend. We investi- 
gated several examples of error effects and found 
that a 10 percent error in DBH produced roughly a 
20 percent error in BA, whereas a 10 percent error 
in NT produced only a 10 percent error in BA. Thus 
accuracy in predicting diameter growth is twice as 
important as accuracy in predicting the mortality 
component. In evaluating the data, trends evident 
in the growth component have been largely muted 
by the mortality effect. The one exception is the site 
index trend for the validation properties, which seems 
even more pronounced. 

DBH error by diameter class. Further analysis of 
the growth component is provided through evalua- 
tion of diameter errors for initial diameter classes 
(table 5). For many species the model estimates tree 
growth well for the lower diameter ranges but ov- 
erpredicts growth for the middle diameter classes. 
This overprediction is smaller for the few larger trees 
in the data base. When the results are graphed, a 
few species show a marked relation between diam- 
eter and diameter prediction error. We found clear 
increasing trends for white pine, northern white- 
cedar, and black ash and strong decreasing trends 
for bigtooth aspen and quaking aspen. The red pine 
equation consistently underpredicted growth on trees 
less than 14 inches d.b.h. 

Species mortality rates. The mortality component 
can be evaluated as a tree attribute in addition to 
the NT evaluation as a stand attribute. As a tree 
attribute, we calculated the observed and predicted 
annual mortality rates for each species based on the 
number of trees that survive through an observation 
interval and the length of that interval (table 6). 

The observed mortality rates vary widely from 
species to species. For example, the observed annual 
mortality rate for quaking aspen is more than 30 
times as great as that for red pine. More important, 
however, is how close the predicted rate is to the 
observed rate. In many cases it is very close-red 
pine, hemlock, red maple, and yellow birch to name 
a few. Several, however, are not close-balsam fir, 
black spruce, elm, tamarack, black ash, and other 
red oaks. Because the last three of these were cali- 
brated from limited data, the function coefficients 
may not be reliable. The remaining three-balsam 
fir, black spruce, and elm-are subjects of insect or 
disease outbreaks. Balsam fir is defoliated by the 



Table 5.-?dean d.b.h. errors (inches) in 10 years by species and diameter class for all validation data sources. 
Positive values are overpredictions. 

Mean 
d.b.h. 

Diameter class (inches) growth 
Species No. af All in 1 0  

trees7 0-3+ 4-5+ 6-7+ 8-9+ 10-11 + 12-13-t- 14-15+ 16+ classes years 

Jack pine 1,539 -0.12 0.05 0.08 0.21 0.27 0.21 0.14 -0.65 0.13 1.01 
Red pine 1,360 - .33 - .12 -.20 -.44 - .43 - . I 4  .01 .45 - . I 7  1.72 
White pine 297 -1.00 -.42 -.38 - . I1  .20 .49 .12 .17 - .01 1.78 
White spruce 148 .37 .08 .27 .43 ..6 1 .46 .49 .55 .32 1.65 
Balsam fir 556 - .05 .02 .17 .33 .31 .34 .41 - . l l  1.13 
Black spruce 700 .03 .15 .18 .22 .32 - -2.80 - .16 .73 
Tamarack 227 - .36 .G2 -.02 .05 .47 - .06 .53 - .03 .67 
N. white-cedar 884 .09 . I9  .31 .51 .65 .82 .64 .52 .37 .82 
Hemlock 296 - . I 7  - .22 - .04 - .12 .06 -.29 - . I 4  - . I 5  - . I 3  .94 
Black ash 163 -.35 -.02 . I 5  .35 .54 .51 .30 .27 . I 6  .61 
Red maple 742 .29 . 0 1  -.07 -.06 - . I 5  -.20 -.51 - .29 --.05 1.20 
Elm 170 - . I 9  -.01 .20 .43 .28 .05 .71 .36 .24 1.39 
Yellow birch 232 .04 .09 .02 -.21 .20 . l o  -.03 -.04 -.OO .92 
Basswood 243 .50 .70 .38 .29 .26 .20 .38 .41 .38 1.31 
Sugar maple 777 .24 .09 .06 .10 .21 .06 .12 -.23 .08 1.20 
White oak 244 - . I 2  .10 .10 .19 .I1 .09 .02 - .05 .08 .89 
Select red oak 246 .25 .30 .17 .05 .14 - . I 9  - .08 .31 .15 1.46 
Other red oak 154 - .96 .54 .95 .88 .83 .84 .50 .76 1.12 
Bigtooth aspen 184 .34 .27 . l l  - . I 5  -.37 -.71 -.86 - .96 - .04 1.55 
Quaking aspen 662 - .13 .24 .38 .33 .16 - . l o  -.20 -.73 .27 1.45 
Paper birch 1,068 - .14 .02 .I1 .21 .15 .34 .25 .03 .10 1.07 

AllZ 11,182 .09 .07 .10 .15 .18 .12 .06 .10 . l l  1.16 

Percent trees 
in diameter 
class 6 22 32 18 9 5 3 5 100 
'Species with fewer than 100 observations have been omitted 
Zlncludes species with fewer than 100 observations. 

Table 6.-Predicted and observed annual tree mor- 
tality rates by Lake States species for all validation 
properties (includes all trees that were initially alive 
and not cut). 

Annual tree 
No. of mortality rate 

Soecies trees Predicted Observed 

Jack pine 
Red pine 
White pine 
White spruce 
Balsam fir 
Black spruce 
Tamarack 
N. white-cedar 
Hemlock 
Black ash 
Red maple 
Elm 
Yellow birch 
Basswood 
Sugar maple 
White ash 
White oak 
Select red oak 
Other red oak 
Bigtooth aspen 
Quaking aspen 
Paoer birch 

Percent 
1.2 1.6 

1 1 
.3  1.1 

1.2 .6 
1.4 3.2 

.6 1.8 
2.5 .6 

. 3  .6 

.3 .5 

.9 2.4 

.7 .6 
1.2 3.8 
1.6 1.6 
1.2 1 .o 
1.4 .7  

.I .6 

.4 .7  

.6 .5 
5.8 .8 

spruce budworm, Choristoneura fumiferana; black 
spruce is a host for dwarf mistletoe, Arceuthobium 
pusillurn; and elm is killed by Dutch elm disease 
caused by the fungus Ceratocystis ulmi (USDA Forest 
Service 1979b). None of these damaging agents were 
present at  high levels on the calibration locations 
during the measurement periods involved. In several 
of the validation areas, however, these agents were 
present a t  high levels. 

Balsam fir mortality is underpredicted on all the 
validation properties. For all four properties where 
balsam fir is an important component, spruce bud- 
worm was present in the area during the measure- 
ment period (USDA Forest Service 1962,1968,1971, 
1977). Therefore, spruce budworm may partially ac- 
count for the poor performance of the balsam fir mor- 
tality predictions. 

Most of the black spruce data is from the Cloquet 
forest. However, dwarf mistletoe has not caused sig- 
nificant mortality on the Cloquet forest (D. W. French 
and F. A. Baker, personal communications). So mis- 
tletoe does not account for the discrepancy. 

1.7 1.5 
2.5 3.3 Predicted and observed elm mortality rates are 

.2 .5 close for all sources except the Manistee National 
All1 15,240 1.1 1.4 Forest. There, the observed mortality rate was 18 

llncludes all species on the property. 
percent as compared to a predicted rate of only 1 



percent. Dutch elm disease was responsible for large 
elm losses in lower Michigan in 1962 and by 1971 
most of the elms were dead (USDA Forest Service 
1962, 1972). Yet it wasn't until near the end of the 
measurement period that the disease was common 
in northern Wisconsin and upper Michigan (USDA 
Forest Service 1977). This helps to explain the con- 
trast between Manistee and the other areas. 

Precision analysis 

In this section we will discuss some general as- 
pects of variablity in the model evaluation process. 
The first analysis is a comparison of the actual and 
predicted distribution for the three test variables: 
DBH, NT, and BA (fig. 5). All three test variables 
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Figure 5.-A comparison of the frequency distribu- 
tions of the predicted and observed values for tree 
d.b.h., number of trees, and stand basal area, stan- 
dardized to 10 years. All validation sources are 
included. 

agree closely between the predicted and observed 
distributions with perhaps a bit more discrepancy in 
the basal area results, which is to be expected. The 
closeness of these two distributions is in part a func- 
tion of the interval length. The longer the projec- 
tions, the greater the discrepancies no matter how 
well the model predicts. These results are standard- 
ized to 10 years for all validation properties combined. 

The second analysis of variability is the cumu- 
lative frequency of the errors for each test variable 
(fig. 6). Differences are shown between predicted and 
observed values for DBH, NT, and BA standardized 
to 10 years for all validation properties. 

The graphed results can be viewed two ways. One 
is to say that 68 percent of the tree diameter obser- 
vations will have an error of between -0.35 and 0.55 
inches in 10 years (or, 95 percent are between -1-2 
and 1.2 inches). The other is to know what percent 
of the trees had predicted DBH values within, for 
example 0.5 inch of the observed DBH. Viewed in 
this manner, 71 percent of the trees (82 percent-11 
percent) had predicted diameters within 0.5 inches 
of the true value, 88 percent of the plots (93 percent- 
5 percent) had predicted NT within 100 trees per 
acre, and 68 percent of the plots (78 percent-10 per- 
cent) had BA values predicted to within 10 square 
feet. 

A third precision analysis, based on the Cloquet 
Experimental Forests, is included in the time anal- 
ysis discussion below. 

Time analysis 

Short-term effect. Prediction errors can be ex- 
pected to increase as the length of the projection 
interval increases. We examined these error trends 
to determine their magnitude and form. 

We used the data from the Cloquet validation for 
the time analysis because it was the only one that 
was remeasured more than once after the initial 
measurement. It was remeasured 5,10, and 17 years 
after the initial measurement. The analysis was done 
at the stand level using BA errors, which provide a 
good overview of the entire model performance on a 
variable of interest to most users. On the average, 
we found that errors increase as the projection in- 
terval increases and variability of the errors in- 
creases as well (fig. 7). 

An analysis of accuracy for all types combined 
shows that BA is overestimated on the average by 
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Figure 6.-Cumulative frequency of 10 year errors in  predicting tree d.b.h., number of trees, 
and stand basal area for all validation sources. The error equals the predicted attribute 
minus the observed attribute. Lines representing ? 1 and +2 standard deviations have been 
added. 

7 square feet in 17 years. However, some types (bal- 
sam fir, black spruce, northern white-cedar, and low- 
land hardwoods) were overestimated by as much as 
16 to 20 square feet. These types account for 24 per- 
cent of all the plots. 

The precision results for all types show the stan- 
dard deviation of the BA error to be 16 square feet 
in 17 years. Stated in slightly different terms, 68 
percent of the basal area errors fall between -6 and 
13 square feet after 10 years and between -9 and 23 
square feet after 17 years. When the mean error and/ 
or standard deviation are large, fairly high BA errors 
may be encountered (e.g., balsam fir, black spruce, 
and quaking aspen types). Atypical patterns were 
found for white spruce and lowland hardwoods. 

But we still need to assess the assumption of lin- 
ear decay of errors made when the time adjustment 
was introduced. If the annual rate of decay is con- 
stant, the lines should be linear through the origin. 
When all types are combined, the linear assumption 
holds up to 10 years. Adjusting the 17 year values 
to 10 years would usually result in a slight overes- 
timation of BA error at  10 years because the pattern 
is slightly convex. Further analysis, not given here, 
revealed that NT trends were more convex. There- 
fore, on the average, the stand level results when 

adjusted to 10 years will make STEMS appear worse 
than it is. However, at  the tree level combining all 
species, the DBH trends were nearly linear. 

A few of the individual forest types on Cloquet 
had noticeable nonlinear trends (fig. 7). But the only 
clear cases in which the error would be underesti- 
mated are white pine (6 plots), white spruce (4), and 
balsam fir (23). The remaining four validation prop- 
erties had measurement lengths of 9 to 11 years. 
Adjusting these results to 10 years presents no prob- 
lem. This supports our adjustment approach, espe- 
cially on the validation properties. 

Long-term effect. An evaluation of long-term pro- 
jections, as used when studying forest succession, 
becomes more difficult because there are no existing 
remeasured plots for comparison. One evaluation ap- 
proach is to compare the results of the projection with 
expectations based on professional judgment. This is 
often sufficient to detect gross errors in the model. 
Another approach is to compare the results with pub- 
lished yield tables. However, there are problems with 
this approach: (1) the yields are based on summaries 
of different stands at  specific ages; (2) the averages 
derived from these stands represent the development 
of a theoretical stand; (3) the results do not represent 
an actual growth series; and (4) it is difficult to de- 
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Figure 7. -Pattern of mean and standard deviation of basal area error by forest 
type on the Cloquet Experimental Forest, Minnesota. Standard deviations are 
shown by the outer lines. The number ofplots for each forest type is given in  
parentheses. 

velop an appropriate initial tree list because the yield 
tables do not specify such things as species compo- 
sition and diameter distributions. Despite these 
problems, we used a combination of scientific judg- 
ment and published yield tables to evaluate the mod- 
el's long-term predictive capabilities. 

We made two long-term projections on pure 
stands-a conifer (red pine) and a hardwood (quak- 
ing aspen) (fig. 8). Both stands,' site index 60, were 
begun a t  age 20 and were projected for 100 years. 
The red pine stand projections showed good agree- 
ment with the basal area table of Stiell and Berry 
(1973) at  age 50, the extent of the published table. 

For quaking aspen, the greatest difference between 
the projection and the yield table values of Brown 
and Gevorkiantz (1934) was 18 square feet per acre 
at age 50. Both projections followed the general trends 
indicated from the yield tables and continued on in 
a reasonable manner. Although this is only a cursory 
examination of the model's long-term projections, it 
suggests that the model does not produce gross errors 
for red pine and aspen. 

Data base differences 

The calibration and validation data bases have 
one very important difference. The calibration data 
came from research plots so the coefficients were 
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Figure 8.-Comparison of long-term STEMS pro- 
jections with published yield table results for red 
pine and quaking aspen stands on a site index of 
60. 

developed primarily from plots where uniform spac- 
ing was the goal. However, the validation data came 
from general plots so the model was applied on plots 
where spacing may be far from ideal. Unequal spac- 
ing may reduce production below the optimum found 
with uniform spacing. The expected results, when 
projecting general stands, would be to overpredict 
growth. Certainly, diameter growth is consistently 
overestimated on all validation properties (table 2). 
These results agree with those of Bruce (1977). 

Also the range of conditions differs between the 
calibration and validation data bases. The data base 
used to calibrate the model contained fewer low basal 
area plots and more high basal area plots than the 
validation properties (fig. 2). Our results (fig. 3) show 
that the model overgrows low basal area stands. 
Therefore, if this type of stand is predominant, the 
model would perform poorly. This is also probably a 
contributing factor to the overprediction on the val- 
idation properties. 

Crown ratio analysis 

Crown ratio, an important variable in the growth 
potential, had been measured on each tree used in 
the evaluation. We analyzed the growth and mor- 
tality components of the models without introducing 
errors from crown ratio estimates. Therefore, we will 
present a separate validation of the crown ratio func- 
tion for those cases in which crown ratio would be 
estimated in STEMS, i.e. not recorded when trees 
were measured. Because all trees in the validation 
data had a known crown ratio, we used the crown 

ratio function to predict the crown ratio of each tree 
and then we evaluated the resulting prediction errors. 

The overprediction of crown ratio for all species 
combined is 0.78, with individual species ranging 
from 0.31 to 1.30, except for red pine at -0.07 (table 
7). Plotting the mean crown ratio code errors over 
stand basal area also provides evidence of a marked 
basal area trend in which the errors decrease as basal 
area increases (fig. 9). 

The crown ratio function in STEMS was cali- 
brated using Forest Survey inventory data from Wis- 
consin and northern Minnesota6 that included a wide 
range of stand basal area and diameter conditions. 
The crown ratio codes observed from the inventory 
data tended to be as much as 1 unit higher than 
those observed on the calibration data. We found no 
apparent cause for this discrepancy, but obviously it 
has contributed to the overestimates of crown ratio. 

How much effect do these overprediction errors 
have on the estimated growth? One National Forest, 
Chequamegon, was also projected assuming un- 
known crown ratios. The results showed that when 
the crown ratio function is used to estimate the crown 
ratios, the mean DBH error increased from 0.13 to 
0.25 inches in 10 years and the mean BA error in- 
creased from 4.7 to 8.1 square feet per acre in 10 
years. 

6See page 7. 
Table 7.-Summary of crown ratio function test 

showing mean crown ratio code errors by Lake States 
species for all trees on the validation properties. 

Species 
Jack pine 
Red pine 
White pine 
White spruce 
Balsam fir 
Black spruce 
Tamarack 
N. white-cedar 
Hemlock 
Red maple 
Elm 
Yellow birch 
Basswood 
Sugar maple 
White ash 
White oak 
Select red oak 
Other red oak 
Bigtooth aspen 
Quaking aspen 
Paoer birch 

No. of 
trees 
1,906 
1,626 

368 
257 
988 

Mean crown ratio 
code error 

1.07 
- .07 
1.07 

.79 
1.10 
1.26 
1.02 

.44 

.31 
1.09 
1.01 
1.02 
1.30 
1.18 
1.30 

.52 

.57 

.44 

.94 

.94 

.31 
Total 13,763 .78 
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BASAL AREA ('sq.ft . /acre)  

Figure 9.-Mean crown ratio code errors plotted 
against the stand basal area for all trees on the 
validation properties. The percent of the observa- 
tions in  each class is giuen in parentheses. 

It is possible that crown ratios vary more by lo- 
cation than other variables. Therefore, users may 
have to test the predicted crown ratio values against 
known values from the location of interest to deter- 
mine if an adjustment is needed. At present, if the 
STEMS model is used to grow trees with unknown 
crown ratios, it will probably overpredict crown ra- 
tios and hence overgrow tree diameters. 

SUMMARY 
A projection $ystem is evaluated by analyzing its 

capabilities to predict behavior in the real world. In 
this paper, we evaluated the STEMS projection sys- 
tem by analyzing the differences (or errors) between 
the predicted and observed values on three key var- 
iables-tree d.b.h. (DBH), number of trees per acre 
(NT), and stand basal area per acre (BA). Perform- 
ance of the growth component was measured by DBH 
errors, the mortality component by NT errors, and 
the system as a whole by BA errors. Many of the 
basic tests were performed on two data sets: (1) a 
systematic sample of every fifth plot from the cali- 
bration data base, and (2) an independent data base 
comprised of five different sources located in Min- 
nesota, Wisconsin, and Michigan. 

Initially, we evaluated two growth models-the 
original GTR49 model and the current STEMS model. 
The results indicate the two models are similar in 
many ways. However, the STEMS model (1) is slightly 
more precise; (2) performs slightly better than the 
GTR49 model in three areas as judged by error pat- 
terns; (3) does not grossly overpredict yields on long- 
term projections as the GTR49 model did on some 

species; and (4) is simpler to calibrate, understand, 
and use. 

Included in the tests on STEMS are analyses of 
accuracy, precision, and time effect. The important 
findings and observations are summarized below, in- 
cluding an attempt to identify the major areas of 
weakness of the STEMS model. 
1. Both models predicted growth and mortality well 

on the calibration data base. Therefore, we have 
no reason to suspect any basic mathematical flaw 
in either model. 

2. STEMS did reasonably well projecting plots from 
the five independent properties comprising the 
validation data source. The major problem areas 
involved predicting diameter growth for other red 
oak, mortality for northern red oak, and stand 
basal area for lowland hardwoods. In most of these 
cases, few trees were available to use for 
calibration. 

3. In an evaluation of the error patterns for the three 
test variables over a wide range of initial condi- 
tions, we found that the STEMS model overgrows 
trees under the following conditions: 
(a) when basal area of the stands are low-es- 

pecially below 50 square feet per acre, 
(b) when tree site index is 30 and below, 
(c) when crown ratio codes are 2 and below, and 
(d) when the relative d.b.h. of overstory trees is 

between 1.2 and 2.2. 
The problems listed in (b) and (c) indicate possible 
model weaknesses in the growth potential and 
those in (a) and (dl with competition as it is han- 
dled in the modifier function. 

4. Tree diameter errors given by species and initial 
diameter classes generally show that the model 
predicts diameter growth well for the lower di- 
ameter classes but overpredicts growth for the 
middle diameter classes. This overprediction de- 
creases for the few larger trees in the data base. 

5. The problem with underpredicting mortality on 
balsam fir and elm on the validation properties 
may be due to outbreaks of spruce budworm and 
to Dutch elm disease. These damaging agents were 
not present a t  high levels on the calibration lo- 
cations during the measurement periods involved. 

6. In general, very little error was introduced in the 
validation results by standardizing the time and 
if errors do result, they usually will be conserv- 
ative. This approach to model testing allows us 
to use and compare data with different measure- 
ment intervals. But standardization of the time 
is only valid if the decay of errors is approxi- 
mately linear for the measurement length used. 



In the Cloquet example given, most species showed 
fairly linear trends through 17 years. In those 
cases where the pattern was slightly convex, ad- 
justing to 10 years results in a slight overesti- 
mation of the error. The other four validation 
properties had measurement intervals of 9 to 11 
years, so we had no problem with those data. 

7. The STEMS model was tested using long-term 
projections for two species. The projections seemed 
reasonable when compared with results from yield 
tables. 

8. Diameter growth was consistently overpredicted 
on all validation properties, We are not so much 
concerned with the magnitude of the error as with 
the possibility of a consistent positive bias. Is there 
a possible explanation for these results? One pos- 
sible explanation is that research plots were used 
to calibrate the model. Growth on these plots would 
be greater because they are uniformly spaced and 
mortality would be lower because of the cutting 
procedures used. Another possible explanation is 
that the validation properties had a large pro- 
portion of low basal area plots. These plots were 
consistently overgrown, which probably contrib- 
uted to the overprediction. 

9. Finally, when the crown ratio function was used 
to estimate missing crown ratio codes, it over- 
predicted them by an average of 0.78 units. This 
will ultimately overpredict the diameter growth 
as well. If crown ratio is missing, an adjustment 
factor may be necessary to correct for this bias in 
the function. 

In conclusion, on the validation properties the 
STEMS model overgrows trees on the average by 
0.11 inches in 10 years. On 71 percent of these trees 
it predicted the diameter to within 0.5 inches of the 
observed diameter after 10 years growth. Likewise, 
the model overestimated stand basal area on the 
average by 3.5 square feet per acre after 10 years 
growth and on 70 percent of these plots it predicted 
the basal area to within 10 square feet per acre of 
the true value. 

This paper provides the users of the STEMS pro- 
jection system with extensive quantitative infor- 
mation about how well the model predicts and also 
highlights possible problem areas. Nevertheless, it 
is the user's responsibility to determine the model's 
usefulness for his particular application. His deci- 
sion needs to be based on an in-depth examination 
of all the evidence. Careful scrutiny of the tables and 
figures is important. Furthermore, we encourage users 
to test the model on their own data whenever pos- 
sible. This will help them determine if the model 

will meet their needs, or what parts of the model 
may be suspect, before making a major commitment 
of time and money. 
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STEMS (Stand and Tree Evaluation and Modeling System) is a 
tree growth projection system. This paper (1) compares the perform- 
ance of the current version of STEMS developed for the Lake States 
with that of the original model and (2) reports the results of an 
analysis of the current model over a wide range of conditions and 
identifies its main strengths and weaknesses. 
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