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DESIGN OF THIN SHEAR BLADES

FOR CROSSCUTSHEARINGOF WOOD
....

Rodger A. Arola and Thomas R. Grimm

•' BACKGROUND
-

During the early 1960's one major

obstacle that designers of wood harvesting
equipment had tO overcome was the lack of

information on force and power requirements
for crosscut shearing of wood. Over the
last 10 years rellable information has been

published. However, throughout this 10-year
period we have not witnessed widespread
acceptability of shear-felled sawtimber as

wehave with shear-felled pulpwood. Why?

The major deterrent has been the Splitting
of the butt saw log which causes severe
monetary losses in the production of lumber.

Figure l.--Buckled thin shear blade after

crosscut shearing a 8-inch diameter oakMcIntosh and Kerbes (1968) found that
• bolt. Blade thickness is I/8-inch

shearing trees reduced felling costs of con- B/A = l O.ventional methods by 37.9 percent in a clear-

cut lodgepole pine stand and by 48.5 percent

in Douglas fir. However, the butt log split

an average of i0 inches in the lodgepole beams is that plane sections before stress-

pine causing an estimated trim loss of 3 fbm ing remain plane after stressing within the

per tree. A thinner shear blade reportedly elastic range. This assumption, however,
used on the Douglas-flr limited splitting is an oversimplification for shear blades
damage to 4 to 5 inches and crushing damage having the dimensions of a thin plate

1 to 2 inches from the sheared face. All rather than a beam. Elasticity theory must
material was unfrozen. Schmidt and Melton be used to determine the stress dlstribu-

(1968) concluded that the type of tree tions resulting from beam-type loadings,
shear they investigated was "not the and complicated plate theory used to deter-

ultimate machine for use in felling saw mine the critical buckling load or stress
log trees." which causes failure.

The literature revealed limited in-

formation about methods to predict the
.. Research has shown that splitting elastic stability of thin plates subjected

damage as well as force and power require- to in-plane loadlngs. Prestressing can be
ments can be decreased by using thinner used to increase the stability of thin
shear blades (Arola 1971, 1972). But, how plates, but information is also limited on

thin can we make functional shear blades? prestressed plates or shear blades.
Thin shear blades are extremely prone to

lateral buckllng due to the presence of
compressive stresses within the plane of Despite the lack of theoretical infor-
the blade (in addition to unbalanced matlon about the design of thin shear blades

lateral pressures)(flg. 1). there are reports of experimental tests us-
ing thin prestressed shear blades. Wiklund

The problem is further compllcated by (1967) demonstrated the beneficlal effect of
the fact that conventional "thick or deep prestressing shear blades and tested a 10

beam" analysls does not apply to thin plates ram-(0.4 in.) thick blade to shear wood 20 to
subjected to beam-type loadings. One stand- 25 cm (8 to i0 in.) in diameter. In his
ard assumption in the analysis of deep analysis he treated the thin blade stress



distribution similar to that in deep beams The primary plate dimensions and coor-
subjected to the same loadings. He used a dinate system, the assumed crosscut shear

mechanical test arrangement to prestress loads_ and the prestress configurations were
the shear blade while the stress level was all treated in this analysis (fig. 2). The
monitored with strain gages. Wiklund also main crosscut shear load assumed was a

cited field tests conducted in Russia with cosine-shaped, in-plane distributed load.
two opposing prestressed, 5 ram- (0.2 in.) However, a uniformly distributed load was

thick blades to shear frozen trees up to also analyzed and a relationship developed
70 cm (=28 in.) in diameter. Cuts were between the two. These compressive loads

very smooth with little splitting damage, which cause instability are considered to
So, there is an advantage in using thin be applied to the top edge of the plates

shear blades to reduce splitting damage and with no lateral pressure or perturbation.
the force needed, and being able to predict The in-plane prestress distributions include

l increases in blade stability by prestress- a uniform tension, a linearly increasing

ing. tension, and a bending moment-type stress
distribution applied to the vertical edges

The Forest Engineering Laboratory of the plates.
therefore initiated an analytical study

which led to the development of a versatile The plate boundary conditions include
computer program for thin plate analysis, clamped and free edges. Additionally, some
(Appendix A). The program was used to of the solutions presented in Appendix C

solve instability problems of edge-loaded include plates with simply supported edges,
thin plates having several possible shear and/or combinations of simply supported,
blade configurations and three different clamped, and free edges.
prestress methods, as well as numerous

other thin rectangular plate instability The clamped boundary condition indi-
problems to which some solutions were cares that the edge is restrained with

previously nonexistent, respect to deflection and rotation out of
the plane of the plate. The simply sup-
ported boundary condition indicates that

the edge is restrained with respect to de-
flection out of the plane of the plate but

PURPOSE not with respect to rotation.

The purpose of this paper is" (i) to Some of the plates considered are also
present a measure of stability for estab- assumed to be supported at the bottom edge

fishing critical buckling loads for thin by a rigid, clamped support. It is assumed
rectangular plates which have different that this type of support results in a com-
depth/width (B/A) or aspect ratios and presslve stress distribution applied to the

clamping (boundary) conditions and are bottom edge of the plate indentical to the
shear load applied to the top edge (fig.subjected to different in-plane compressive

loads (see Appendix B for explanation of 2c).
• symbols); (2) to indicate the possible

increase in plate stability by applying
alternative in-plane prestress loadings;
and (3) to exemplify how a designer could
use this information to determine whether GENERAL DISCUSSION

the critical buckling load will be reached
With the expected shear loads, and how pre- The theory used in this work is accu-

stressing can increase blade stability, rate only for thin rectangular plates made
of a linearly elastic, homogeneous, isotrop-
ic material. The theory can be applied to

PLATE CONFIGURATIONS ANALYZED thicker plates, but with less accuracy.
As a rule of thumb a plate is classified as

NUmerous basic configurations of thin thin if the ratio L/t is greater than 20,

rectangular plates were analyzed. Those where L is the smaller of the two primary
which are approximations to thin shear dimensions (A and B) and t is the plate's

blades are discussed in the body of this thickness.
paper. The general plate solutions, some
of which were previously unsolved, are in- The stability of a thin plate is

ciuded in Appendix C. measured in terms of a critical buckling

2
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Figure 2.--Cases treated in thin plate (shear blade)
analysis: (A) plate dimensions and coordinate system;

(B) prestress configurations analyzed; and (C) assumed
shear load configurations analyzed.

stress which is defined as the lowest value The critical buckling stress for a

0f the mldplane stress or stresses for which given plate configuration is formulated by

the initially flat Dla_e has two equilibrium
configurations. The two equilibrium con-
figurations are the initial flat conflgura- _cr:(CKA)_2D....or (CKB)_2D
tlon and an adjacent infinitesimally de- t(2A) 2 t(2B) 2

i flected configuration. The critical buckl-

ing stress establishes where the plate is at where D is the flexural rigidity of the
a neutrally stable configuration. It is plate, t is the thickness of the plate, A
theoretically possible for a plate to re- is one half the plate width in the X direc-
main in its initially flat configuration tlon, CKA is the buckling constant for the

despite the fact that the in-plane compres- A dimension, B is one half the plate depth
slve stress exceeds the critical buckling in the Y direction, and CKB is the buckling
stress. However, the flat configuration is constant for the B dimension.
unstable once this stress is reached. Any

slight perturbation would cause the plate Either of the above expressions make it
Co buckle, possible to determine the critical buckling

• 3
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stress, for thin plates which have different The peak prestress was expressed in the
dimensions and material constants but which above form so that the numerical results

are loaded and supported in the same manner obtained from the imstabillty analysis of
and have the same aspect ratio B/A. The the prestressed plates can be applied to
buckling constant is independent of material other plates with the same aspect ratio

constants for plates having all edges sup- but different dimensions and material con-
ported. The material properties are account- stants. The effectiveness of the prestress

ed for in the flexural rigidity term (D) was measured in terms of the increase in
which is given as the magnitude of the critical buckling

steess.

D= Et3
12(i-_ Z)

RESULTS
in Which E is the modulus of elasticity, t

is the plate thickness, and _ is Poisson's Comparison Between Uniform
ratio. However, if the plate§ considered and Cosine Load Distributions

have a free edge or edges, the buckling
constant "is dependent on Polsson's ratio. Most results presented are for plates
For cases with free edges it is therefore analyzed with a coslne-type load distribu-

tion which, as an oversimplification, was
necessary to specify the Poisson ratio,
along with the buckling constant for a assumed to approximate the blade load due
given problem. A value of 0.3 (for steel) to crosscut shearing of logs. However, the

has been assumed throughout this analysis, critical buckling stress for several of the
same basic plate configurations, but with a

The prestress distribution analytically uniformly distributed load, was also analyz-
applied-to the thin plates were expressed ed. It was found that the total force which
in a form similar to that of the buckling will cause buckling for the assumed cosine

• distributed load (Pc) was less than the totalconstant described above. The peak value
of the prestress (PPS) was expressed in force which will cause buckling for a uni-

• terms of a prestress factor (PK), multiplied formly distributed load (Pu)- This, we be-
lieve, is because the coslne-shaped distrib-

by the plate stress constant (Oe). Thus, uted load in effect "wastes" less force near

where the restrained edges of the plate. The re-
PPS=(PK)°e ' latlonship between the total loads for the

two assumed load distributions for plates

o = H2D . having both clamped and simply supported
e t(2A)2 vertical edges is shown in figure 3.

1_ \\

|

Figure 3.--Relationship between uniform and cosine dis-
tributed buckling loads for clamped thin plates (left)

(Pc = 0.70 Pu) and simply supported thinplates (right)

(Pc = 0.75 Pu). Where(2A)P@ = °IA _c dA = _(2A) tCc;andPu = oIAodA= a.

4



Knowing the total cutting force _or a Substituting 0.7 Pu for Pc and solving for

given species and diameter of tree, the ou results in the following expression:
results of the instability analysis pre-
sented here can relate this cutting force o =0.9094 o .U C

to the peak value of stress. For example,
the total force for a cosine distributed

load (fig, 3) is

Thus, the critical buckling stress for
pc=_(22A)t(Oc )" a thin plate having two clamped vertical

edges and a uniformly distributed load can

The peak Stress is therefore given by be approximated by multiplying the critical
stress for the plate with a cosine load by
a factor of 0.9094. A relationship can also

Oc=_(_Pc ) or, be derived for the simply supported boundary
2A)t condition.

Oc=_avg , where Plates Without Prestressing
P
c Two cases of plate instability illus-_---._........

eavg (2A)t " trate the type of problems that can be,

solved (fig. 4). Case 1 is a thin plate
with a cosine-shaped in-plane load distrib-

Thus, the peak stress for the cosine dis- uted along an otherwise free top (cutting)

tributed load (_c) is found by multiply- edge. The vertical edges of the plate are
ing the average stress by a factor _/2 or rigidly clamped with respect to rotations
1.5708. and deflectlons out of the plane of the

• plate, and are supported by shear forces.
The instability in this case is caused by

• a combination of the compressive stress

applied to the top edge and the bending-
type stresses in the plane of the plate near

If the cutting force were initally the top edge. As the aspect ratio B/A in-
assumed to be uniformly distributed on the creases, the magnitude of the buckling con-
blade edge and caused buckling, it can be stant increases until B/A=2.0 (fig. 5, case

related to the critical buckling stress i). This plot reveals that for a shear
for cosine-shaped loads. For example, in blade loaded and supported as shown for case

the case 0f two cl_qaed vertical edge8 (fig. 1 (fig. 5), it would be wise from a stabil-
3), the total buckling force for the cosine ity standpoint to use a blade with an aspect
load is equal to = 0 7 times the total force" ratio of at least one. _my further increase

for a uniform load I Also, since in aspect ratio does not yield large in-
P creases in the buckling constant.

2At=} _ and(I
c

p Case 2 in figure 4 is that of a plate

2At=__u with a rigidly clamped bottom edge as well

• au as clamped vertical edges. Again, the plate
is loaded with a coslne-shaped distributed
load applied to the top edge but in this

these two expressions can be set equal to case the load is resisted by the bottom edge.

each other, i.e. The instability is caused by the in-plane
compressive stresses in the vertical direc-

P P tion, without any effect of horizontal
W__C U

u _- • stresses caused by bending as in case i.
c u Because there are no bending stresses, the

buckling constant is highest for a plate
with a small aspect ratio. As the aspect

IT' R. G_mm. Analysis of the insta- ratio increases, the buckling constant de-

bility of thin rectangular plates using the creases until B/A=I.5 (fig. 4; also fig. 5,
extended Kantorovich method. (Unpublished case 2). A comparison reveals that case 2
Ph.D. dissertation on file at Mich. Technol. has a consistently higher buckling constant

Univ., Houghton, Mich.) 1872. than case i and is thus more stable.

5



cAsE ASPECT CRITICAL BUCKLING CONSTANT
PLATE CONFIGURATION RATIO

No. B/A C_
I COSINE DISTRIBUTED LOAD

0.25 1.57461

0.33 2.00768

_--- 0.50 2.81051

• m 0.67 3.33195

3.00 3.94124

, 2 0.25 6.87814
l

0.50 4.84455

0.75 4.68299

1.00 4.46835

1.50 4.42998

2.00 4.45487

Figure 4.--Buckling constants for two thin rectangular
• plates approximating shear blade configurationsl.

PlatesWith Prestressing The trlangular-shaped prestress is the sec-
ond most effective, followed by the bending

Plates having the same boundary condi- moment distribution.

tions as those in figure 4, with B/A=I.O,
" were also analyzed to evaluate three differ-

ent types of superimposed prestress dlstri- HOW CAN A DESIGNER USE THIS INFORMATION?

but ions to increase the blade stability
(fig. 6). The In-plane prestress dlstrlbu- In the following examples of how to use
tions studied include a pure tension, a the design information, ideal plate loading

linearly increasing tension, and a bending and clamping conditions are assumed. The
moment distribution. A comparison of the major assumption is that there is no lateral
magnitudes of the buckling constants with perturbation pressure which would decrease
varying prestress factors reveal the effect the in-plane load capacity of the blade.

of these three different prestress distrl- In actuality, when thin plates are used as
butions on plate stability. The buckling shear blades, conditions are far from ideal.

constants were plotted against the prestress At the start of the actual cut it is unlike-
factors for the different prestress dlstrl- ly that blade penetration is exactly perpen-
butlons (fig. 7). In both blade conflgura- dicular to the fibers--partlcularly if the
tlons the uniform tension prestress is the cut is made close to the root collar or to a

most effective for raising the critical limb juncture. This failure to achieve pure
buckling stress, the amount of stress that orthogonal cutting conditions causes a later-

must be reached before buckling will occur, al pressure on the blade which would increase

6



7.0

_cr t (2A)2. CKA =
w2 D

6.0
= 0.3

•. I...- 5.0
Z

I--.
CASE 2

Z
0
0 4.0 .... CASE I

(.9
z_

. J

' 0 3.0
OB
, CASE 2

<_

(.>
2.0

. 1.0 CASE I 2 B
J.

' I-- zA--I
0.0 I I , , I

O.O 0.5 I,O 1,5 2 .O 2.5

B/A-ASPECT RATIO

Figure 5.--Plot of buckling constant vs. aspect ratio for
two shear blade configurations}

with penetration as the cutting edge tries plate or shear blade failure in the field.
tO follow the path of least resistance along Nevertheless, we feel the analysis is still

the fiber lines. Other factors affecting useful for preliminary design stages.

blade performance are mlsallgnment of the
blade o_ plate-containing mechanism, repeat-

ed loading, low operating temperatures, and Examp]e ]
the effect of blade imperfections. If the
plate is not flat at the start, the critical It wlll first be assumed that the de-

bucklingstress will be lower, slgn engineer has established that his trial
' shear blade configuration is most closely

approximated by sketch A and the plate
Because of these factors, the examples simplification by sketch B (fig. 8). The

belowmay give theoretical in-plane buckling L/t ratio is slightly greater than 20 which

loads higher than those that actually cause classifies the plate as "thln."

7



. PRE- "" ' TYP'EoF P.RESTRESS: ....
3TRESS PURE LINEARLY INCREASING BENDTNO
FACTOR TENSION TEN SION MOM gNT
EASE -i

PPg

PK CKA CKA CKA

0.0 3.82011 3.82011 3.82011

i.0 4.16841 4.13967 4.10945

I 2.0 4. 46377 4.41270 4. 35567
°

3.0 4. 72814 4.65817 4.57458

4.0 4.96946 4.88252 4.76775

CASE 2 _
PPS PP_

0.0 4. 46835 4. 46835 4. 46835

1.0 4.73063 4.69595 4.65917

2.0 4.97107 4.90410 4.82733

3.0 5.19612 5.09831 4.96290

4.0 5.40748 5.30128 5.20825

Figure 6.--Buckling constants for prestressed shear
blades I. (B/A = 1.0).

°

We Will assume the design engineer is The critical buckling stress (_cr) is
interested in a blade without prestressing then computed (for cosine distributed load):
if possible, but is ready to consider adding

a uniform prestress to increase the buckling (CKA)_2D
constant for the assumed configuration. The _ =

following steps illustrate his checkout cr t(2A)2

procedure, ffi(2.81051_ (3.1416) 2 (i.44875xi05)
(0.375)(18) 2

The flexural rigidity (D) is first

calculated for the blade, u =33_075 psi .

Et3 cr
D=
12(i-_2)

=(30 x 106)(0.375) 3 The expected crosscut shearing stress
12(1-0.32) under actual cutting conditions must now be

determined. A nomograph (fig. 9) can be
D=144,875 in.-lb, used to estimate force requirements for

8



c_ t (2A)2crCKA =
6,0 72 D

=

(PPS) t (2A)2PK =
72 D

_

(u)

I- = = 0.3 (t) CASE 2
Z

(m)
• I--

1 ¢n 5,0

z _(u)O (t) CASE I
0 / (m)
(.9
Z
_.1

t)
:::)
(9

I

<1 4,0'_' PPS PPS PPS

o M M M

')II gZ
I - I--zA-.I lu) It) (m)

CASE 2 CASE I
i

, ' 3.0
O,O I.O 2 .O 3.0 4.0 5.0

PK-PRESTRESS FACTOR

Figure 7.--Plot of buckling constant vs. prestress factor}
Prestress distributions are uniform (u)_ triangular

(t)_ and bending moment (m). (B/A = i.0).

' O.cr

"--:T *
. • 911

• l

A e

. Figure 8.--Assumed shear blade configuration and sim-

plified reot__jula:e plate, which most closely approx-
imates thisoconfiguration. (For case A: t = 3/8 inch,
E = 30 x 10°.psi j and _ = 0.$; for case B: B/A = 0.Sj
and 0]_.4= _.8io51 (from fig. 4 case i)).

" 9



- TOTALSHEARINGFORCE
(lhousmdsof pounds)

0 20 40 60 so K)o _0__. _40

''_ , t I. "

l IjJ • ; . .
• r I t_

_ . . -.
_ . .. . _ •

_ ......

.. . I I_

/ _ . ....

t ' .:. ..
t

.............
I,I _-

......

l___]l I_ , -. ....... . .
"_. .. ::::. _.........

. = IoOo BLADE"mlCK.F--l__ __
o (inches) Exlropoloted

• . .

.30 35 .40 .45 .50 .55 .60 .65

. SPECIFICGRAVITY(green)
Figure 9.--Nomograph to estimate shearing force for different

b lade. thicknesses.

shearing unfrozen species ranging in spec- _ 72_000
ific gravity (green) from 0.30 to 0.65, for -(0.375)(18) ' so
log dlameters up to 18 inches, and blade

thickness from 1/8 inch to 7/8 inch (Arola o =10,667 psi.
1972). in this example it wll! be assumed avg

that the specific gravity of the material This average shearing stress must now be
to be sheared is 0.50. From the nomograph,

the total shearing force is estimated to be adjusted to correspond to a peak shearing
72,000 pounds To determine the average stress value (oc) for a cosine distributed

• load. Thus, from the previous discussion,
crosscut shearing stress (_ ), it is• a

assumed that the total shearing load is dis-
-i 5708(Oavg)trlbuted uniformly over the thickness and °c "

_ width of the blade (this is contrary to the
assumed cosine distribution of figure 3; =(1.5708)(10,667)

however, a correction wlll be made):
-16,755 psl.

C

=total shearing force Elastic buckling occurs if o >o .
°avg t(2A) , or c cr

From these calculations the blade is

unlt shearing force , elastically stable, thus prestressing is not
t necessary.

,

i0



.. Example 2 each alternatlve plate configuration and
prestress factor (flg. 6).

This example will illustrate a blade

configuration that is not elastically stable From the nomograph (fig. 9), the total
and how the stability can be increased by shearing force for a i/4-inch blade is esti-
changing the support conditions and by add- mated to be 75,000 pounds for an 18-inch-

ing a uniform prestress of varying magnl- diameter hard maple tree (sp. gr. = 65).
tudes. The estimated average crosscut shearing

stress is calculated as

It is first assumed that an 18 by 18 = 75t000
inch (B/A=I.O), i/4-inch thick blade will be °avg (0.25) (18)
used (to reduce log splitting damage). The
L/t ratio for this plate is much greater

than 20 and definitely is classed as a thin Oavg=16,667 psi .

plate. Further, it is assumed that hard
maple up to 18 inches in d_ameter will be

sheared (green specific gravity = 0.65). This average stress is adjusted to a

The f!exural rigidity of the blade is peak shearing stress for a cosine distrib-
uted load. Thus,flrst calculated:

,

Et3

• D=12(I-_2) o =i. 5708(Oavg)• c

• __.(3OxiO6) (0.2.5.)s
12 (i-0.32) _l. 5708(16,667)

=26,180 psiD=42,926 in.-ibs . °c "

• For each alternative combination in

fig. i0 the critical buckling stress is
In the calculations to follow for pre- calculated from

stressed shear blades, the uniform prestress

magnitudes are incremental values of the o =(CKA)_2D
Plate stress constant. Thus, cr t(2A)2 "

ppsffipK(_e), A comparison between the critical buckl-
ing stress and expected crosscut shearing

where PK takes on values of 0.0, 1.0, 2.0, stress reveals whether the blade will buckle

S.0, and 4.0. The plate stress constant elastically. Thus, if
is calculated as

O >O ,
_2D C cr

o =
e t(2A) 2

elastic buckling is expected.
=(3.1416) 2 (42,926)

(0.25) (18) 2 Based on this comparison of the calcu-
.

0 _5,230 psi . lated peak stress value (o =26,180 psi)e " with the critical buckling _tresses it is
apparent that both cases A and B are unsat-

Three different blade configurations isfactory and buckling would occur under
are used in this example (fig. i0). Case A the stated conditions. For case C, the

is a simply Supported plate with two edges plate is determined to be elastically stable

loosely Contained in a slotted assembly (con- with a prestress factor slightly greater
talned edges are free to rotate) and the than 2.0.

' bottom edge has no restraint. In case B,
the blade is rigidly contained along the Several factors were previously dis-
twO vertical edges and the bottom edge is cussed which would affect blade performance.
free. This case also considers the addition Additionally, this design selection does not

of an alternative uniform prestress of vary- consider the effect of repeated loading

ing magnitudes. For case C, a rigid support close to the critical buckling stress. It
along the bottom edge is added. The crltl- would be desirable to have a "critical

cal buckllng constants are tabulated for buckling fatigue limit" based on repeated

ii



Prestress critical :Buckling Critical Buckling,

CASE Factor Constant Sttess

PK CKA Oct (psi)

A 0.0 2.10034 10,985

o 0
'O O

B 0.0 3.82011 19,980
1.0 4.16841 21,800
2.0 4.46377 23,345
3.0 4.72814 24,730
4.0 4.96946 25,990

C 0.0 4.46835 23,370
• 1.0 4.73063 24,740

2.0 4.97107 26,000
• 3.0 5.1q612 27,175

4.0 5.40748 28,280,

Figure lO.--Critical buckling 8tresses for alternative
shear blade configurations and uniform prestressing

(Example 2). For the caleulation of critical buckling
•. ' stresses the following assumptions were made: I8-inch

by I8-inch shear blade (B/A = 1.0), t = 1/4 inch, E =

$0 x 106 psi, _ = 0.3, and Ce = 5,_$0 psi.

;' loadlngs. However, such a figure is non- been chosen. The uniform prestress magni-
existent to our knowledge. Therefore, de- tude is then calculated from

f sign judgment must be used to pick a safety

i factor that would be considered satisfac- PPS=PK(o e)

tory. =(4.0)(5230)

I Thus, to finalize the example we will

assume that a prestress factor of 4.0 has PPS=20,920 psi .

12



SUMMARYAND CONCLUSIONS conditions are discussed in this paper to
show that thin plate solutions can be used

" to approximate thin shear blade configura-

shear blades have generally not been tlons. Critical buckling constants have
widely accepted as a tool for felling saw- been presented for numerous plate problems

timber due to excessive splitting damage in as a measure, or indicator, of plate stabil-
the butt log adjacent to the sheared face. Ity. We have shown how the elastic stabil-
Research has shown that splitting damage and ity of thin rectangular plates can be in-

force requirements can be reduced by de- creased by several prestressing alternatives.
creasing blade thickness. However, a major

I_ problem exists with thin shear blades--they By way of formulas and examples, we

have limited structural stability. Even have demonstrated how the design engineer
though the yield point of the blade material can use the results of this analysis to

has not been reached the plate can buckle mathematically analyze thin shear blades
laterally and ultimately fail. and to estimate expected critical buckling

loads. Further, we have shown how the blade

Methods to analyze thin rectangular stability can be increased by changing
plates for load carrying capacity are highly boundary or clamping conditions and by pre-
theoret_ical and extremely difficult and time stressing the blade.

consuming to calculat_e. A versatile com-
puter program has been written I "to analyze Plate problems of more general appli-
•the elastic stability of thln rectangular cability, some of which had no previous

plates subjected to in-plane compressive solutions, are included in Appendix C.
loadlngs with varying boundary condltions.
The computer program is also capable of An otherwise very complicated problem

determining the effectiveness of various has been reduced to a very simple checkout
prestress configurations for increasing and design procedure that a design engineer
plate stability, can follow to estimate the stability of thin

• shear blades and methods to increase elastic

stability. The foregoing analysis is re-

Several rectangular plate configura- commended as a starting point in thin shear

tlons, prestress conditions, and boundary blade design.

. 13



APPENDIXA
..

Analysisof the Instabilityof Thin RectangularPlates
Usingthe ExtendedKantorovichMethodI

The extended Kantorovich method is used In this work the extended Kantorovich

to obtain solutions to a large number of method is used to solve buckling problems
previously unsolved elastlc buckling prob- of plates having a variety of different
lems of thin rectangular plates. In the varying in-plane stress distributions. To

present work this method is specially adapt- make this possible, numerical methods of
ed to a numerical method of solution, solution are employed. A Simpson's rule
Earlier workers have applied the Kantorovich technique is used to determine the integral

method to a small number of plate buckling constants of the fourth order ordinary
problems but have not used numerical methods differential equation mentioned above. The
of solution, resulting ordinary differential equation,

which in general has nonconstant coeffl-
The classical Kantorovich method in- cients, is solved by using a numerical tech-

volves reducing the problem of minimization nique for solving boundary value problems.

of a double integral, the plate potential, This technique reduces the fourth order
to the problem of minimizing a single in- ordinary differential equation to a system

tegral. This is accomplished by using the of first order ordinary differential equa-
Galerkin method and expressing the plate tions. The equations are then solved using
equilibrium equation in terms of its Galer- a special version of Hamming's modification

kin equation. The deflection surface of of Milne's predictor-corrector method.
the plate is then assumed to be expressible
in terms of two separable deflection func-

tions. One of these functions is then The solution method is verified by

assumed u pr_or_ such that it satisfies solving a large number of plate buckling
boundary conditions, and the remaining un- problems with known classical solutions.

known function is sought such that the plate For problems with known exact solutions
potential is a minimum. This results in a the numerical program developed is shown
fourth order ordinary differential equation to give the exact solutions. Excellent

which must be satisfied by the unknown de- correlation is also found by comparing
flection function. Solution of the result- solutions with known approximate solu-
ing ordinary differential equation gives an tions.
eigenfunction for which the corresponding

eigenvalue, the critical or buckling stress,
can be found by using the plate boundary

conditions. Included among the new problems solved
are plates with mixed boundary conditions,

The extended Kantorovich method used in plates on elastic foundations, and plates
this work is an iterative version of the with a variable in-plane compressive load
classical Kantorovich method. Instead of applied to only one edge, together with

quitting after finding the first approxima- several different in-plane prestress con-
tion to the critical stress based on an u figurations to increase the magnitude of

pr_o_" assumed deflection function, the the critical stress. Information from the
extended Kantorovich method uses the newly results for the prestressed plates is of
determined deflection function as a trial direct interest to equipment designers for
function in the same manner that the u use in the design of thin shear blades for

pP_oP_ chosen function was used. As a re- cutting logs. Solutions are also found
sult Of this, a new approximate'critical for plates with beam type stress distribu-

stress value can be found. This process tions. Based on these new solutions an
Can be repeated until the approximate criti- evaluation is made of the limitations of

ca1 stress value converges to some value previous solutions found using deep beam
near the exact solution, theory.

I
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APPENDIX B

i .

Legend of Symbols

A = one-half the plate length (in.). PK = prestress factor, PK=(PPS)/o e .

B = One-half the plate height (in.). PPS - peak prestress magnitude (psi).
t

I_ = total (in-plane) force on a plate
l B/A plate aspect ratio (dimensionless). Pc which is assumed to have a cosine

CKA = buckling constant for A dimension, plate stress distribution (ibs),

i CKA=°cr t (2A) 2 2 2A)t_ .
I _zD (dimenslonless). Pc=_( c

= peak stress for a cosine distributed

CKB = buckling constant for B dimension, c°cr t (2B)2 load (psl).
CKB= _z D (dimensionless).

• P = total (In-plane) force on a plate
o = critical buckling stress which is the ucr which is assumed to have a uniform

lowest peak applied stress for which plate stress distribution (ibs),
i the plate has two equilibrium con- P -(2A) .

figurations--the initial flat con- u t°u

I figuration and an infinitesimally de-
flected conflguration--(psi). _u uniform stress (psi)

.I t = plate thickness (in.). _avg estimated average plate stress (psi),
total plate force

avg t(2A) "D = flexural rigidity of the plate,
Et 3

i D=12(I__2) (in.-ibs). L = smaller value of the two primary
I plate dimensions (in.).

E = modulus of elasticity (psi). K = elastlc foundation stiffness

= Poisson's ratio (dimensionless). (psi per inch).

FK = elastic foundation modulus factor.o = plate stress constant (psl),
e _2D .

=
e t(2A) Z n = number of half waves in y dlrection.

APPENDIX C

Buckling Constants
for..

• Alternative Rectangular Plate Configurations

The buckllng constants in this appendix Figures 11 and 12 show plate conflg-
are in_luded for general reference and to urations which have known exact and approx-

demonstrate the capability of the computer imate classical solutions respectively.
program developed for §olvlng buckling These cases were solved as a verification
problems of plates having an assortment of of the solution method used} These two

boundary conditions and loading distrlbu- figures include drawings of the plate con-
tions. Some of the cases given were pre- figurations, the Kantorovlch solutions
vlously unsolved, found, and the known classical solutions

15
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case ........ Kantorovich Exact

. No. Plate Conflguration B/A So,l'n CKA .... Sol'ns C.__

1.0 3.99995 4.0

1.414 4.49017 4.50

I 2.0 3.99999 4.0

1.0 1.99999 2•0

" 1.0 7.69128 7.692

7.690

(_y 1.0 7.69094 7.692

7.690

4°

0.658 2•31005 2.31

, . .

5

(Figure ii continued on next page)

• Figure ll.--Verification with known classical exact solutions.
Cases 1, 2, 5, and 6 refer to Timoshenko and Gere (1961),

co_es 3 and 4 to Flugge (1962) and Masao (1969), and cases
7, 8, 9, and 10 to Flugge (1962).

along with literature citations from which the classical solutions serves as a verifi-
the classical solutions were found. Again cation of the accuracy and dependability of

a comparison of the Kantorovich results and the method used here.

• 16



(Figure Ii continued) ......
Case Kan't'orovlch Exact

No. Plate Conflsuratlon B/A Sol'n CKA Sol'n CKA

0.5 1.58205 1.60

1.0 2.04294 2.06

6 1.316 2.31071 2.31

2.0 2.26069 2.20

_=0.3

0.33 1.29120 1.289

0.4 1.38522 1.385

7 0 67 i 29120 I 289• . •

1.0 1.65251 1.658

u=0.3

1.0 5.74021 5.74

8

1.0 1.4016 1.402

9

u=0.3

1.0 0.95231 0.952

.

i

tl " 0.3

The solutions given in figure 13 are All of the cases in figure 13 have beam-like

presented to show how the results found in dimensions with respect to length-height
this work compare with "deep beam" solutions ratios, but qualify as thin plates if the
for four different plate configurations, thickness is small enough in comparison with



Case .......... I¢_ntoro- ClasSical

_o. Plate Configuration B/A rich CKA Approx. CKA

1.0 10.09468 10.07

(r_ 1.0 5.31427

lower
2 boundary 5.30

. upper

boundary 5.33

(_ 1.0 4.31658 4.3144

3

, 1.0 6.74246 6.74

4

1.0 3.94340 3.928
.....

o

, . .

5

Figure 12.--Verifications with known approx-
imate classical solutions. Cases 2, 4,

' and 5 refer to Flugge (1962), case
refers to Timoshenko and Gere (1961)

and case $ refers to Masao et al.
(1969). (All results from the Kantor-
ovich CKA are from the fourth iteration).
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0

Case Kantoro- Deep Beam
No. Plate Copfi_uration B/A vich CKA Sol'n CKA

O. 25 8. 75170 8. 57953

1

._' .-- O. 3

" O.25 19. 37212 17.15906

0

2

.. 0.25 0.65953 0.80506

3 D.B. Sol'n
for load at
center line

, .-_ = o.S

0.25 1.24944 1.23177

4 D.B. Sol'n
for load at

center line

_-- 0.3

• .

Figure 13.--Verification with deep beam

solutions. All cases refer to Flugge
_[ (1962).

)l"

the other dimensions. The Kantorovlch solu- Figure 14 shows plate configurations
tions for these cases were higher than the which include three different prestress
deep beam solutions for all cases except distributions applied to the vertical

case 3. It is expected, however, that the edges. These cases with prestressing are
Kantorovich solutions based on thin plate all new solutions. A comparison of the re-
theory are more accurate than the "deep- sults shows the relative effectiveness of
beam" solutions based on the more simple the three different prestress distributions

beam theory, for the given plate configurations.
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,

PPS PP-_

• CKA CKA CKA CKA
•

o.s 1.78o2s 1.,os 2 6o 1o
.... , .........

1.0 2. I0 2. 66409 2. 28612 I.69 322

2.16 2.73375 2.44965 2.67556

PPS = ce I_= 0.3

B/A PK CKA CKA CY_

0.658 0.0 2.31005 2.31005 2.31005

1.0 2.93043 2.57187 2. 76633

2.0 3. 30538 2. 79518 3. 12952

3.0 3. 56658 2. 98371 3. 39728

_2 D Ocr t (2A) 2

= 0.3, oe - _2 , CKA _ D , PPS = PK _e

• Figure 14.--Prestressed plates with (A) two free edges
•' and (B) one free edge.

!
|

The two plate buckling problems given found using the computer program developed
in figure 15 are for plates resting on line- in this work and the buckling constants calc-

arly elastic foundatlons, i.e., the deflec- ulated using the known analytical solution.
tion of the plate at any point is resisted A previously known solution could not be

by a pressure proportional to the deflection, found for the second case in figure 15--a
The buckling constant CKA is given for both plate with all four edges clamped.
plates for a range of elastic foundation
stiffness values. The first case, with all

four edges simply supported, has a known Figure 16 includes four different

' analytical solution. Excellent agreement plate configurations, all of which are load-
| was obtained between the buckling constants ed by a coslne-shaped in-plane load applied

I

i
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FK Known

_ffiFKBX _e_ n CKA AnalyticalPlate Configuration B/A Solution

1.0 -0.2 i -0.03576 -0.03573

-0.I i 1.98214 1.98214

0.0 i 3.q9995 4.OOOnO

0.05 I 5.00876 5.00893

0.i0 i 6.01754 6.01786

0.20 2 7.2.5855 7.258q4
- B = 1.0" , t -0.02"

ffi 0.3 , E = 30xlOGpsi 0.30 2 7.76330 7.76340

0.40 2 8.26774 8.26787

1.0 -0.6 I 0.q7994

-0.5 I 2.61002

-0.4 i 4.2O788

• -0.3 I 5.76603

-0.2 1 7.27511

-0. I 1 8.72 306

0.0 1 10.09468

- B- 1 0" 2". , t = 0.0 0.i I iI.36555

ffi0.3 , E = 30xlO6psl
0.2 2 12.52188

0.3 2 12.77076

0.4 2 13.21331

0.5 2 13.62440

Figure 15.--Elastic foundation solutions (in equation,
K = elastic foundation modulus and FK = elastic founda-

tion modulus factor; n = number of half waves in y
direction; known analytical solutions were calculated

I using equation given in Bulson (2969)).
i

to the top plate edge. Cases i and 2 are both resemble shear blade type configura-

supported at all edges, case I with all tions; infact case 4 is the same as case 2
edges simply supported and case 2 with all of figure 3. The only difference is that
edges clamped. Cases 3 and 4, however, are in figure 16 the buckling constant CKB is

supported at only two edges. These cases given along with the buckling constant CKA.
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Case ..... CKA = dcr t (2A)Z Ocr t (2B)2
No. Plate Configuration B/A 72 D CKB = _z D

o

0.5 12.20898 3.05224

1 1.0 7.38091 7.38091

2.0 7.20327 28.81308

0.5 36.10814 9.02703

.

2 1.0 19.0965.0 19.09650

2.0 17.76844 71.07375

0.25 0.87438 0.05465

O. 33 1.09146 O. 11886

0.50 1.50201 0.37550

I 0.67 I.78303 0.80040
3 0.75 2.00720 1.12905

1.0 2.10034 2.10034

• 1.5 2.20323 4.95726

2.0 2.21380 8.85519

= 0.3 3.0 2.21470 19.93233

0.25 1.57461 0.09841
........ --

0.33 2.00768 0.21864
......

0.50 2.81051 0.70263

0.67 3.33195 1.49571

4 0.75 3.50014 1.96882

1.0 3.82011 3.82011

1.5 3.92528 8.83188

2.0 3.94223 15.76893
....

U = 0.3 3.0 3.94124 35.47114

Figure 16."-Plates loaded on one edge.
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