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Abstract

Geostatistical stochastic simulation is always combined with Monte Carlo method to quantify the uncertainty in spatial model
simulations. However, due to the relatively long running time of spatially explicit forest models as a result of their complexity, it
is always infeasible to generate hundreds or thousands of Monte Carlo simulations. Thus, it is of great importance to generate a
relatively small set of conditional realizations capturing most of the spatial variability. In this study, we introduced an effective
sampling method (Latin hypercube sampling) into a stochastic simulation algorithm (LU decomposition simulation). Latin
hypercube sampling is first compared with a common sampling procedure (simple random sampling) in LU decomposition
simulation. Then it is applied to the investigation of uncertainty in the simulation results of a spatially explicit forest model,
LANDIS. Results showed that Latin hypercube sampling can capture more variability in the sample space than simple random
sampling especially when the number of simulations is small. Application results showed that LANDIS simulation results at
the landscape level (species percent area and their spatial pattern measured by an aggregation index) is not sensitive to the
uncertainty in species age cohort information at the cell level produced by geostatistical stochastic simulation algorithms. This
suggests that LANDIS can be used to predict the forest landscape change at broad spatial and temporal scales even if exhaustive
species age cohort information at each cell is not available.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In the last decademany spatially explicit forestmod-
els have been developed to simulate forest landscape
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changes (e.g. Mladenoff et al., 1996; Mladenoff and
He, 1999; Pacala et al., 1993, 1996; Urban et al., 1999).
Most of these models employ a raster data format and
the forest landscape is conceptualized as a grid of equal-
sized cells or sites. Each cell requires the input of domi-
nant canopy tree species, secondary tree species and/or
other species related information (e.g. age). However,
forest inventory data is often sparsely distributed across
the landscape and no forest inventory can provide all
the information at the cell level. This is especially true
when the simulated area has millions of cells. Thus, in-
terpolation or extrapolation is often necessary to derive
species and related data for cells where information is
missing, based on the inventory data.
There are two main groups of interpolation tech-

niques: deterministic and geostatistical (ESRI, 2001).
Deterministic techniques include polynomial, inverse
distance weighted, and radial based functions for in-
terpolation. Geostatistical techniques include ordinary
kriging, simple kriging, universal kriging, probability
kriging, indicator kriging and disjunctive kriging. Be-
cause krigingmethods quantify the spatial autocorrela-
tion amongmeasured points and account for the spatial
configuration of the sample points around the predic-
tion location, they have beenwidely used in soil science
and forest science (e.g. Biondi et al., 1994; Goovaerts,
1999a, 1999b). However, kriging interpolation algo-
rithms produce maps of best local estimates and tend
to smooth out local details of the spatial variation of
the attribute (Goovaerts, 1997). Thus, there emerges a
set of geostatistical stochastic simulation algorithms.
Instead of a map of local best estimates, geostatisti-
cal stochastic simulation algorithms provide multiple
conditional realizations of the spatial distribution of
attribute values reproducing statistics deemed conse-
quential for the problem at hand (e.g. the data values
at their location, sample histogram and spatial depen-
dence of the attribute value) (Goovaerts, 1997). They
do not show the smoothing effect characteristic of krig-
ing interpolated map and looks more “realistic”.
In practice, geostatistical stochastic simulation is al-

ways combined with Monte Carlo method to quantify
the uncertainty in spatial model simulations (Isaaks,
1990; Pachepsky and Acock, 1998; Finke et al., 1999;
Goovaerts Et al., 2001; Saito and Goovaerts, 2001; Van
Meirvenne and Goovaerts, 2001; Viscarra Rossel et al.,
2001). First, a set of conditional realizations is gener-
ated by geostatistical stochastic simulation from the

available sample data set. Each conditional realization
is then fed into the model of interest and a set of model
results are produced. The analysis of the variability in
the set of model results will give us insights into the un-
certainty in model simulation results. In Monte Carlo
simulation, it is important that geostatistical stochas-
tic simulation algorithms generate a large set of condi-
tional realizations that fully capture the spatial variabil-
ity of attributes. However, due to the complexity and
the relatively long running time of spatially explicit
forest models, it is often infeasible to generate hun-
dreds or thousands of Monte Carlo simulations (Xu et
al., 2004). Thus, it is necessary to generate a relatively
small set of conditional realizations capturing most of
the variability.
The geostatistical stochastic simulation needs to

build the local probability distributions for each no-
data location. For each conditional realization, the sim-
ulated value is randomly drawn from the probability
distribution. The general sampling method is the sim-
ple random sampling method. In order to reduce the
number of conditional realizations needed to capture
the spatial uncertainty, we introduced an effective sam-
pling method (Latin hypercube sampling) into a geo-
statistical stochastic simulation algorithm (LU decom-
position). Latin hypercube sampling is first compared
with a common sampling procedure (simple random
sampling) in LU decomposition simulation. Then it is
applied to the investigation of uncertainty in the simu-
lation results of a spatially explicit forest model (LAN-
DIS). Simple as the application is, it will give us general
insights about which model results are robust given the
uncertainty introduced by interpolation.

2. Review of LU decomposition

A large number of geostatistical stochastic simula-
tion algorithms are available: sequential Gaussian sim-
ulation, sequential indicator simulation, p-field simula-
tion, simulated annealing, and LU decomposition sim-
ulation (Goovaerts, 1997). Each algorithm has its ad-
vantages and disadvantages and much work has been
done to compare different stochastic simulation algo-
rithms (Deutsch, 1994; Gotway and Rutherford, 1994;
Srivastava, 1996; Goovaerts, 1999a, 1999b). The con-
sensus is that there is no algorithm best suited for all
cases, but a toolbox of alternative algorithms which
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provide choices to accommodate specific problems at
hand (Gómez-Hernández, 1997; Goovaerts, 2001).
Since the introduction of LU decomposition algo-

rithm into geostatistics (Davis, 1987; Alabert, 1987),
it became an attractive method due to its efficiency,
simplicity and simultaneous conditioning to available
data during the simulation. In LU decomposition sim-
ulation, the data value is first transformed into normal
score data using standard normal cumulative distribu-
tion function (CDF). Then, the covariance matrix C be-
tween all conditioning data locations (n) and simulated
locations (N) is built:

C =
[

C11 C12

C21 C22

]

, (1)

where C11 is the n× n data-to-data covariance matrix,
C22 is the N×N simulated-to-simulated covariance
matrix, C12 = CT21 is the data-to-simulated covariance
matrix. The covariance matrix C is subsequently de-
composed into a lower triangular matrix (L) and an
upper triangular matrix (U):

C = L · U =
[

L11 L12

L21 L22

]

·
[

U11 U12

U21 U22

]

. (2)

Then a conditional realization (YnstN ) of simulated loca-
tions (N) is generated as the sum of a simple estimate
plus a random component,

YnstN = L21 · L−1
11 · Ynstn + L22 · W, (3)

where YnstN is the normal score transformed data vec-
tor and W is a vector of N independent standard nor-
mal deviates. The variation among different vectors of
standard normal deviates informs the variation among
different conditional realizations. For notational con-
venience, Eq. (3) can be written as

YnstN = f (W), (4)

where W= [x1, x2, . . ., xN] can be seen as the input of
model f. All individual element of W is independent
with each other and conforms to the standard normal
distribution. At last, YnstN is back normal score trans-
formed to the simulated data vector (YN),

YN = G−1(YnstN ) = G−1(f (W)), (5)

where G−1 represents the back normal score transfor-
mation function.

3. Simple random sampling versus Latin
hypercube sampling

We define a general spatially explicit forest model,

Z = g(YN, Yn), (6)

where Yn is the conditional data vector, YN is the sim-
ulated data vector and Z is a result vector of model g.
Eq. (6) can be combined with Eqs. (4) and (5) and the
model can be transformed to

Z = g(G−1(f (W)), Yn). (7)

Because Yn is a constant vector, Eq. (6) can be simpli-
fied as

Z = g(G−1(f (W))). (8)

For notational convenience, the probability space
of W, YnstN , YN and Z is defined as (ϕw, ϑw, pw),
(ϕynstN

, ϑynstN
, pynstN

), (ϕyN , ϑyN , pyN ) and (ϕz, ϑz, pz). In
probability theory, ϕ is a set that contains everything
that could occur in the particular situation under con-
sideration.ϑ is a subset ofϕ forwhich probability pwill
be defined. p defines the probability for the elements
of ϑ.
InMonte Carlo analysis, a probability based sample

procedure is used to map model input (YN) to model
output (Z). Because YN is derived fromW, it is actually
to map the vector of N independent standard normal
deviates (W) tomodel output (Z). Specifically, a sample

Wi = [x1i, x2i, . . . , xNi], i = 1, 2, . . . , Ns, (9)

of size Ns is generated from ϕw. Then, each sample
vectorWi is input to model f to generate a sample from
ϕynstN

YnstNi = [ynst1i , ynst2i , . . . , ynstNi ], i = 1, 2, . . . , Ns. (10)

Each sample vector YnstNi is back normal score trans-
formed and a sample is generated from ϕyN

YNi = [y1i, y2i, . . . , yNi], i = 1, 2, . . . , Ns. (11)

Each sample vector YNi is subsequently fed to model g
to generate a sample from ϕz,

Zi = [z1i, z2i, . . . , zNi], i = 1, 2, . . . , Ns (12)

the variability in which is used to assess the uncertainty
inmodel output. In order to avoid confusion, for the rest
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Fig. 1. Sample from standard normal cumulative distribution by sim-
ple random sampling.

of the article, the sample in Eqs. (10)–(12) is termed
as the conditional realization ensemble and the sample
size is referred as number of realizations.
Twomain samplingprocedures canbeused to gener-

ate the sample in Eq. (9): simple random sampling and
Latin hypercube sampling (Helton and Davis, 2003).
Simple random sampling draws random values from
the standard normalCDF for each individual variable in
W by generating a random number from a uniform dis-
tribution on [0, 1] (Fig. 1). However, there is no assur-
ance that a sample element will be generated from any
particular subset of the sample space ϕw (Helton and
Davis, 2003). In viewof this, Latin hypercube sampling
was introduced into Monte Carlo analysis (McKay et
al., 1979). Latin hypercube sampling firstly stratified
the range of each variable (i.e. xi) into Ns disjoint in-
tervals of equal probability and then a random value is
drawn at each interval (Fig. 2). Finally, one of the Ns
random values for each variable are randomly selected
to form a sampling element in Eq. (9). A number of

Fig. 2. Sample from standard normal cumulative distribution by
Latin hypercube sampling.

studies have shown that Latin hypercube sampling can
more exhaustively explore model parameter space (in
this studyϕw) than simple random sampling (McKay et
al., 1979; Iman, 1999; Helton and Davis, 2003). Thus,
in this study, we will not focus our attention on how
Latin hypercube sampling can affect the sample in Eq.
(9) but on how Latin hypercube sampling can affect the
sample in Eq. (10), which will be back normal score
transformed and then be used as an input of our model
of interest. Because the sample in Eq. (10) will not
be affected by the specific back normal score trans-
formation function G−1, our results will be of general
importance.
In order to assess the effects of Latin hypercube

sampling on the sample in Eq. (10), we first generated
a 500m× 500m random age map of a certain species
(cell size 10m× 10m) using unconditional LUdecom-
position simulation algorithm (Fig. 3a). LU decompo-
sition was implemented under the condition that the
species age conforms to a normal distribution with an
average of 100 years and a standard deviation of 20 and
the normal score transformed values honor a spherical
semi-variogrammodelwith a sill of 1, a nugget of 0 and
a range of 100. The generated map was used as refer-
ence map in our study. The simulated species age map
has an average of 95.3 years and a standard deviation
of 20.6 (Fig. 3c). The empirical semi-variogram of the
normal score transformed value of the simulated age
map fits to spherical model with a sill of 1.1, a nugget
of 0 and a range of 97.1 (Fig. 3d). Twenty-five ran-
domly selected locations are then used as the sample
data in this study (Fig. 3b).
Both LU decomposition simulation by Latin hyper-

cube sampling and LU decomposition simulation by
simple random sampling are used to generate a series
of conditional realization ensembles with size of Nr
(Nr = 1, 2, . . ., 50). For each ensemble of sizeNr (Nr = 1,
2, . . ., 50), theLUdecomposition simulation is repeated
50 times. Since one desirable property of the model of
uncertainty are accuracy (true but unknown outcome
should be included in the probability distribution, i.e.
belongs to the 95% probability interval) (Goovaerts,
1999a, 1999b), we ruled out the extreme values from
the ensemble by sampling the normal distribution of in-
dividual variable inEq. (9) from the 99.98%probability
interval. In each conditional realization ensemble, we
calculate the standard deviation of value for each cell to
capture cell-specific variability among realizations.We



C. Xu et al. / Ecological Modelling 185 (2005) 255–269 259

Fig. 3. Reference age map of a certain species with an average age of 95.3 years and a standard deviation of 20.6. (a) The reference map; (b) the
randomly sampled map; (c) the histogram of values in the reference map; (d) the empirical semi-variogram of the normal scored transformed
value from the reference map which is a spherical model with a sill of 1.1 and a range of 97.1.

also calculate the average of standard deviation to cap-
ture the overall cell-specific variability of attribute on
the entire map. The average, 10 percentile and 90 per-
centile of the average standard deviation on the whole
map are derived for each conditional realization en-
semble over the 50 repeated runs.
The standard deviation generally captures the spread

of simulated values in the ensemble for individual cells.
However, it does not capture how exhaustive is the sim-
ulated values for the underlying sample space (i.e. ex-
haustiveness of realization). In this study, we use the
Shannon entropy index (Shannon, 1948) to construct a
realization exhaustiveness index (REI),

REI =
−

∑Nr
i=1pi lnpi

ln(1/Nr)
(13)

where Nr is conditional realization ensemble size, pi
is the proportion of the realization ensemble falling
in the ith subset of the Nr non-overlapping and equal
probability subset of the sample space for a certain cell
and ln(1/Nr) is the maximum Shannon entropy index.
The most exhaustive case of realization is that there
should be at least one realization value from each of
the Nr non-overlapping and equal probability subset of
the corresponding sample space for individual cell. REI
equals to 1 for the most exhaustive case. Because the
original data value is always normal score transformed
before conducting LU simulation, the sample space for
each cell is assumed to be standard Gaussian. For each
realization ensemble, we calculate the REI on each cell
to capture the cell-specific realization exhaustiveness.
We also calculate the average of REI (AREI) to cap-
ture the overall cell-specific realization exhaustiveness
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Fig. 4. One of the realizations generated by LU decomposition simulation. (a) A map generated by LU decomposition simulation using simple
random sampling; (b) the experimental semi-variogram of the normal score transformed value from the generatedmap (a) which fits to a spherical
model with a sill of 1.1 and a range of 99.7; (c) a map generated by LU decomposition simulation using Latin hypercube sampling; (d) the
experimental semi-variogram of the normal score transformed value from the generated map (c) which fits to a spherical model with a sill of
1.0 and a range of 96.1.

on the entire map. The average, 10 percentile and 90
percentile of the AREI are derived for each realization
ensemble over the 50 repeated runs.
Results show that both Latin hypercube sampling

and simple random sampling can reproduce the spatial
dependence (Fig. 4). However, Latin hypercube sam-
pling produces larger average of standard deviation
than simple random sampling with the same number
of simulations (Fig. 5). When using Latin hypercube
sampling, average standard deviation reaches a plateau
when number of realization equals to 9.However, when
using simple random sampling, average of standard de-
viation reaches a plateau when number of realization
equals to 15. This suggests that Latin hypercube sam-
pling can capture more variability in the sample space
ϕynstN

than simple random sampling especially when the
sample size is small. At the same time, Latin hypercube
sampling results in higher AREI than simple random
samplingwith the same number of realizations (Fig. 6).

Fig. 5. Impact of number of realizations on the average of cell-
specific standard deviation using Latin hypercube sampling (LHS)
and simple random sampling (SRS).
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Fig. 6. Impact of number of realizations on the average of cell-
specific realization exhaustiveness index (AREI) using Latin hyper-
cube sampling (LHS) and simple random sampling (SRS).

The smaller is the number of realizations, the more
evident is the difference between the two sample tech-
niques.When the number of realization approaches 20,
there is only little difference of AREI between these
two sample techniques. The above results suggest that
Latin hypercube sampling can produce more exhaus-
tive realization ensemble than simple random sampling
especially when the number of realizations is relatively
small.
The results of the study suggest that, when us-

ing Monte Carlo method to assess the uncertainty
produced by LU decomposition simulation algorithm,
Latin hypercube sampling should be recommended es-
pecially when the allowed number of realizations is
small.

4. Application

LU decomposition simulation using Latin hyper-
cube sampling and simple random sampling is applied
to simulate the age of a species in a forest landscape
model simulation using LANDIS. The simulation is
conducted on a homogeneous landscape with one early
succession species (species 1) and one late succession
species (species 2). The life history attributes of species
1 and species 2 are listed in Table 1. Species 1 and
species 2 are assumed to be present at all cells in the
map. In order to simplify the situation for the analy-

Table 1
Life history attributes for species 1 and species 2

Species LONG MTR ST FT ED MD VP MVP

1 200 20 3 4 30 80 0 0
2 100 15 1 2 100 −1 0.8 30

LONG, longevity (years); MTR, age of maturity (years); ST, shade
tolerance; FT, fire tolerance; ED, effective seeding distance (m);MD,
maximum seeding distance (m); VP, vegetative reproduction prob-
ability; MVP, minimum age of vegetative reproduction (years); −1
represents unlimited seeding range.

sis of uncertainty propagation, the age of the species
2 is assumed to be a constant (50 years for all cells).
The age of species 1 is assumed to have a spatial depen-
dence. Both LU decomposition simulation by Latin hy-
percube sampling and random simple sampling is used
to generate 10 simulated maps of age from the random
sample (Fig. 3b). The purpose of this simple applica-
tion is to assess how the difference of Latin hypercube
sampling and simple random sampling will affect the
LANDIS simulation results uncertainty when the sam-
ple size is small. At the same time, we would identify
which model results are robust given the uncertainty of
age introduced by the geostatistical stochastic simula-
tion.

4.1. Description of LANDIS

LANDIS is a cell-based spatially explicit forest
landscape model of disturbance, succession and man-
agement (Mladenoff et al., 1996; Mladenoff and He,
1999). It simulates species-level forest dynamics by
tracking the presence/absence of species age cohorts
(cohort of trees of certain species with their age in
a 10-year interval) at 10-year time steps under nat-
ural and anthropogenic disturbances including fire,
windthrow, insect and disease, harvesting, and fuel
management. Detailed descriptions of various LAN-
DIS components can be found in Mladenoff and He
(1999), He and Mladenoff (1999a, 1999b), He et al.
(1999) and Gustafson et al. (2000).

4.1.1. Seed dispersal and seedling establishment
process
Seed dispersal and seedling establishment process

in LANDIS are simulated as three steps: dispersal,
light condition checking and site condition checking
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(Mladenoff and He, 1999; He and Mladenoff, 1999a).
First, the seed sources are identified by locating cells
where there exists species whose age is older than the
maturity age. Then seeds from the source stochasti-
cally disperse. The seed dispersal probability is mod-
eled as a function of its effective andmaximum seeding
distance. Effective seed distance (ED) is the distance
within which seed has the highest probability of reach-
ing a site (e.g. P> 0.95). Maximum seed (MD) disper-
sal distance is the distance beyond which there is little
possibility of reaching (e.g. P< 0.01). Seed dispersal
probability (P) between ED and MD follows a nega-
tive exponential distribution:

P = e−b(x/MD), ED < x < MD (14)

where x is a given distance from the seed source and
b is a coefficient, which is set to 1 in LANDIS 3.6.
A random number (Pr) (from a uniform random num-
ber pool ranging from 0 to 1) is generated to compare
with P to decide if the seed can successfully disperse
to a specified site. The seed successfully disperses to
a site if Pr <P. Once the seed successfully reaches the
site, the light condition checking procedure is imple-
mented. The shade tolerance rank of the arrived species
is compared to that of the species already established
on the site to check if the site favors the species ar-
rived. In LANDIS, the shade tolerance of species is
divided into five classes with class 5 corresponding
to the most tolerant and class 1 the least tolerant. For
arrived species whose shade tolerance rank is lower
than class 5, the site favors the species if its shade
tolerance rank is higher than or equal to the highest
shade tolerance rank of the already established species.
For arrived species whose shade tolerance rank equals
to class 5, the site favors the species only if the old-
est cohort in the arrived site has an age older than
the minimum age of cohort growth required before
enough shade is created so that a shade tolerance five
species can seed into the site, which is an input of
LANDIS. If the light condition on the site favors the
species, the site condition checking procedure is imple-
mented.A randomnumber (Pr) is generated to compare
with the arriving species’ establish coefficient (C). The
seedling successfully established if Pr <C. Establish
coefficient is a floating number from 0 to 1 used to rep-
resent the relative scaling of how environmental con-
ditions (e.g. moisture, climate and nutrient) favor vari-

ous species (Mladenoff et al., 1996;Mladenoff and He,
1999).

4.1.2. Fire disturbance
LANDIS uses a stochastic simulation ap-

proaches to simulate the fire disturbance (He and
Mladenoff, 1999b). The fire probability (P) of each
cell is determined by the following formula:

P = B × IF×MI−(e+2) (15)

where MI is the mean fire-return interval of a given
landtype, B is the fire probability coefficient designed
for model calibration, and IF is the time since last
fire. In order to simulate the fire disturbance, LAN-
DIS firstly locates the ignition point on each landtype
randomly. The number of the ignition points (Nip) is de-
termined from the ignition coefficient, which is user-
defined (Nip = ignition coefficient× total cell number
of each landtype). Secondly, LANDIS calculates the
fire probability (P) of the cell where the ignition point
locates by Eq. (2). A random number (Pr) is then gen-
erated to check if this cell will be ignited. The fire is
successfully ignited given Pr <P. Thirdly, if the cell
were ignited, LANDIS simulates the fire spread. The
coordinates of the four adjacent cells are entered in a
priority queue in a random order. The fire probabili-
ties of all the four adjacent cells are calculated using
Eq. (2) and a random number is generated to check if
the fire will be spread to the adjacent cell. Fire spreads
until either the desired fire size is reached, or the sur-
rounding cells cannot burn, or non-forest surrounds the
cell.
Important LANDIS outputs include an age co-

hort map for each species and the species distri-
bution map at each 10-year time interval. If there
are multiple age cohorts for a species, only the
oldest age cohort is output. The species distribu-
tion map records presence/absence of species at each
cell.

4.2. Uncertainty quantification

In LANDIS, the species composition map records
the species age cohort information for each cell. For
each simulated age map for species 1, a corresponding
species composition map was generated by fitting the
species age into the 10-year age interval. For example,
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Fig. 7. Design of numerical experiment to assess uncertainty inLANDIS simulation resulted from stochastic simulation. See text for explanations.

if a cell is assigned certain species with an average
age range from 10 to 20 years (including an age of 20
years), a 10–20-year species age cohort is generated
for that cell.
We use the Monte Carlo method to quantify the

uncertainty in model results produced by the LU de-
composition. The Monte Carlo method assesses un-
certainties through repeated model runs, with param-
eters drawn from specified probability distributions.
The numerical experimental design is illustrated in
(Fig. 7). Each species composition map, generated
from the simulated age map for species 1 using LU
decomposition, is fed into LANDIS to simulate for-
est landscape change for 1000 years. For each species,
the running of LANDIS results in a series of species
age cohort map. For notational convenience, we re-
fer to the set of species age cohorts for a certainty
cell from the species age cohort maps by the Monte
Carlo simulations as Monte Carlo species age co-
hort ensemble. We quantify the uncertainty of LAN-
DIS output at the cell level and at the landscape
level.

4.2.1. Uncertainty at the cell level
For each species, Shannon entropy index (SEI) was

used to quantify the uncertainty in species age cohort
information for each individual cell,

SEI = −
Nc
∑

i=1
pci lnpci, (16)

where Nc is the total number of species age cohort
present in theMonteCarlo species age cohort ensemble
and pci is the ith species age cohort frequency (0–1).
Higher SEI indicates higher uncertainty. The calcu-
lation of SEI for all individual cells results in a SEI
map capturing the species age cohort information un-
certainty at the cell level. In order to capture the overall
uncertainty in species age cohort information at the cell
level, we also calculated the average SEI (ASEI) of the
species age cohorts on the whole map.

4.2.2. Uncertainty at the landscape level
In order to assess the uncertainty in model simula-

tion results at the landscape level,we calculated percent
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area (PA) and aggregation index (AI) for each species
from the species distribution map in Monte Carlo runs.
PA is the percent of the area occupied by a certain
species in the study area and AI is a class specific land-
scape index used to qualify aggregation level of spatial
pattern (He et al., 2000). When AI equals 1, the land-
scape has the highest level of aggregation; when AI
equals 0, the landscape has the lowest level of aggrega-
tion. For each species, differences among PAs and AIs
in the control run and Monte Carlo runs was used to
quantify the variability in overall landscape pattern (or
uncertainty in species information at landscape level).
Both PA and AI were calculated using APACK, soft-
ware for calculating landscape metrics (Mladenoff and
DeZonia, 2000).

4.3. Results

4.3.1. Uncertainty at the cell level
Results show that, the ASEI behaves like a dampen

triangle wave with a wavelength of about the longevity
of species 1 (200 years) (Fig. 8a). The increase of un-
certainty (shown by increase of ASEI) is produced by
the stochastic seed dispersal and fire event (for details,
please refer to Xu et al., 2004). The decrease of uncer-
tainty (shown by decrease of ASEI) is produced by the
removal of species age cohorts by mortality on cells
where there is relatively high uncertainty. When the
uncertainty increases, there is less difference between

uncertainty of the newly simulated and the original
species age cohort. Thus, the amplitude of increase of
uncertainty by stochastic seed dispersal and fire event
and increase of uncertainty by species mortality tends
to decrease. At last, the ASEI reaches a plateau at a
relative high value (1.89), which indicates that there
are at least six alternatives output for each cell for the
10 simulations. This suggests that LANDIS simulation
produces high uncertainty in species age cohort infor-
mation at the cell level.
Results also show that the Latin hypercube sampling

results in higher ASEI at the first 500 simulation years
(except for the simulation year between 350 and 400)
(Fig. 8a). After simulation year 500, there is no evi-
dence that Latin hypercube sampling producing high
uncertainty than simple random sampling. The reason
is that both stochastic seed dispersal and stochastic fire
event built in LANDIS have neutralized the initial un-
certainty introduced by stochastic geostatistical simu-
lation. However, it would still pay in uncertainty anal-
ysis to use Latin hypercube sampling in view of the
higher ASEI for Latin hypercube sampling for the first
500 simulation years.

4.3.2. Uncertainty at the landscape level
The PA and AI derived from Monte Carlo runs do

not differ much in the 10 Monte Carlo simulations
for both Latin hypercube sampling and simple random
sampling (Figs. 9a and b and 10a and b). Due to the

Fig. 8. Dynamics of average Shannon entropy index (ASEI) for Latin hypercube sampling (LHS) and simple random sampling (SRS) (a) and
dynamics of their differences in ASEI (DASEI) (b) for species 1. Differences are calculated by subtracting the ASEI for LHS by the ASEI for
SRS.
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Fig. 9. Percent area of species 1 in LANDIS Monte Carlo runs. (a) Monte Carlo runs using simple random sample (SRS); (b) Monte Carlo runs
using Latin hypercube sample (LHS); (c) coefficient of variation (CV) of PA in the Monte Carlo runs using SRS or LHS.

stochastic fire event in LANDIS, coefficient of varia-
tion of PA and AI from both Latin hypercube sampling
and simple random sampling irregularly fluctuateswith
simulation year. However, they do not increase with
simulation year and are less than 5% throughout the
simulation (Figs. 9c and 10c). This suggests that, al-
though the uncertainty of species age cohorts at the cell
level for each species is high, species percent area and
their spatial pattern (measured by the aggregation in-
dex) are not substantially affected. Consequently, there
is no strong evidence that Latin hypercube sampling
generate more uncertainty than simple random sam-
pling (Figs. 9c and 10c).

5. Discussion

5.1. Method implications

Our results show that LU decomposition simula-
tion using Latin hypercube sampling can effectively

decrease the number of simulations required to capture
the spatial variability. Therefore, Latin hypercube sam-
pling should be preferred over simple random sampling
in LU decomposition simulation in uncertainty analy-
sis.
The Latin hypercube sampling can also be used

in the sequential Gaussian simulation (Pebesma and
Heuvelink, 1999). However, because the Latin hyper-
cube sampling is conducted by shifting of simple ran-
dom sampling, there will be meaningful deviations
when the sample size is small (Pebesma andHeuvelink,
1999). Since the purpose of this study is to use a rela-
tively small sample to capture the uncertainty, it would
be infeasible to use the Latin hypercube sampling tech-
nique by shifting of simple random sampling which
will results in meaningful deviations. From this point
of view, LU decomposition simulation should be pre-
ferred over sequential simulations.
One well-known limitation of LU decomposition

simulation is that it can only be applied to a few thou-
sand grid nodes due to the computational requirements
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Fig. 10. Aggregation index (AI) of species 1 in LANDISMonte Carlo runs. (a) Monte Carlo runs using simple random sample (SRS); (b) Monte
Carlo runs using Latin hypercube sample (LHS); (c) coefficient of variation (CV) of AI in the Monte Carlo runs using SRS or LHS.

posed by the size of matrix L. However, with the devel-
opment of computer technology and the use of super
computer, the computer limitation can be solved. At
the same time, Vargas-Guzman and Dimitrakopoulos
(2002) extended LU decomposition simulation to grid
nodes of any size based on a novel partitioning of the L
matrix. For each subset of locations to be simulated, a
similar LU decomposition simulation is implemented.
This would relieve the limitation of LU decomposi-
tion.
In this study, the LU decomposition using Latin

hypercube sampling is used to assess the uncertainty
in a forest landscape model simulation. However, this
method is applicable for uncertainty analysis of any
kind of spatially explicit model where the exhaustive
cell-level information needs to be interpolated and it is
time consuming to run the model. This kind of mod-
els may include spatially explicit hydrological model
(e.g. Voinov et al., 1999), spatially explicit spatial
plant–herbivore model (e.g. Oom et al., 2004) and spa-

tially explicit logistic regression model (e.g. Horssen
et al., 2002).

5.2. Result implications

A challenge in ecology is to understand broad scale
patterns emerging from the complexity of interaction
at lower scales (O’Neil, 1989; Wiens, 1989; Wiens
and Milne, 1989; Levin, 1992; Levin et al., 1997).
Spatially explicit forest models present a potential
to meet the challenge. However, the natural system
is always overwhelmed with all kinds of uncertainty
(Clark et al., 2001). In building or using these mod-
els, it is important to determine how much detail at
the fine level is essential to more macroscopic regu-
larities (Levin et al., 1997). Certain fine scale details
and uncertainty associated with them are not essential
and will not have much effect on regularities at large
spatial and time scales. Pacala et al. (1996) showed
that the community level predictions (succession dy-
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namic, intraspecifically clumped and interspecifically
segregated spatial distributions) by a spatially explicit
forest model (SORTIE) were robust given the level
of sampling uncertainty in the study. Deutschman et
al. (1999) showed that SORTIE was surprisingly in-
sensitive to the amount of detail used in the calcula-
tion of the local resource and light. Xu et al. (2004)
showed that the LANDIS simulation results at land-
scape level were not sensitive to the uncertainty at the
cell level produced by a stand based assignation ap-
proach.
Simple as the application is, it gives us general in-

sights about which model results are robust given the
uncertainty introduced by stochastic simulation. The
results of this study show that LANDIS simulation re-
sults at the landscape level (species percent area and
their spatial pattern measured by an aggregation in-
dex) is not sensitive to the uncertainty in species age
cohort information at cell level produced by geosta-
tistical stochastic simulation algorithms. This suggests
that LANDIS can be used to predict the forest land-
scape change at broad spatial and temporal scales even
if accurate species age cohort information at each cell
is not available. However, results also show that, ex-
cept for species 2 at the beginning of simulation, un-
certainty in species age cohort information at cell level
is high throughout simulation. Thus, it would be in-
feasible to predict the species age cohort distribution
at the cell level using LANDIS. Just as Levin et al.
(1997) have pointed out, “such models should not be
expected to predict where every tree will be at each
point in time; only aggregate statistical properties can
be reliably predicted typically over broad spatial and
temporal scales”.
Generally, the LANDIS should be simulated on a

larger grid size (more than 500× 500). In order to sim-
ply our simulation, we only used a small grid size in our
study (50× 50). However, the result derived from our
result should also be hold at larger grids. The reasons
are (1) in this study we have only 25 sample points (1%
of study area grid), which is a sample size proportional
to that at larger grid and thus a similar uncertainty in-
put at large grid; (2) LANDIS simulates with the same
mechanism at the small grid as that at large grid, which
would result in the same uncertainty propagation pro-
cess; (3) our study reached similar result to the previ-
ous study that the uncertainty of LANDIS simulation
(introduced by a stand based assignation approach) at

landscape level were not sensitivity to the uncertainty
at the cell level (Xu et al., 2004).
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