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An Evaluation of the STEMS
Tree Growth Projection System

..

Margaret R. Holdaway, Mathematical Statistician
and Gary J. Brand, Research Forester

L.

t In 1975, research was begun at the North Central results can provide the basis for users to evaluate
Forest Experiment Station to develop a system to the model for their own specific purpose.

, project tree growth in the Lake States region. The
tree growth projection system developed (USDA For- The purposes of this paper are (1) to provide a
est ,Service 1979a) represented just one component brief preliminary analysis of how well the perform-
of a broader Forest Resources Evaluation Program ance of STEMS compares with GTR49, and (2) to
(FREP). The original projection system (which we report the results of an analysis of the STEMS tree
will call GTR49) has been modified several times; growth projecti=onsystem for a wide range of forest
the current version is STEMS, Stand and Tree Eval- conditions and identify its main strengths and weak-
uation and Modeling System (Belcher et al. 1982). nesses. These conditions encompass a wide range of

forest types, species, time intervals, stand densities,
STEMS is an individual tree, distance-indepen- and site qualities. Evaluations concentrate on three

dent"model that can be used to project diameter growth key variables---tree d.b.h. (evaluates the growth
and mortality for any species mixture and stand component of the model), number of trees per acre

' structure. Growth and mortality coefficients have (evaluates the mortality component), and stand basal

been developed for the major tree species in the Lake area (evaluates the entire model). The analysis was
States region (Michigan, Minnesota, and Wisconsin). performed on a systematic sample from the calibra-
However, because the current version of STEMS con- tion data base as well as on five independent data
tains an incomplete regeneration submodel, it should sources. The results are presented in a simple format
not be used to project forest stands where seedlings that can be interpreted without specialized statis-
are an important component, tical knowledge. Belcher, Holdaway, and Brand (1982)

have previously reported some preliminary results
of STEMS' performance.

Before any model can be used effectively, it must
beevaluated. The purpose of model evaluation is to
increase one's _'confidence in the predictive capabil- EVALUATION PRINCIPLES
ities of the model" (Schaeffer 1980) or to compare

" ' _its agreement with the real-life system it is in- Evaluation Philosophy
tended to represent" (Goodall 1972). In the model

• evaluation process the primary questions include, Modelers need not be concerned with proving the
who is going to use the model and their purpose for %ruth" of a model because no model will behave
using it. As a result, model evaluation is very sub- exactly like the system it is modeling. All models

• jective and there is no absolute test of validity, are imperfect; at best they are a simplification of

I extremely complex biological and ecological proc-Model evaluation should not attempt to determine esses (Goodall 1972, Goulding 1979, Pilgrim 1975,
whether or not a model is acceptable. Because models Taylor 1979, Valentine 1978). The objective, then, of
are used for many different purposes--e.g., studies the evaluation process is not to accept or reject the
on competit'ion and succession change, updating in- model as true or false but to determine the quality
ventories, studying the impact of different cutting of the predictions (Goodall 1972). There is no abso-
prescriptions--acceptability will depend on the use. lute test of validity or accuracy of a model but only
For this reason, a more appropriate approach to model subjective judgments based on the proposed use of
evaluation is to present an extensive body of quan- the model, the acceptable level of errors, the avail-
titative information on the model's performance. These ability of alternative models, and other user-related



pr.actical considerations. Therefore, we will not be (2) model components are combined incorrectly (i.e.,
. concerned with hypothesis tests but with quantita- additive or multiplicative), and

tive statements about accuracy and precision. (3) the numerical constants obtained from the cal-
ibration are in error.

Furthermore, models can be expected to fail on
some occasions due to oversimplification of assump- If the model fails at this stage, the model will need
tions and relations, rarely encountered situations to be refined before proceeding with further model
that have not been properly modeled, or extreme evaluation.
conditions that havenot been considered. Therefore, A projection system that performs well on cali-
il_ is unwise to base an evaluation of the model's bration data may still fail to satisfactorily fit inde-
performance solely on prediction errors averaged over pendent subsets of the region. Therefore, the model
all pl0t s without regard to the more subtle discrep- should also be tested against independent data be-
ancies. A modeler needs to identify those areas in fore its performance can be accurately assessed
which the model produces fairly reliable results (called (Schaeffer 1980, Taylor 1979). This data should cover
the range of applicability) and to highlight the weak as wide a range of conditions as possible.
areas (Goulding 1979, Pilgrim 1975, and Taylor 1979).

One way to do this is to examine patterns of residual Comparison of Models
errors for various time intervals and various initial

conditions (Pilgrim 1975, Taylor 1979). These pat- There is no universally accepted criterion against
terns give much more information about the ade- which the model's performance can be compared; val-

.quacy of the model than any single test of signifi- idation is never absolute. Furthermore, we often
cance. It is also important to consider the model's compare the relative performance of two alternative
performance outside the range of the calibration data models. This is how models are progressively devel-
and to determine whether the results are consistent oped and improved (Goodall 1972). The new model
with current knowledge. So modelers are not just replaces the old if it is judged to perform better.

. concerned with how well the model functions, but When comparing alternative models, it is unlikely
•also with the range of conditions over which it func- that one model will give better predictions for all
tions well. variables over a full range of stand conditions and

.

;Once the user has determined where and under forest types. For the user, the choice of a model will
what conditions the model performs adequately, he depend on which variables are more important, the
can judge the model's practical value. This may be amount of bias and variability in the predictions, the

" a more desirable criterion of acceptance than a sta- seriousness of the problem areas, and many other
tistical measure or test that gives little information less obvious factors. The appropriate weighting of
on exactly what is happening (Pilgrim 1975, Goodall these various considerations depends on the pur-
l972, Goulding 1979). Thus, the critical question is poses for which the model is to be used and is often
not whether the model is valid but whether it is very subjective and arbitrary (Goodall 1972). For the
useful (Mankin et al. 1975). model developer other important considerations in-

clude the simplicity of the model, the ease of recal-
•" Therefore, recognizing the subjective, user-depen- ibrating the model, and the number of unknown coef-

• dent nature of model evaluation, our approach is to ficients to be estimated.
provide a general overview along with a detailed
analysis to assist the user in making that evaluation. Data Base Differences

• • Differences between the calibration and valida-
Calibration Data and tion data bases should be carefully considered when

Independent Data evaluating the model. For example, the types of plots
" used for the calibration may be different than those
We beIieve model evaluation should begin by ex- used for the validation or new conditions may occur

amining the model's'performance on the calibration that are outside the range of the calibration data.
data base. Any marked bias would indicate a basic Problems can also arise if the geographical location
flaw in the mathematical model used to describe the of the calibration data is different from the area where
system. Leary et al. (1979) presented three problem the projection system is applied.
areas that may cause this bias:
(1) the mathematical equations fail to describe parts Can the yields observed on experimental plots be

of the process, . duplicated on general forest land? The tree growth

,



model coefficents were developed mainly from re- the most common of the many measures of precision.
search plots. Such plots usually are chosen for their Our results will include both accuracy and precision
good location and minimum natural damage and also using the mean and standard deviation of the pre-
have been carefully managed so the result is a more diction errors.
uniform stand than would be found on general forest
land. Consequently, we would expect the model coef- Evaluation Variables
ficients to overpredict production when applied to
general forest land. Bruce (1977) has noted these Judgments about a tree growth model's perform-
growth differences but concludes that '_nosingle magic ance should be based on key variables. We wantedto choose a set of variables that covered the most

number" can be used to adjust for it. important aspects of stand and tree growth and that
were directly estimated quantities. At the stand level,Another problem may arise if the model has some
the key variables we use are stand basal area perweak areas that have no effect in one predictive sit-

uation but that surface in another--the model may acre (BA) and number of trees per acre (NT). Not
be valid for one _range of conditions" but invalid for only is BA an important stand attribute, but it is

also an important component in estimating volume.another .(Schaeffer 1980). For example, if the data
NT is used to evaluate the mortality component, whichused to calibrate the model did not include very small

trees and the model was later used to project growth is important because mortality greatly influences
overall model performance. At the tree level, theon these trees, the results may be seriously in error.

• This typeof problem can be evaluated by comparing variable we use is tree d.b.h. (DBH), which is im-
various initial conditions on the calibration data base portant in management strategies, tree volumes, and
and on subsequent validation data sets. mortality estimates. Modelers may find this detailed

• tree level analysis especially beneficial. Therefore,

Not °nly may a model be invalid under a certain throughout this paper we will evaluate how well the
model predicts BA and NT at the stand level and

range of conditions but also for different geograph- DBH at the tree level.
ical locations due largely to climate and soil factors. _

' How can these location differences be handled, es- Componentspecially when the model is applied outside the region

in which it was calibrated? One factor in choosing a When a model has been built from components
model form should be the ease in adjusting the coef- describing a number of separate processes, it is in-
ficients so that they can be altered to account for formative to evaluate the model in a way that will
local conditions. An adjustable model needs to be show how well each process is working. In GTR49
fairly easy to understand and should not require and STEMS, DBH measures how well the growth
complex manipulations to change the amount of component functions and NT measures how well the

growth or the relative allocation of growth to trees mortality component functions. BA, a combination
,on a plot. of the two, measures how well the model functions

as a whole. Errors in predicting BA can be due to
EVALUATION ATTRIBUTES p oblemin the growth component and/or mortality

' Accuracy and Precision component. BA predictiorr'could be very good even
• - with large, but cancelling, errors in both DBH and

NT. Therefore, it is the indepth evaluation of the• ' The quality of the predictions made by a tree growth

I projection system can be analyzed in terms of both separate growth (DBH) and mortality (NT) compo-

accuracy and precision. Predictions with small sys- nents that provide the clearest picture of how the
tematicerrors are said to be highly accurate. Acom- system is operating.
mon measure of accuracy is the mean error. The mean

i error Can be misleading, though, if there are large A secondary component also needs to be tested.• Whenever tree crown ratio is. unknown, it is esti-
.offsetting positive and negative random errors.

0 Therefore, a measure of .variability is also needed, mated using a crown ratio function. Errors resulting
Predictionswith small random errors are considered from this approximation are studied in an indepen-

to be highly precise and hence will be reproducible, dent analysis of the crown ratio function.

The standard deviation (or its square, variance) is Time Effect
tThis aspect of the validation process is highly Continuous growth models will predict nearly per-

complex and we will not discuss it in this papev, fectly over very short time intervals. The longer the

°
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prediction interval, the less accurate the prediction the growth model produces plausible results when
will be (Goodall 1972). Consequently, if the time in- extended far beyond the time frame in which it was
tervals used in the evaluation vary greatly, it may calibrated.
be difficult to make any justifiable conclusions. Two
obvious choices can be made: (1) only use data from All the results presented in this paper have been
plots with similar time intervals or (2) standardize standardized to 10 years except those presented in
all results to a common time interval, such as 10 the section on error decay and long-term projections.
years. We have taken the second approach to make
fuil use of the data. Then, we can compare plots with
different measurement lengths or pool results to- METHODS AND
gether for a general overview. To standardize the PROCEDURES
time effect we assumed that error decay (the way

•error changes over time) is linear. We will evaluate Data Bases
this assumption in greater detail later in the paper.

The calibration data base consisted of tree mea-
Besides standardizing the time effect for most as- surements from permanent growth plots in the Lake

pects of this study, we also analyzed the time effect States (fig. 1) (Christensen et al. 1979). 2 The plots
in two ways. The first approach is an analysis of error ranged in size from 0.1 to 0.5 acre. On many of the

decay on a property with at-least three measure- plots only trees more than 5 inches d.b.h, were re-
ments. From this it is possible to analyze how ac- measured (but this diameter limit was as low as 0.6

. curacy and precision behave over time. The second inches on some plots and as high as 9 inches on
approach is a long-term projection to test whether others).

p

r.J CALIBRATION
SOURCES

:-------_ _ VALIDATIONE:> SOURCES

5

• 1. Cloquet'Experimental Forest I I
2. Chequamegon National Forest I l
3. Nicolet National Forest
4. Hiawatha National Forest
5. Nanistee National Forest

mtL&a
f - ,¢ -_ I

er °If

Figure 1.--Geographical location of the calibration dam and the five validation data sources
. used to test the projection system. Counties are shaded if they contain at least one plot.
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The data. from the Lower Peninsula of Michigan 1.0 inch in diameter and larger. All National Forest
are entirely red pine and jack pine plantations. The plots were measured roughly 10 years after the in-
Wisconsin data are mostly northern white-cedar and itial measurement.
natural hardwood stands (oak-hickory type in the
south and west and northern hardwoods in the north). The total validation data base from the five prop-
There is also a red pine plantation adjacent to the erties contained 822 plots with nearly 11,200 trees.
Upper Peninsula of Michigan and a white spruce The average initial age of the plots was 46 years
plantation about 150 miles southeast of it. The (only 2 years younger than the calibration data), the

northern Minnesota studies include natural and average initial diameter was 8.2 inches, and the av-
planted red pine and jack pine stands, and natural erage time interval was 13 years (much shorter than
quaking aspen, white pine, and black spruce stands, the calibration data) (fig. 2). Again the 80 + class for

initial age contains observations up to 196 years.
We systematically sampled every fifth calibration

plot to yield 293 plots with apprDximately 7,700 live Each plot in the two data bases contained site
t_ trees. Only those trees that were alive at the first index, stand age, measurement dates, and a list of
[ measurement and were both predicted alive and ob- trees. Each tree in the list had a species code, tree
i served alive at the last measurement were analyzed factor (trees per acre represented by the tree), and
! at the tree level. On the calibration sample, the av- crown ratio code 5, plus for each measurement a di-

erage initial age was 48 years, the average initial ameter and status code (alive, dead, or cut).
i ,

tree diameter was 6.6 inches, and the average time

from initial i_ofinal measurement was 20 years (fig. Basic Projection Data
2)( The 80 + class for initial age contains observa-

We used the following steps to assemble the pro-tions up to 144 years. The validation data base came
from five independent sources or properties in the jection data.
Lake States (fig. 1): (1) Project the growth from the years of the first

measurement to the year of the last measure-
. (I) Cloquet Experimental Forest of the College of ment, using the tree and stand characteristics at

Forestry, University of Minnesota; 3 the first measurement as initial conditions for

(2) Chequamegon National Forest, Wisconsin; 4 the projection.
(3) Nicolet National Forest, Wisconsin; 4 (2) Remove a tree from the projection tree list in the

' (4) Hiawatha National Forest, Michigan; 4 same year it was observed to have been cut.
(5) Manistee National Forest, Michigan. 4 (3) Add a tree to the list of trees being projected in

The Cloquet plots were all one-seventh acre with the same year it was observed to be an ingrowth
diameters of all trees more than 4.9 inches recorded, tree.

The National Forest plots were 10-point clusters of (4) Write one output file of stand information con-
variable radius plots with measurements on trees taining initial conditions along with final pre-

dicted and observed conditions.

(5) Write a second output file of similar information
2We wish to thank the Following persons for making for each tree carrying along pertinent stand

information available to us and helping collect field information.
•. measurements: Carl Tubbs, Dick Godman, Gus Erd- (6) Use these two files as the basic data for analyzing

man, Gib Mattson, John Benzie, Paul Laidly, and Bob and summarizing the projection results at both

I Barse, North Central Forest Experiment Station; Rod the stand and tree levels.
Jacobs, USDA Forest Service, State & Private For- The basic analysis involved calculating the error (i.e.,

i estry; Alan Ek, University of Minnesota, College of predicted minus observed value) for a given attribute
Forestry; Wisconsin Department of Natural Re- (DBH, NT, and BA) and then standardizing this error
sources; John W. Moser, Purdue University; A. B. to 10 years using the equation:

Johnson, Owens-Illinois Corporation; and Cal Stott, (predicted attribute-observed attribute)

USDA Forest Service (retired). number of years in measurement interval x 10.
3Dietmar Rose and the staff of the Cloquet Forestry

Center made the past measurement data available
andassisted in the 1976 remeasurement. 5Throughout this paper crown ratio is expressed

4The data for the four National Forests were pro- as a code integer. A crown ratio falling between I and
videcl by The Renewable Resources Evaluation Unit 10 percent was coded as 1, 11-20 percent was coded
at the North Central Forest Experiment Station. as 2,... and 91-100 percent was coded as 10.
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Figure 2.--Distribution of 293 calibration plots and 822 validation plots in the Lake States by
initial conditions for both stand and tree attributes.

With this equation an overprediction is a positive species groups and each species group into two size
error andan underprediction is a negative error. An classes. These divisions are called components and

' accuracy and precision analysis was performed by hence the name %tand component" model. Each stand
calculating the mean and standard deviation of the component is projected as a whole and later the com-
10 year errors over each class of interest such as ponent's growth is allocated to the individual trees.
forest type, species, property etc. If the predictions The current version, STEMS, contains an individual
were perfect, all errors, and their meanand standard tree model that uses similar equations but deals with
deviation, would be zero. The farther the mean and individual trees, not components of trees. Belcher et

"standard deviation are from zero, the greater the al. (1982) presents a detailed description ofthe model
bias and the variability, respectively, changes in STEMS, but the main differences be-

tween the two models are as follows:

Model Differences (i)Growth potential--the same function and coef-

It is important to understand the basic differences ficients are used in both growth models but in
in the two models before evaluating them. The orig- STEMS they are applied to individual trees not
inal model, GTR49, is a stand component model. Each stand components. (Both functions use site index
tree list is broken down into a maximum of four and crown ratio as variables in this equation.)

6



(2) Site index--GTR49 used a single plot site index A comparison of the performance of the two mod-

for all trees on the plot while in STEMS each els using the calibration data shows both models
species is given a site index. The conversion doing well with little difference between them. How-

. equations used to predict species site index from ever, the STEMS model produces lower standard de-
the plot site index were provided by Carmean viations so it is slightly more precise. The perform-
(1979) and Carmean and Vasilevsky (1971). ance of the two models on the calibration data base

(3) Crown ratio function--the GTR49 stand corn- doesn't reveal any basic mathematical flaw in either

ponent approach has been replaced by an indi- model.
vidual tree submodel in STEMS. 6

(4). Modifier function--the GTR49 stand component The performance of the two models for all the val-
submodel has been replaced by an individual tree idation properties together shows similar positive

, modifier function 7 that includes an upper limit mean DBH errors in 10 years. STEMS shows a small
on the stand basal area. NT error whereas GTR49 underpredicts NT an av-

(5) interaction--GTR49 attempted to account for erage of 10 trees per acre in 10 years. This under-
interaction between species classes in the mod- estimation of NT combined with the positive DBH
ifier function, whereas STEMS does not. error results in a more accurate estimate of BA for

(6) Allocation rule--' this function in GTR49 has been GTR49 than for STEMS, even though STEMS is bet-

removed, and its role is now handled by the mod- ter on the growth and mortality components sepa-
ifier function in STEMS. rately. In looking at the precision analysis, using the

• standard deviations, STEMS is slightly more precise

TEST RESULTS AND than GTR49 for all three key variables--NT, DBH,

DISCUSSION and BA.

Model Comparison A more detailed analysis also showed that themodels performed similarly, but we found three cases

. In this section we will present a very general ov- in which GTR49 did not predict as well as STEMS.

erview of the predictive ability of the two models GTR49 overestimated tree DBH's on stands with in-
using both .the calibration and validation data bases itial basal areas less than 25 square feet per acre,
(table 1). and it underestimated NT (overestimated mortality)
. : on stands with more than 800 trees per acre or with

basal areas of more than 150 square feet per acre.
6The crown ratio function is reported in an un- The two problems in the mortality component rep-

published manuscript by the senior author, resent-an increase in NT error of about 60 trees per
7The modifer function is reported in an unpub- acre, but these conditions only occur on 6 percent of

lished manuscript by the senior author, the stands.I

' Table 1.---Summary of the mean and standard deviation of the errors in 10 years for GTR49 and STEMS.
" " The errors are evaluated for the attributes of tree d.b.h. (DBH), number of trees per acre (NT), and stand

basal area per acre (BA). Errors are computed as predicted attribute minus observed attribute.

_

Errors Validation
•(10years) Calibration

., All Cloquet Chequamegon Nicolet Hiawatha Manistee
,_ , .GTR49STEMSGTR49STi:MSGTR49STEMSGTR49STEMSGTR49STEMSGTR49STEMSGTR49STEMS

MEAN
DBH(inches) 0.02 -0.03 0.13 0.11 0.15 0.06 0.04 0.13 0.06 0.09 0.15 0.09 0.24 0.28
NT(trees/acre) 4 6 -10 2 4 6 -17 16 -33 -18 -11 5 -6 2
BA(sq.ft./acre) 1.3 .6 1.9 3.5 4.7 4.2 -.0 4.7 -2.5 .8 .1 2.2 3.8 5.0

STANDARDDEVIATION '
DBH(inches) .52 .46 .73 .63 .62 .54 .75 .63 .85 .69 .81 .67 .78 .69
NT(trees/acre) 36 37 81 78 20 20 105 108 103 104 116 100 72 66

,BA(sq.ft./acre) 11.6 10.1 14.6 13.4 9.7 9.4 13.7 13.3 15.1 2.4 17.3 14.2 18.7 19.0

NUMBEROFPLOTS 293 822 292 123 145 114 148

NUMBEROFTREES' 7,702 11,182 4,572 1,587 1,775 1,720 1,528
'ValuesgivenarefortheSTEMSmodel.
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• One other major problem was found. A 100 year tion properties (table 2). Most species on the vali-

" projection of red pine using GTR49 predicted basal dation properties have a slight positive bias (over-
areas of more than 450 square feet per acre with no estimate growth). Those species with a mean DBH

apparent leveling off. _rror of more than 0.30 inches in 10 years are: white

The fwo models differ in complexity. Schaeffer spruce (0.32), northern white-cedar (0.37), basswood

(1980) states "the simplest model which can be ac- (0.38), white ash (0.35), and other red oak (0.76).
ceptably validated is deemed more suitable than the However, all of these species have small mean DBHerrors on the calibration data. Taking a weighted
more complex model." Important in evaluation com-
plexity is the ease in: average of the validation and calibration totals shows
(1) calibrating or recalibrating the model only other red oak (at 0.74) with an error of more' than 0.30. Northern white-cedar is the only species
(2) understanding the various components of the

model, with consistently high values on all five validation
(3) programming the model and understanding the properties. Diameter growth for all species combined

projection progx'am; and shows a small but consistent overprediction on all
(4) adjusting the model for specific user needs, five validation properties. In addition, diameter

"In all four of these areas we judged STEMS to be growth on one property, Manistee in lower Michigan,
, -' shows a clear overestimation for most species.

clearlypreferable. GTR49 has some complex parts
thatwere hard to calibrate and understand. Consid- Mortality component (NT errors). Information on

• ering the factors of performance and model com- the mortality component is provided by the NT er-
plexity, we recommend STEMS: rors (table 3). Overestimating the number of live

A more detailed description of STEMS' perform- trees on a stand indicates that the mortality function
.ance provides confidence and cautions in its is killing too few trees (underestimated mortality).

application. The four National Forests have variable radius

STEMS' Model Performance plots with small trees (1 to 5 inch)measured on a
0.01 acre fixed radius plot. If even one of these small

" .Accuracy analysis trees is assigned the wrong status by the mortality

Growth component (DBH errors). We will first function, the estimated number Of live trees per acre
evaluate.the growth component at a broad level by would be altered by 100 trees. This is the main rea-
analyzing DBH errors by species for all the valida- son why the errors were so much larger for these

Table 2.---Summary of the mean d.b.h, errors (inches) by Lake States species in 10 years using the STEMS
model. The number of tree observations appears in parenthesis. Positive values are overpredictions.

Species Calibration Validation

All Cloquet Chequamegon Nicolet Hiawatha Manistee

Jackpine -0.01 (890, 0.1311,39 / 0.06(1,109) 0.15 I_01 0.08 1461 0.40 (162) 0.34 (162)Redpine - .04(3,2211 - .17 ,: 60 - .19 (871) - .29 - .08 - .30 (134) .00 (222)

Whitepine -.11 (148) .01 I: _/ -.19 (128) -'.02 I_l - .11 13_1 .13 /;31 .65 (24)_ Whitespruce -.06 (156) .32 -.02 (54) 1.12 . .55 .22 --

" Balsamfir..... .16 (402)_,_4/ .11 ((84)_oo/(_/.07 (238) .15 (129)()_ / .14 (114)() .13 ()(74) .45 {11

Blackspruce- .01 (233) .16 .17 (556) .19 (27) .26 (40) .02 75 .29
• Tamarack - .51 .03 (27) .08 (186) - .24 21 - .33 15 -.06 (4) .89

.37 .26 (321) .47 (104) .44 (184) .37 (225) 55N.white-cedar- .02 (2
Hemlock .04 152/ .13 1:96/ .06 146/ -.29 (118) -.05 (117) .01

B,ackash .45 26 .16 '_6 I_II .38 ;48 .03 1_91 .27 (7 / .07

/'4_/ - .OS -.13 (2 / .OO (202)gedmaple - .01 (152/ .05 - .18 .06 (177) .136 (1101 .47

'Elm -.15 (103) .24 .31 14_/ (8 1.17 Ill/Yellowbirch .14 (65_ .00 /!i} ._6 (2) - .02 (721 - .07 (ii/ - .04
Basswood -.07 (231/ .38 -- .28 (77) .:36 (135) .08 .88
Sugarmaple - .03 (866) .08 ' .19 (266) - .03 (305) .00 (1 .45
Whiteash - .08 (193) .35 .(60} .20 (18) .02 (12) -- .58 (30)
Whiteoak - .16 (63) .08 (2441 -- .08 (244)

Selectredoak - .11 (136)(41 .15 (246) - '_5 (2) -_0 (111) - _08 (24) - .07 (24) .22 _/Otherredoak - .07 .76 (154) -- -- -- .76 (
Hickory - .23 (54) ......

. Bigtoothaspen-.1,7 8(_1- .04 (184) .32 (25)-.22 (54)-.23 (26)-.18 /_OI .16 /iilQuakin_aspen .07 (2 27 (662) .33 (252) .07 (106) .21 (171) .37 .44
eaperb_rch .01 (1301 10(1,068) .16 (726) -.05 (97) -.19 (122) .17 (94) .18

AllI - .03(7,702) .11(11,182) .06(4,572) .13(1,587) .09(1,775) .09(1,720) .28(1,528)
1Includesallspeciesontheproperty.
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Table 3.--Summary of the mean number of trees errors (trees by Lake States forest types in 10 years
using the STEMS model. The number of plots appears in parenthesis. Positive values are overpredictions.

Foresttype Calibration Validation

All Cloquet Chequamegon Nicolet Hiawatha Manistee

,ac o,ne,, ' 1,!i ! 1, /Oi/-10
Whitepine - 1 (12) 1 13 16 0 -44 1

W.hitespruce -56 {i/ 210 5 I_l 0 i 2 i -3 --

Balsamfir 7 31 51 16 38 ( -4 121 --
Blackspruce 15 . 15 40 19 - 182 83 26 --

Tamarack -- -17 23 -8 1191 -2 -116 !!/ -- !!} --
N white-cedar -32 {!!-23 47 15 -18 -55 -59 (14)89 (2)
Hemlock - 3 1 (7 -- -- 9 - 9 --

_' LowlandhdwdS._ 15 32 .(30_ 21 (3) 75 4(_1 15 -139 33 lii/
N.hardwoods -3 (76) -2 (135/ -- 14 ( -20 ( 1 ( 9

•Whiteoak - 3 (3) - 3 (15) ..... 3
,_ Northern

redoak 2(10) ) 68 II_l- 116 (4)) 95 (1) 58 (4)I_l 44 118ill

Oak-pine -- - 33 .... 16 - 35 19
Oak-hickory 1 (6) -36 (35) -- -300 (1) -- -- -28

Aspen 2 (31 -4 (121) 5 I_OI 26 (23 -38 (42) -6 (14) 31Paperbirch 5 (3) 5 (58) 3 - 21 (8) 8 (9) 76 2

• All 6 (293) 2 (822) 6 (292) 16 (123) -18 (145) 5 (114) 2 (148)

four properties than they were for either the cali- northern red oak is clearly the worst. Even though
bration data or Cloquet. If the mortality function is jack pine had a large error (45) on the calibration
accurate, these deviations should average out over data, it did well on the validation data.

all properties: This can be evaluated by checking the Overall model (BA errors). The BA errors provide
"all validation" results, information on the complete model, i.e., how well the

Five forest types are in error by more than 30 growth and mortality components work together (ta-
trees in 10 years--balsam fir (31), lowland hard- ble 4). For all the validation properties, the forest
woods (32), oak-pine (-33), oak-hickory (-36), and types with BA errors more than 9 square feet in 10
northern red oak (68). Limited data were originally years are balsam fir (9.5), black spruce (9.4), north-
available to calibrate these particular forest types, ern white-cedar (9.1), and lowland hardwoods (19.6).
and note that three of them include the oak species. The marked overestimation of lowland hardwood

When looking at the individual property results, species is also evident on the calibration data. In all

Table 4.--Summary of the mean basal area errors (sq. ft. by Lake States forest types in 10 years using
the STEMS model. The number of plots appears in parenthesis. Positive values are overpredictions.

Foresttype Calibration Validation

All Cloquet Chequamegon Nicolet Hiawatha Manistee

Jackpine 6.9 }_0/ 2.7 (11 2.0 }791 4.4 iii 5.2 {!! 4.0 }_i/ 2.9

Redpine -.9 -.9 -.2 49 5.0 -5.6 -8.0 .8 }l_l

• Whitepine " -3.3 (12),61 .41 3.5 }(6)!_} -.7 -7.1 _ -.0 l}(6) --
" Whitespruce -9.5 121 .5 1 4.34-2.3 -.4 -7.9 --Balsamfir 7.7 9.5 , 10.8 4.2 (14) 5.5 ' 22.1 --

 ,acsoruce°, i lil i --
Tamarack -- .0 1.4 1.0 - 14.0 -- --

" N.White-cedar -8.9 /il 9.1 11.9 5.1 5.3 7.3 (14)35.4 (2)
Hemlock -6.9 -8.2 1 -- -- ) -8.5 -7.7 !!}- !19/
Lowlandhdwds. 10.3 19.6 ( 10.2 (3) 22.0 (5) 6.0 -10.6 23.5
N.hardwoods -.4 (76) 3.4 ( -- 4.9 (40 .7 (49 -1.5 ( 15.3
Whiteoak - 3.7 (3) -.9 ..... .9 (15)
Northern

-redoak 5.2 (10) 7.4 II_l -- 10.1 (4) 25.0 (1) 1.8 I_l 5.3 I_l, Oak-pine - 2.5 .... 22.1 - .3

Oak-hickory 3.4 (61 -8.1 (35) -- -15.0 (11 -- -- }41-7.8 liil, Aspen -2.6 (31 3.1 (121) 6.5 I_l 4.0 (23 -1.2 (42) 1.2 ( 10.2Paperbirch 5.9 -(3) 3.3 (58) 3.3 -.3 (8) -.7 (9) 17.9 9.2

All .6 (293) 3.5 (822) 4.2 (292) 4.7 (123) .8 (145) 2.2 (114) 5.0 (148)
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prOblem cases mentioned above limited data were where there are few observations (figs. 3 and 4). Er-
- available to calibrate the model, rors in these classes should cause little difficulty un-

Error patterns. Error patterns in the growth com- less projections are to be made in these extreme
ponent for the three key variables--DBH, NT, and ranges. Because much more variability exists in
BA--over various initial conditions shows that the classes with few observations, caution needs to be
problem areas in the validation data generally occur exercised when emphasizing these trends.
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Figure 3.--The mean d.b.h, errors in 10 years plotted against selected initial tree and stand
conditions. The percent of the observations in each class for the validation data is given in
parentheses.
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' Figure 4.-- The (a) mean number of trees errors and (b) the mean basal area errors in 10 years
. plotted against selected initial stand conditions. The percent of the plots in each class for the
" ' validation data is given in parenthesis.

It would seem logical to include age in the list of Some potential problem areas surfaced on both
initial Conditions evaluated. However, age is not al- the calibration and validation data. One such area

ways-an accurate variable. For example, when a plot is the excessive growth put on trees in stands with
has been clearcut, the new age becomes zero even large initial average diameters and to a lesser degree

though a few undesirable old trees may still remain, on trees in stands with very low average diameters
Thus a plot listed as 5 years old could have an av- (fig. 3). This evidence is based on few trees, On the
erage diameter of 12 inches. Consequently we have initial basal area graph, there is a very slight trend
not included age. Many of the same results can be to overgrow low basal area stands on the calibration
obtained by studying average diameter trends.
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.data. This trend is clearly magnified on the valida- Finally, performance for the entire model, as mea-
tion data. (Recall that we had much more data in sured by the mean BA error (fig. 4b), shows no clear
the low basal area range on the validation properties trends. However, errors in the growth and mortality
(fig. 2).) For tree site index a noticeable curvilinear components may cancel each other or combine to
trend appears in the errors for the validation data, heighten an already noticeable trend. We investi-
although, because of the distribution of the data, the gated several examples of error effects and found
model performs well for 79 percent of the trees. This that a 10 percent error in DBH produced roughly a
same trend also appears in the calibration data, but 20 percent error in BA, whereas a 10 percent error
at a mean DBH error of 0.2 inches lower. Likewise, in NT produced only a 10 percent error in BA. Thus
a curvilinear trend similar to that for tree site index accuracy in predicting diameter growth is twice as
appears for crown ratio code. Tree site index and important as accuracy in predicting the mortality
crown ratio code are handled in the same term of the component. In evaluating the data, trends evident
growth potential function so these results indicate in the growth component have been largely muted
•that the functional form .chosen does not adequately by the mortality effect. The one exception is the site
describe the biological mechanisms at work. index trend for the validation properties, which seems

even more pronounced.
The initial relative d.b.h. (relative d.b.h. = d.b.h./

average d.b.h.) for the validation properties shows a DBH error by diameter class. Further analysis of
• clear increasing trend with a marked overgrowth of the growth component is provided through evalua-

overstory trees (relative d.b.h, greater than 1). This tion of diameter errors for initial diameter classes
trend is bothersome because even a small over- (table 5). For many species the model estimates tree
growth will be magnified with longer projections, growth well for the lower diameter ranges but ov-
"The trend tapers off for very large relative values erpredicts growth for the middle diameter classes.
and so becomes somewhat self-correcting. Because This overprediction is smaller for the few larger trees
this trend is not evident for the same class of trees in the data base. When the results are graphed, a

• on the calibration data, the problem is likely due to few species show a marked relation between diam-
a difference between the data bases. "Extreme" un- eter and diameter prediction error. We found clear
derstory trees (i.e., relative d.b.h. 0.4 or less) are increasing trends for white pine, northern white-
sharply underestimated on the calibration data and cedar, and black ash and strong decreasing trends
somewhat underestimated on the validation data. for bigtooth aspen and quaking aspen. The red pine
This would account for the slight underestimation equation consistently underpredicted growth on trees
of DBH for trees with small initial diameters, less than 14 inches d.b.h.

The problem areas are due to difficulty with the Species mortality rates. The mortality component
form of the equations used to estimate the various can be evaluated as a tree attribute in addition to
growth components or to a limited amount of data the NT evaluation as a stand attribute. As a tree
to calibrate against. The main problems indicate pos- attribute, we calculated the observed and predicted
sible model weaknesses in how the crown ratio and annual mortality rates for each species based on the

"siteindexareincorporatedintothegrowthpotential number oftreesthatsurvivethroughan observation
• and how competition (as measured by basal area and interval and the length of that interval (table 6).

possibly relative diameter) is handled in the modifier
function. However, the various parts of the growth The observed mortality rates vary widely frorr
component are so interrelated that correcting one species to species. For example, the observed annua

. problem often introduces difficulties with another mortality rate for quaking aspen is more than 3_
part of the model. Those cases where difficulties are times as great as that for red pine. More importanl
clearly evident occur from 10 to 20 percent of the however, is how close the predicted rate is to th
time, often under somewhat extreme conditions, observed rate. In many cases it is very close--re

pine, hemlock, red maple, and yellow birch to nam
•

No trends emerge from the error patterns for the a few. Several, however, are not close--balsam fi
mortality component when evaluating both the val- black spruce, elm, tamarack, black ash, and oth_
idation and calibration data (fig. 4a). However, NT red oaks. Because the last three of these were cal
variability increases for stands with low average d.b.h, brated from limited data, the function coefficien
and with high number of trees. Both results are log- may not be reliable. The remaining three---balsa
ical in that a greater number of trees will magnify fir, black spruce, and elm_are subjects of insect
NT errors, disease outbreaks. Balsam fir is defoliated by t
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Table 5.--Mean d.b.h, errors (inches) in 10 years by species and diameter class for all validation data sources.
Positive values are overpredictions.

- Mean
• d.b.b.

gro_kth
Species No.of Diameterclass(inches) All in10

trees_ 0-3+ 4-5+ 6-7+ 8-9+ 10-11+ 12-13+ 14-15+ 16+ classes years

Jackpine 1,539 -0.12 0.05 0.08 0.21 0.27 0.21 0.14 -0.65 0.13 1.01
Redpine• 1,360 -.33 - .12 -.20 -.44 -.43 -.14 .01 .45 -.17' 1.72
Whitepine 297 - 1.00 -.42 -.38 -.11 .20 .49 .12 .17 -.01 1.78
Whitespruce 148 .37 .08 .27 .43 .61 .46 .49 .55 .32 1.65
Balsamfir _ 556 -.05 .02 .17 .33 .31 .34 .41 -- .11 1.13
Blackspruce _ 700 .03 .15 .18 .22 .32 -- -2.80 -- .16 .73
Tamarack 227 - .36 .02 - .02 .05 .47 - .06 .53 -- .03 .67
N.white-cedar 884 .09 .19 .31 .51 .65 .82 .64 .52 .37 .82
Hemlock. 296 .17 -.22 -.04 -.12 .06 -.29 -.14 -.15 -.13 .94

, Blackash 163 -.35 -.02 .15 .35 .54 .51 .30 .27 .16 .61
Redmaple 742 .29 -.01 -.07 -.06 -.15 -.20 -.51 -.29 -.05 1.20
Elm 170 -.19 -.01 .20 .43 .28 .05 .71 .36 .24 1.39
Yellowbirch 232 .04 .09 .02 -.21 .20 .10 -.03 -.04 -.00 .92
Basswood 243 .50 .70 .38 .29 .26 .20 .38 .41 .38 1.31

•Sugar.maple 777 .24 .09 .06 .10 .21 .06 .12 -.23 .08 1.20
• Whiteoak - 244 -.12 .10 .10 .19 .11 .09 .02 -.05 .08 .89

Selectredoak 246 .25 .30 .17 .05 .14 -.19 -.08 .31 .15 1.46
Otherredoak 154 -- .96 .54 .95 .88 .83 .84 .50 .76 1.12
Bigtoothaspen 184 .34 .27 .11 -.15 -.37 -.71 -.86 -.96 -.04 1.55
Quakin_aspen 662 -.13 .24 .38 .33 .16 -.10 -.20 -.73 .27 1.45
Paperbirch 1,068 -.14 .02 .11 .21 .15 .34 .25 .03 .10 1.07

AIF .11,182 .09 .07 .10 .15 .18 .12 .06 .10 .11 1.16

Percenttrees
. indiamete.r

class 6 22 32 18 9 5 3 5 100

_Specieswithfewerthan100observationshavebeenomitted.
qncludesspecieswithfewerthan100observations.

Table 6.nPredicted and observed annual tree mor- spruce budworm, Choristoneura fumiferana; black

tality rates by Lake States species for all validation spruce is a host for dwarf mistletoe, Arceuthobium
properties (includes all trees that were initially alive pusillum; and elm is killed by Dutch elm disease
and not cut). caused by the fungus Ceratocystis ulmi (USDA Forest

Service 1979b). None of these damaging agents were
Annualtree present at high levels on the calibration locations

No.of mortalityrate during the measurement periods involved. In several
Species trees Predicted Observed of the validation areas, however, these agents were

. Percent present at high levels.
• • Jackpine 2,336 1.2 1.6

Redpine - 1,397 .1 .1
Whitepine 363 .3 1.1 Balsam fir mortality is underpredicted on all the

, Whitespruce 187 1.2 .6 validation properties. For all four properties where
Balsam fir 1,092 1.4 3.2 balsam fir is an important component, spruce bud-
Blackspruce 1,024 .6 1.8 worm was present in the area during the measure-
Tamarack 370 2.5 .6 ment period (USDA Forest Service 1962, 1968, 1971N.white-cedar 987 .3 .6 '
Hemlock 323 .3 .5 1977). Therefore, spruce budworm may partially ac-
Blackash 254 .9 2.4 count for the poor performance of the balsam fir mor-
Redmaple 852 .7 .6 tality predictions.
Elm 293 1.2 3.8,

Yellowbirch 321 1.6 1.6 Most of the black spruce data is from the Cloquet•Basswood 303 1.2 1.0
Sugarmaple 946 1.4 .7 forest. However, dwarf mistletoe has not caused sig-
Whiteash 65 .1 .6 nificantmortalityon theCloquetforest(D.W. French
Whiteoak 274 .4 .7 and F.A. Baker,personalcommunications).So mis-
Selectredoak 273 .6 .5 tletoedoes not accountforthe discrepancy.
Other.redoak 312 5.8 .8
-Bigtoothaspen 270 1.7 1.5

. Quakingaspen 1,468 2.5 3.3 Predicted and observed elm mortality rates are
' Paperbirch 1,191 .2 .5 close for all sources except the Manistee National

; All' 15,240 1.1 1.4 Forest. There, the observed mortality rate was 18

'inCludesallspeciesontheproperty, percent as compared to a predicted rate of only 1
' 13
I



percent. Dutch elm disease was responsible for large agree closely between the predicted and observe
" elm losses in lower Michigan in 1962 and by 1971 distributions with perhaps a bit more discrepancy i:

most of the elms were dead (USDA Forest Service the basal area results, which is to be expected. Th
1962_ 1972). Yet it wasn't until near the end of the Closeness of these two distributions is in part a fun(
measurement period that the disease was common tion of the interval length. The longer the proje(
in northern Wisconsin and upper Michigan (USDA tions, the greater the discrepancies no matter ho_
Forest Service 1977). This helps to explain the con- well the model predicts. These results are standard
trast between Manistee and the other areas, ized to 10 years for all validation properties combined

-.

Precision analysis The second analysis of variability is the cum_
lative frequency of the errors for each test variabl

In this section we will discuss some general as- (fig. 6). Differences are shown between predicted an,
pects of variablity in the model evaluation process, observed values for DBH, NT, and BA standardize.
The first analysis is a comparison of the actual and to !0 years for all validation properties.
predicted distribution for the three test variables:

. DBH, NT, and BA (fig. 5-).All three test variables The graphed results can be viewed two ways. On
is to say that 68 percent of the tree diameter, obse_
vations will have an error of between -0.35 and 0.5

inches in 10 years (or, 95 percent are between -1.:
• . _,_O,¢T_O and 1.2 inches). The other is to know what percen

_ o.s,v_o of the trees had predicted DBH values within, fo
example 0.5 inch of the observed DBH. Viewed il

• this manner, 71 percent of the trees (82 percent-1
" percent) had predicted diameters within 0.5 inche

of the true value, 88 percent of the plots (93 percent.

5 percent) had predicted NT within 100 trees pe
' ° _ : : : : : : • ' • " acre, and 68 percent of the plots (78 percent-10 pel0 4 8 12 16 20 24+

cent) had BA values predicted to within 10 squar, FINAL D.B.H. (inches)

feet.

A third precision analysis, based on the Cloqueu

i Experimental Forests, is included in the time ana]
ysis discussion below.

..=,
Time analysis

_- Short-term effect. Prediction errors can be e_b=

_-° pected to increase as the length of the projectio
• _ _ _ _ ,_ ,_ interval increases. We examined these error tren_

" " FINAL NUMBER OF TREE8 (trees/ .... ) to determine their magnitude and form.

We used the data from the Cloquet validation fc
the time analysis because it was the only one the

• was remeasured more than once after the initi_
. '° measurement. It was remeasured 5, 10, and 17 yeal

atter the initial measurement. The analysis was don
• at the stand level using BA errors, which provide

° _ . ,_ ,. _ good overview of the entire model performance on
'FINALBASAL AREA (eq.ft./acre) variable of interest to most users. On the averag_

we found that errors increase as the projection ir
Figure 5._A comparison of the frequency distribu- terval increases and variability of the errors ir

tions of the predicted and observed values for tree creases as well (fig. 7).
d.b.h., number of trees, and stand basal area, stan-
dardized to 10 years. All validation sources are An analysis of accuracy for all types combine
included, shows that BA is overestimated on the average b

i
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• Figure 6.--Cumulative frequency of 10 year errors in predicting tree d.b.h., number of trees,
and stand basal area for all validation sources. The error equals the predicted attribute
minus the observed attribute. Lines representing +_1 and +_2 standard deviations have been
added.

]

7 square feet in 17 years. However, some types (bal- adjusted to 10 years will make STEMS appear worse
sam fir, black spruce, northern white-cedar, and low- than it is. However, at the tree level combining all
land hardwoods) were overestimated by as much as species, the DBH trends were nearly linear.
16 to 20 square feet. These types account for 24 per-
cent of all the plots. A few of the individual forest types on Cloquet

had noticeable nonlinear trends (fig. 7). But the only
The precision results for all types show the stan- clear cases in which the error would be underesti-

dard deviation of the BA error to be 16 square feet mated are white pine (6 plots), white spruce (4), and
in 17 years. Stated in slightly different terms, 68 balsam fir (23). The remaining four validation prop-
percent of the basal area errors fall between -6 and erties had measurement lengths of 9 to 11 years.
13 Square feet after 10 years and between -9 and 23 Adjusting these results to 10 years presents no prob-

. square feet after 17 years. When the mean error and/ lem. This supports our adjustment approach, espe-
' or standarddeviation are large, fairly high BA errors cially on the validation properties.

may be encountered (e.g., balsam fir, black spruce,
' and quaking aspen types). Atypical patterns were Long-term effect, An evaluation of long-term pro-

found for white spruce and lowland hardwoods, jections, as used when studying forest succession,
becomes more difficult because there are no existing

But we still need to assess the assumption of lin- remeasured plots for comparison. One evaluation ap-
ear decay of errors made when the time adjustment proach is to compare the results of the projection with
was introduced. If the annual rate of decay is con- expectations based on professional judgment. This is

: star/t, the lines should be linear through the origin, often sufficient to detect gross errors in the model.

I When all types are combined, the linear assumption Another approach is to compare the results with pub-
holds up to 10 years. Adjusting the 17 year values lished yield tables. However, there are problems with

.i to 10 years would usually result in a slight overes- this approach: (1) the yields are based on summaries
i

] timation of BA error at 10 years because the pattern of different stands at specific ages; (2) the averages
, iS slightly convex. Further analysis, not given here, derived from these stands represent the development
_, revealed that NT trends were more convex. There- of a theoretical stand; (3) the results do not represent

fore, on the average, the stand level results when an actual growth series; and (4) it is difficult to de-
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FiNe 7.---Pattern of mean and standard deviation of basal area error by forest
type on the Cloquet Experimental Forest, Minnesota. Standard deviations are

' shown by the outer lines, The number of plots for each forest type is given in
parentheses.

velop an appropriate initial tree list because the yield For quaking aspen, the greatest difference between
tables do not specify such things as species compo- the"projection and the yield table values of Brown
sition and diameter distributions. Despite these and Gevorkiantz (1934) was 18 square feet per acre

, problems, we used a combination of scientific judg- at age 50. Both projections followed the general trends
ment and published yield tables to evaluate the mod- indicated from the yield tables and continued on in
el's long-term predictive capabilities, a reasonable manner. Although this is only a cursory

examination of the model's long-term projections, it
We made two long-term projections on pure suggests that the model does not produce gross errors

stands--a .conifer (red pine) and a :hardwood (quak- for red pine and aspen.
ing aspen) (fig. 8). Both stands, site index 60, were

Data base differences
begun at age 20 and were projected for 100 years.
The red pine stand projections showed good .agree- The calibration and validation data bases have
ment with the basal area table of Stiell and Berry one very important difference. The calibration dat_
(1973) at age 50, the extent of the published table, came from regearch plots so the coefficients wer_

,

16



ratio function to predict the crown ratio of each tree
and then we evaluated the resulting prediction errors.

o

,_o o. The overprediction of crown ratio for all species
combined is 0.78, with individual species ranging
from 0.31 to 1.30, except for red pine at -0.07 (table

; ,_o 7). Plotting the mean crown ratio code errors over
S t stand basal area also provides evidence of a marked

._ _ basal area trend in which the errors decrease as basal
,_o area increases (fig. 9).

f _----: : . --.

_-"'"_ The crown ratio function in STEMS was cali-
® brated using Forest Survey inventory data from Wis-

, ,............ consin and northern Minnesota 8that included a wide
range of stand basal area and diameter conditions.
The crown ratio codes observed from the inventory

°,o _o _o ,....... data tended to be as much as 1 unit higher than
,oE c,.,.) those observed on the calibration data. We found no

J Figure 8._Comparison of long-term STEMS pro- apparent cause for this discrepancy, but obviously it
I jections with published yield table results for red has contributed to the overestimates of crown ratio.

i pine and quaking aspen stands on a site index of
60. How much effect do these overprediction errors

developed primarily from plots where uniform spac- have on the estimated growth? One National Forest,
ing was the goal. However, the validation data came Chequamegon, was also projected assuming un-
from general plots so the model was applied on plots known crown ratios. The results showed that when

the crown ratio function is used to estimate the crownwhere spacing may be far from ideal. Unequal spac-
ing may reduce production below the optimum found ratios, the mean DBH error increased from 0.13 to

. with uniform spacing. The expected results, when 0.25 inches in 10 years and the mean BA error in-
projecting general stands, would be to overpredict creased from 4.7 to 8.1 square feet per acre in 10
growth. Certainly, diameter growth is consistently years.

• overestimated on all validation properties (table 2). 6See page 7.

These results agree with those of Bruce (i977). Table 7.---Summary of crown ratio function test
showing mean crown ratio code errors by Lake States

•Also the range of conditions differs between the species for all trees on the validation properties.calibration and validation data bases. The data base
used to calibrate the model contained fewer low basal No. of Meancrownratio
area plots and more high basal area plots than the Species trees codeerror
validation properties (fig. 2). Our results (fig. 3) show Jack pine 1,906 1.07
that the model overgrows low basal area stands. Redpine 1,626 -.07Whitepine 368 1.07

• . •Therefore, if this type of stand is predominant, the Whitespruce 257 .79
model Would perform poorly. This is also probably a Balsamfir 988 1.10
contributing factor to the overprediction on the val- Blackspruce 957 1.26

• idation properties. Tamarack 385 1.02
" N.white-cedar 1,002 ,44

Hemlock 306 .31
•Crown ratio analysis Redmaple 837 1.09

Elm 194 1.01
Crown ratio, an important variable in the growth Yellowbirch 272 1.02 ,

potential, 'had been measured on each tree used in Basswood 274 1.30
Sugarmaple 878 1.18

the evaluation. We analyzed the growth and mor- Whiteash 61 1.30
talitycomponentsofthemodelswithoutintroducing Whiteoak 255 .52
errors from crown ratio estimates. Therefore, we will Select redoak 259 .57

•present a separate validation of the crown ratio func- Otherredoak 286 .44
tion for those cases in which crown ratio would be Bigtoothaspen 235 .94
estimated in STEMS, i.e. not recorded when trees Quakingaspen 1,140 .94
were measured.Becausealltreesinthevalidation Paperbirch 1,277 .31

Total 13,763 .78data had a known crown ratio, we used the crown
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1.2. (2) species; and (4) is simpler to calibrate, understand,. (10) and use.
o_ 1.0
_ 16) (23) Included in the tests on STEMS are analyses of

.8 (23) accuracy, precision, and time effect. The important
o findings and observations are summarized below, in-
o is) cluding an attempt to identify the major areas of

I _< 6 (6) weakness of the STEMS model.

(s) 1. Both models predicted growth and mortality well
_ on the calibration data base. Therefore, we have
z
_< 2 no reason to suspect any basic mathematical flaw

in either model.

0 ' ' : : • I I 2. STEMS did reasonably well projecting plots from
0 25 50 75 100 125 150 175+ the five independent properties comprising the

• validation data source. The major problem areas
BASALAREA('sq.ft ./acre) involved predicting diameter growth for other red

Figure 9.--Mean crown ratio code errors plotted oak, mortality for northern red oak, and stand
against the stand basal area for all trees on the basal area for lowland hardwoods. In most of these
validation properties. The percent of the observa- cases, few trees were available to use for

. tions in each class is given in parentheses, calibration.

It is possible that crown ratios vary more by lo- 3. In an evaluation of the error patterns for the three
test variables over a wide range of initial condi-cation than other variables. Therefore, users may

have to test the predicted crown ratio values against tions, we found that the STEMSmodel overgrows
known values from the location of interest to deter- trees under the following conditions:

mine if an adjustment is needed. At present, if the (a) when basal area of the stands are low--es-
STEMS model is used to grow trees with unknown pecially below 50 square feet per acre,

• crown ratios, it will probably overpredict crown ra- (b) when tree site index is 30 and below,
tios and hence overgrow tree diameters. (c) when crown ratio codes are 2 and below, and

(d) when the relative d.b.h, of overstory trees is
between 1.2 and 2.2.

SUMMARY The problems listedin (b)and (c)indicate possible
A projection system is evaluated by analyzing its model weaknesses in the growth potential and

capabilities to predict behavior in the real world. In those in (a) and (d) with competition as it is han-
this paper, we evaluated the STEMS projection sys- dled in the modifier function.
tern by analyzing the differences (or errors) between
the predicted and observed values on three key var- 4. Tree diameter errors given by species and initial
iables--tree d.b.h. (DBH), number of trees per acre diameter classes generally show that the model
(NT), and stand basal area per acre (BA). Perform- predicts diameter growth well for the lower di-
ance of_he growth component was measured by DBH ameter classes but overpredicts growth for the

• errors, the mortality component by NT errors, and middle diameter classes. This overprediction de-
the system as a whole by BA errors. Many of the creases for the few larger trees in the data base.

• basic tests were performed on two data sets: (1) a 5. The problem with underpredicting mortality on
systematic sample of every fifth plot from the cali- balsam fir and elm on the validation properties
bration data base, and (2) an independent data base may be due to outbreaks of spruce budworm and

• comprised of five different sources located in Min- to Dutch elm disease. These damaging agents were
nesota, Wisconsin, and Michigan. not present at high levels on the calibration lo-

Cations during the measurement periods involved.
Initially, we evaluated two growth models--the 6. In general, very little error was introduced in the

Original GTR49 model .and the current STEMS model, validation results by standardizing the time and
The results indicate the two models are similar in if errors do result, they usually will be conserv-

•many ways. However, the STEMS model (1) is slightly ative. This approach to model testing allows us
more precise; (2) performs slightly better than the to use and compare data with different measure-
GTR49 model in three areas as judged by error pat- ment intervals. But standardization of the time
terns; (3)does not grossly overpredict yields on long- is only valid if the decay of errors is approxi-
term projections as the GTR49 model did on some mately linear for the measurement length used.

,
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In the. Cloquet example given, most species showed will meet their needs, or what parts of the model
fairly linear trends through 17 years. In those may be suspect, before making a major commitment
cases where the pattern was slightly convex, ad- of time and money.
justing to ! 0 years results in a slight overesti-
mation of the error. The other four validation LITERATURE CITED
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An evaluation of the STEMS tree growth projection system. Res. Pap.

NC-234. St. Paul, MN: U.S. Department of Agriculture, Forest Serv-
! ice, North Central Forest Experiment Station; 1983.20 p.
J STEMS (Stand and Tree Evaluation and Modeling System) is a

" tree growth projection system. This paper (1) compares the perform-
ance of the current version of STEMS developed for the Lake StatesI
with that of the original model and (2) reports the results of an

• analysis of the current model over a wide range of conditions and
identifies its main strengths and weaknesses.
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