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Abstract

Tree mortality has traditionally been assessed in forest inventories through summaries of mortality by location, species,
and causal agents. Although these methods have historically constituted the majority of tree mortality summarizations, they
have had limited use in assessing mortality trends and dynamics. This study proposed a novel method of applying survival
analysis for the purpose of analyzing tree mortality in forest inventories. Individual tree size and growth increments were used
to estimate survival and hazard functions for a forest inventory for the state of Minnesota. These estimates provided regional
mortality and variance estimates by diameter at breast height (DBH) and diameter growth classes (�DBH) between successive
inventories. Comparisons of survival/hazard curves for various tree populations and tests of effects of covariates on individual
survival curves were conducted allowing for mortality hypothesis testing across user-defined tree populations (i.e., species,
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location, stand conditions, and damage agents). Survival analysis techniques, facilitated by the variables of DBH an�DBH,
may provide foresters with the ability to test tree mortality hypotheses and summarize regional tree mortality trends.
© 2005 Published by Elsevier B.V.
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1. Introduction

Tree mortality in forest inventories has traditionally
been assessed using relatively simple summary
statistics. Mortality information available to foresters
has typically included losses in timber volume due to
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mortality, summaries of mortality causal agents, sp
locations of mortality, and mortality trends by spe
(seeLeatherberry et al., 1995). Currently, most fore
health reports for state and other large-scale f
inventories use this mortality assessment methodo
(MDNR, 1994; Mutch and Parsons, 1998). More
in-depth mortality analysis has historically only b
facilitated through development of individual t
mortality logistic models, a technique that has
limited use in national inventories (Monserud an
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Sterba, 1999; Fridman and Stahl, 2001) and may be
inadequate for broadly defining mortality dynamics
(Eid and Tuhus, 2001). Although remotely sensed
information and geographic information systems
have greatly aided analysis of forest mortality, the
basic analytical methodologies of forest mortality
assessment have only slowly evolved (Hawkes,
2000).

The forest sciences have historically focused on
developing individual tree mortality sub-models for
incorporation into growth and yield models (Stage,
1973; Daniels and Burkhart, 1975; Hamilton and
Edwards, 1976; Monserud, 1976; Buchman et al.,
1983). Although other sciences that monitor popu-
lations of living organisms, such as the veterinary
and medical sciences, have developed methodologies
to assess mortality beyond that of the individual,
the forest sciences have relatively few methodolo-
gies for assessing tree population mortality (Hawkes,
2000). Commonly used forest mortality analytical
techniques lack methodology for incorporating the
time-dependent nature of tree mortality, hypothesis
testing, censoring of observations, and tests for ef-
fects of covariates (i.e., stand basal area and crown
ratio). Given the diseases and epidemics that have
greatly altered our forest ecosystems (e.g., Chestnut
Blight [Cryphonectria parasitica] and Dutch elm dis-
ease [Ceratocystis ulmi]) and future forest health is-
sues that may occur (Sudden Oak Death Syndrome
[Phytophthora ramorum], Asian longhorned beetle
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tions have been restricted mainly to forest inventories
in even-aged forest plantations (Morse and Kulman,
1984; Amateis et al., 1997; Volney, 1998; Wyckoff and
Clark, 2000), forest research plots (Reams et al., 1988;
Burgman et al., 1994; Preisler and Slaughter, 1997), or
stand table projections (Rose, 2002). Although there
has been significant work on the development of es-
timation procedures for survival and hazard functions
in forest research plots (Preisler and Slaughter, 1997;
Volney, 1998) and in relation to diameter growth
(Bigler and Bugmann, 2004a,b), survival analysis tech-
niques have not been widely applied to forest in-
ventory analyses due to the inherent lack of detailed
time and age information for large-scale inventories
(Flewelling and Monserud, 2002). Given the current
lack of baseline forest inventory mortality analyses
techniques (Manion and Griffin, 2001) and the potential
that survival analysis offers (Harcombe, 1987; Hawkes,
2000; Zens and Peart, 2003), a re-examination of the
basics of survival analysis in the context of a large-scale
forest inventory is warranted and may refine analysis
of tree mortality in Minnesota.

The primary goal of this study is to estimate and
interpret the central functions of survival analysis, sur-
vival, and hazard functions, on a time scale defined
by growth in diameter at breast height (�DBH), for
a USDA Forest Service Forest Inventory and Analysis
program (FIA) inventory in the state of Minnesota. The
study has specific objectives:
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Anoplophora glabripennis]), novel techniques fo
ssessing large-scale tree mortality and forest
line would benefit forest scientists and mana
like.

Analytical methods developed by the medical
nces, collectively termed survival analysis, may
ide the basis for development of new forest mor
ty analytical techniques (Harcombe, 1987; Zens a
eart, 2003). Survival analysis is most often defined a
lass of statistical methods for studying the occurre
nd timing of events—most often death (Berkson and
age, 1950; Cox and Oakes, 1984; Allison, 1995). Sur-
ival analysis is unique in that it allows for censoring
bservations (lack of exact time of death) and inclu
f time-dependent covariates, in addition to dea
ith non-normal distributions (Collett, 1994; Allison
995).Waters (1969)first proposed using survival an
sis to address forest mortality issues, but such app
) to use DBH and�DBH in applying survival ana
yses techniques to forest inventories;

) to determine if survival/hazard functions can r
resent actual mortality trends in a manner prac
for ecological interpretation;

) to determine utility of testing for differences b
tween survival/hazard functions and the effect
covariates stratified by species, damage agents
spatial locations.

. Methods

.1. Data

The data for this study came from two FIA perio
nventories for the state of Minnesota where sam
rees were surveyed in 1977 and re-measured in
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Table 1
Summary of FIA inventory used in survival analysis, Minnesota 1977–1990

Species group Species Total number of trees Number of trees that died

Red and Jack Pine Pinus resinosa, Pinus banksiana 3935 734
Black Spruce and Balsam Fir Picea mariana, Abies balsamea 14972 5035
Maples Acer saccharinum, Acer saccharum 2747 365
Balsam Poplar Populus balsamifera 4448 1822
Paper Birch Betula papyrifera 8603 2443
American elm Ulmus americana 3829 3073
Aspen Populus tremuloides 21303 7821
Red Oak Quercus rubra 2962 520

(Table 1). The periodic sampling design for the Min-
nesota inventory is detailed byNCFES (1977, 1990).
Individual trees (observations) were included that met
the following criteria: alive at time one (1977) and ei-
ther dead or alive at time two (1990), DBH >13.0 cm
at time one, and no anthropomorphic mortality. Ad-
ditionally, to streamline the relatively large datasets,
only the most common species were selected (Table 1).
Individual tree attributes from the FIA inventory mea-
sured at time one were included as predictors of mor-
tality in this study: DBH (cm), crown ratio (CRAT),
crown class (CC), plot basal area (TOTBA), plot basal
area larger than subject tree (BAL), and damage. If
a tree was dead at time two then its DBH was set
equal to the DBH at time two or the DBH at time
one, whichever was larger. Since a tree’s DBH may
shrink following death, an estimate of the maximum
DBH the tree attained before death would better ben-
efit survival analysis than an estimate of a decay-
ing bole diameter. CRAT is the ratio of a tree’s live
crown length to total height. CC is a measure of a
tree’s dominance in relation to adjacent trees in the
same stand and is coded as follows: 1, open grown;
2, dominant; 3, codominant; 4, intermediate; 5, sup-
pressed (NCFES, 1990). TOTBA were calculated as
the sum of cross-sectional areas of live tree boles at
breast height at time one scaled to a per unit area ba-
sis, while BAL was the same as TOTBA except with
exclusion of basal area of trees with DBH’s smaller
than the subject tree. Insect or disease tree damage was
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2.2. Analysis

The survival and hazard functions, central to sur-
vival analysis, are used to quantify the probability
distribution of mortality in a population (Muenchow,
1986). The survival function is defined as (Berkson
and Gage, 1950; Cox and Oakes, 1984; Collett, 1994),

S(t) = P(T ≥ t), (1)

whereS(t) is the probability that a death occurs at some
time T at least as great as timet, but is not constrained
except for being greater than 0.

The hazard function is an instantaneous mortality
rate and hence is a conditional probability defined as
(Cox and Oakes, 1984; Collett, 1994),

h(t) = lim
�t→0

P(t ≤ T ≤ t + �t|T ≥ t)

�t
, (2)

whereh(t) is the probability that death occurs exactly
at timet, given that it has not occurred before then.

The survival function may be estimated non-
parametrically by using the life-table method given by
(Cox and Oakes, 1984; Allison, 1995),

Ŝ(ti) =
i−1∏
j=1

(1 − hj), (3)

where for intervali, ti is the start of time andhi is the
conditional probability of death. Fori = 1 and hence
ti = 0, the survival probability is set to 1.0.
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ecorded at time one based on field observation
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or trees that died during the re-measurement int
censored),�DBH represents less of an average gro
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where for theith interval, tim is the midpoint,di the
number of deaths,bi the width of the interval,ni the
number of individuals at the beginning of the inter-
val, andwi is the number of cases censored (exact
time of death cannot be ascertained) within the interval.
Note, the survival and hazard functions are mathemati-
cal functions of each other; given one, you can compute
the other.

The null hypothesis, that the survival functions are
the same for two groups of individuals, may be tested
by the non-parametric log-rank test statistic given by
(Allison, 1995),

UL =
r∑

j=1

(d1j − e1j), (5)

whereUL is the summation over all unique event times
(in both groups) and there are a total ofr such times.
d1j is the number of deaths that occur in group 1 at time
j ande1j is the expected number of events in group 1
at time j. The expected number of events is given by
n1jdj/nj, wherenj is the total number of cases that are at
risk just prior to timej, n1j the number at risk just prior
to timej in group 1, anddj is the total number of deaths
at timej in both groups. Squaring and dividingUL by
the estimated variance provides a chi-square statistic.
Additionally, log-rank tests may be generalized to test
whether quantitative covariates are associated with sur-
vival times.

As evidenced in survival analysis formulations,
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be determined for DBH classes (Harcombe, 1987)
across growth classes.

In this study, the “clock” starts at the first forest in-
ventory, when a subject begins to be “at risk” for the
event or begins to be monitored for the event. Stating
this in terms of DBH, the clock is�DBH (the increase
in DBH from initial survey). Other studies (Bigler and
Bugmann, 2004a,b) have found some success in us-
ing predicted�DBH to refine estimates of time of tree
death. Our survival functionS(�DBH) gives the prob-
ability that a tree will continue to live until its diameter
has increased by at least�DBH. The “time interval”
of our hazard function is diameter growth of 4 cm. For
example,S(8 cm) estimates the proportion of the popu-
lation of trees that will survive to increase their DBH by
8–12 cm. This hazard function, wherek =�DBH, can
be interpreted as a ratio of the number of deaths per 4 cm
growth in a large population of trees that arek cm larger
in DBH than at the first measurement. Hence, for all
previously stated formulations of the non-parametric
survival and hazard function estimators and log-rank
tests (Eqs.(3)–(5)), our study substituted�DBH for
time.

Several software packages produce estimates of the
survival and hazard functions. In this study, the PROC
LIFETEST (SAS, 1999) and its life-table estimation
method were used. Trees were grouped by initial DBH
into 10-cm diameter classes and grouped by�DBH
into 4-cm intervals. The survival and hazard functions
(Eqs.(3) and(4)) were compared for their forest sci-
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orest inventories is the lack of specific tree a
nd the censoring of tree mortality (Flewelling and
onserud, 2002). However, knowledge of age
ot necessary for implementation of survival an
ses (Allison, 1995). Any measurement unit th

ndicates changes in an individual’s status betw
e-measurements may replace the traditional sur
nalysis variables of age and time. For forest inv

ories that re-measure trees at regular intervals
ational inventories, seeGillespie, 1999; Fridman an
tahl, 2001), DBH and�DBH may assign individua

rees within a population to classes defined by tree
nd growth. Whereas medical studies may deter
urvival functions for demographic cohorts acr
alendar years, forest inventory survival functions m
nce applicability. The hazard function was exam
or three subsets of trees: trees suffering from dise
rees suffering from insects, and certain species gro
n addition, the survival function was further exa
ned in terms of equality over function strata (spe
roups and inventory unit locations; seeNCFES, 1990)
nd in terms of effects of covariates (CRAT, CC, BA
nd TOTBA) using the log-rank tests (available in S
ROC LIFETEST) (Eq.(5)).

. Results

The survival and hazard functions were e
ated separately for five initial DBH classes for

ected species in the 1977–1990 Minnesota inven
Figs. 1 and 2). For the cumulative distribution of su
ival functions in this study, a function value of 0
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Fig. 1. Survival functions for time one diameter classes by�DBH.

for a 0–4 cm�DBH does not indicate a high survival
probability; rather it shows a substantial drop in the
likelihood of survival to the next�DBH class (Fig. 1).
Regardless of initial DBH, the greatest increase in cu-
mulative probability of mortality was seen in trees with
the least periodic diameter increment. Larger trees suf-
fered greater mortality than smaller trees as evidenced
by the ordering of the survival functions (Fig. 1). Haz-
ard functions varied both by time one DBH classes and
�DBH (Fig. 2). For all five initial size classes, the haz-
ard of death was greatest in trees with the least periodic
diameter increment, with hazards dropping abruptly
and remaining fairly constant in trees with substan-
tial diameter growth (Fig. 2). The largest trees with the
least growth had the greatest mortality, evidenced by
their high mortality hazards and their steeply descend-
ing slopes (Fig. 2).

Fig. 2. Hazard functions for time one diameter classes by�DBH.

The hazard functions for trees suffering from in-
sect and disease damage were determined separately
(Fig. 3A and B). For insect damaged trees, the small-
est diameter trees had the greatest hazard of death,
with the hazard decreasing precipitously with increases
in �DBH (Fig. 3A). Trends in hazard functions for
trees suffering disease damage were distinctly differ-
ent from the insect damaged trees (Fig. 3B). The largest
trees had the highest hazard of death for the first two
classes of�DBH, while hazards were more evenly dis-
tributed among all size classes for trees growing sub-
stantial increment (Fig. 3B). Small and mid-sized trees
that had the greatest diameter growth were still at risk
from death, possibly resulting from disease damage
(Fig. 3B).

Hazard functions for the 23.0–32.9 (cm) DBH
class, stratified by species group, were determined for

insec
Fig. 3. Hazard functions for trees suffering from
 t damage (A) and for trees suffering from disease (B).
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Fig. 4. Hazard functions for time one DBH class 23–32.9 cm for
various Minnesota tree species.

assessment of interspecific mortality trends (Fig. 4).
Risk of mortality was distinctly different between all
species groups across all classes of�DBH (Fig. 4).
American elm had the highest hazard function esti-
mates across all classes of�DBH, while maples had
the lowest hazard function estimates (Fig. 4). Possible
differences between spatial locations and interspecific
hazard functions (test of homogeneity of survival
function), in addition to effects of covariates (i.e., stand
density) by species group, were examined through
log-rank tests (Tables 2 and 3). There were significant
differences in survival functions among the inventory
units of Minnesota forestland (Aspen-Birch, Northern

Pine, Central Hardwood, and Prairie) (NCFES, 1990)
for the smaller red and jack pines (Table 2). For most
of the maple diameter classes, there was no significant
difference among survival functions (Table 2). Elms
had significant survival function differences among
ecological units for the smallest and largest trees
(Table 2). Obvious differences in the degrees of
freedom among ecological units is attributable to the
lack of red and jack pine species among certain units,
especially for the larger diameter classes (Table 2).
Log-rank tests were conducted for effects of covariates
on survival functions by species and time one DBH
classes (Table 3). Effects of covariates (CRAT, CC,
TOTBA, and BAL) were predominantly significant
in the smaller DBH classes, regardless of species
(Table 3). For hardwoods, crown factors were more
often significant covariates than stand density mea-
sures (Table 3). For conifers, the opposite was usually
the case: stand density covariates were significant in
more individual cases than crown factors (Table 3).

4. Discussion

A longitudinal unit can be any unit that measures a
variable’s transition from one state (i.e., class or con-
dition) to another (Collett, 1994). The greatest hurdle
in applying survival analytical techniques to forest in-
ventories is finding appropriate longitudinal units to

Table 2
Test for equality between ecological units, by DBH class and species

Species DBH class (cm) Chi

Red and jack pine 13.0–22.9 11.81
23.0–32.9 19.41
33.0–42.9 7.53
43.0–52.9 0.41
53.0+ 0.36

Maples 13.0–22.9 2.54
23.0–32.9 3.56
33.0–42.9 9.81
43.0–52.9 6.38
53.0+ 5.24

American elm 13.0–22.9 16.18
23.0–32.9 13.78
33.0–42.9 5.84

8.12
14.44
43.0–52.9
53.0+
group, Minnesota 1977–1990

-square Degree of freedom p-Value

2 0.0027
2 0.0001
2 0.0232
2 0.8165
1 0.5471

3 0.4686
3 0.3136
3 0.0203
3 0.0946
3 0.1553

3 0.0010
3 0.0032
3 0.1198
3 0.0436
3 0.0024
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Table 3
Log-rank test for effects of covariates on survival functions by species and DBH class, Minnesota 1977–1990 (X indicatesp-value <0.05)

Species Variable DBH classes (cm)

13.0–22.9 23.0–32.9 33.0–42.9 43.0–52.9 53.0+

Red and jack pine CRAT X X X
CC X
TOTBA X X X
BAL X X

Black spruce/fir CRAT X X X
CC X
TOTBA X X
BAL X X

Maples CRAT X X X X X
CC X X X X X
TOTBA X
BAL X

Balsam poplar CRAT X X X X
CC X X
TOTBA X X
BAL X X

Paper birch CRAT X X X
CC X X X X
TOTBA
BAL X

American elm CRAT X X
CC X X X X
TOTBA X X X
BAL X X

quantify survival probabilities and mortality hazards
(Zens and Peart, 2003). If time or ages are used as lon-
gitudinal units in forest inventory analyses, a number of
problems may be encountered as evidenced by previ-
ous work in forest survival analysis (Harcombe, 1987;
Burgman et al., 1994; Preisler and Slaughter, 1997;
Volney, 1998). First, all observations are censored. The
exact time of tree death is uncertain with the inventory
re-measurement date often serving as the longitudinal
measure. Second, the survival function curve is par-
tially dependent on when and where the measurements
were taken. For example, if the bulk of mortality is lo-
cated in a certain area of the state that is inventoried
at a discrete point in time, then the resulting survival
curve will be biased if time is used. Third, the age of a
tree is difficult to estimate in large-scale forest inven-
tories. However, DBH is a quantity that hypothetically
increases with time until a tree dies.Harcombe (1987)
suggested that using a tree’s diameter may be viewed as

“stage-based,” where life-tables estimate the probabil-
ity of individual tree growth projecting a tree forward
through stages (DBH classes). Although DBH is not a
perfect predictor of tree age (especially in uneven-aged
stands), tree diameter was used as a hypothetical surro-
gate for age or “stage” in this study’s survival analysis.
Likewise,�DBH, although not an exact surrogate for
time, may serve as a “stopwatch” for individual trees
in this study. At the start (time one), the�DBH of all
trees is 0. At the time of re-measurement (time two)
the “stopwatch” is stopped and trees are assigned to
classes of�DBH. Time (years) may greatly relate to
the survivalship of humans, while tree growth over in-
tervals of time (i.e., annual diameter growth) may be a
more meaningful metric in forest ecology. Bigler and
Bugmann (1994a) found that using�DBH models to
refine estimates of time of death greatly improved lo-
gistic mortality models. Unfortunately, as suggested by
this study, the longer the inventory re-measurement in-
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terval the greater the possibility that�DBH may in-
accurately reflect time due to the censoring of tree
death and variable tree growth rates (particularly in
uneven-aged stands). While previous studies at smaller
scales and in even-aged stand conditions have been
able to develop rather flexible survival/hazard functions
using individual tree age and time (Burgman et al.,
1994; Preisler and Slaughter, 1997; Volney, 1998),
this study’s use of tree size and growth allowed sur-
vival analyses to be conducted on large-scale forest in-
ventories and warrants future evaluation and possible
application.

There are numerous estimation procedures for
the survival and hazard functions, each with its
own advantages and drawbacks. This study used the
elementary life-table estimation procedure as a first
attempt to apply survival analysis techniques to large-
scale forest inventories, a technique first suggested
by Harcombe (1987). The life-table approach allowed
non-parametric estimation of survivorship, the ability
to compare survivorship among stratified sample units,
and the ability to test association between covariates
and survivorship. Using the life-table estimation
procedure as a first attempt, the survival and hazard
functions initially appear to offer a new procedure
for analysis of forest mortality. The survival function
quantifies mortality cumulatively through the diameter
distribution, while the hazard function may display
specific DBH midpoint mortality rates. As evident
from the survival and hazard function curves for
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ard functions can be used for more detailed analysis of
mortality dynamics for any tree population of inter-
est. Study results indicate that there may be definitive
differences between hazard functions for trees suffer-
ing from insect or disease damage. For Minnesota, al-
though mortality from disease occurred predominantly
in small, slow-growing trees, it affected all trees regard-
less of size or growth rates. Hazard functions indicated
that there was little risk of death from insects for trees
with substantial diameter growth, possibly indicating
the relationship between a tree’s vigor and resilience
to insect attacks.He and Alfaro (2000)found that sur-
vival analysis was useful in analyzing tree resistance
to pest attack; however, they also found that tree sur-
vival time was related to covariates not used in this
study such as seasonal temperatures and precipitation.
It should be noted that this study’s hazard analysis is
only valid if tree damage is assessed at inventory time
one.

Hazard functions also allowed for a broad com-
parison of mortality risk rates among species and
diameter classes. Although analysis using only one
diameter class was conducted in this study, there
were obvious differences in hazard functions among
species. American elm, due to the widespread ef-
fects of Dutch elm disease, had the highest rates of
hazard. In comparison, other species such as maples
displayed no such widespread declines. This study’s
methodology may allow comparison of hazard func-
tions between species over successive inventory cy-
c ay
b by
s -
t ns
(
l may
a usal
a

nc-
t ed
f ne-
i its
o as
s ns
o lly,
t ival
f ated
t ecies
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ortality trends may be readily identified. Divergen
f survival function curves from the “typical” functio
ounds for specific tree populations may help iden
roblem areas in a rapid, statistically defens
anner. As suggested byManion and Griffin (2001),

he quantification of “normal” rates of mortality acro
iameter classes helps identify atypical morta

rends as soon as they arise. The hazard and su
unctions can together provide an initial assessm
f tree mortality for forest inventories as long as
urvey interval of time is approximately the sa
etween re-measurements. Sampling intervals,
s 13 years in this study, will affect�DBH class
idth and ultimately the interpretation or applicat
f survival analyses as demonstrated in this study

Traditionally, insects and disease tree mortality
een expressed in terms of ratios of tree mortality. H
les. Detection monitoring of atypical mortality m
e aided through observing risks of mortality
pecies, DBH class, and�DBH class (hazard func
ions) in comparison to natural mortality distributio
U-shaped mortality curve; seeHarcombe, 1987). For
arge-scale forest inventories, hazard functions
id investigations between forest mortality and ca
gents.

In addition to interpreting survival and hazard fu
ions curves, log-rank tests of survival curves allow
or mortality hypothesis testing. Test for homoge
ty of the survival function among the ecological un
f Minnesota indicated that the survival function w
ignificantly different among different spatial locatio
f tree populations (ecological regions). Additiona

he log-rank test for effects of covariates on the surv
unction, by species and time one DBH class, indic
hat a host of covariates are significant based on sp
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and tree size. This study’s covariates of tree mortal-
ity, although representing a small range of variabil-
ity, included both individual tree health indicators (i.e.,
CRAT) and stand-level attributes (i.e., TOTBA). Since
hardwoods may be more shade tolerant than conifers,
individual tree characteristics (CC and CRAT) were
more often significant covariates for hardwood mor-
tality. As found in other mortality studies (Dobbertin
and Brang, 2001), crown conditions may be an impor-
tant predictor of individual tree mortality. However for
conifers, their lack of shade tolerance was reflected in
more significance of stand density covariates (TOTBA
and BAL). The ability to associate individual tree traits
with mortality hazard has enormous potential bene-
fits for the study of natural processes (Zens and Peart,
2003) such as those found in forest ecosystems. Al-
though covariate analysis in this study only allowed
for tests of significance without the quantification of
the magnitude or direction of covariate effects, the es-
tablishment of baseline information on significant co-
variates of tree mortality across tree species may allow
for hypothesis testing.

5. Conclusions

Forest inventory mortality analyses have pre-
dominantly been focused on logistic regression
modeling at the individual tree-scale and simple data
summarizations at the landscape-scale. The apparent
d stem
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f ics
a oach
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