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Conservation planners are called upon to make choices and trade-offs about the preservation of natural areas for the protection of species
in the face of development pressures. We addressed the problem of selecting sites for protection over time with the objective of maximizing
species representation, with uncertainty about future site development, and with periodic constraints on the number of sites that can be
selected. We developed a 0–1, linear optimization model with 2 periods to select the sites that maximize expected species coverage subject
to budget constraints. The model is based on the idea that development uncertainty can be characterized by a set of scenarios, each of which
is a possible second-period development outcome for the set of sites. We also suggest that our 2-period model can be used in a sequential
fashion that is consistent with adaptive planning. Results are presented for the Fox River watershed in Chicago.

Keywords: scenario optimization, robust optimization, reserve site selection, integer programming, incomplete information, maximal
covering problem, adaptive management

1. Introduction

Metropolitan areas in the United States are experiencing
escalating rates of land conversion from open space to de-
veloped uses [1] with concomitant reductions in the amount
and quality of natural areas and the species they support [2].
The establishment of a system of protected natural areas is
one means of reducing the loss of biodiversity associated
with land conversion and development [3,4]. Because con-
servation planners are constrained by land costs, they must
make wise selections of parcels to create a system of reserves
that yields the most conservation protection under a given
budget [5]. Quantitative models for reserve site selection
can inform decision makers about the consequences of their
choices [6].

A variety of tools have been developed to help planners
determine efficient site selection strategies and understand
the goal trade-offs, and excellent reviews of reserve design
goals and modeling techniques are available [6–8]. A com-
monly expressed goal is maximizing species representation,
where a species is represented or covered if it is present
in one or more protected sites. This maximal species cov-
ering problem, formulated as a linear-integer programming
model, has counterparts in the location science literature [9]
and has been widely applied in conservation planning [5,10–
17]. These applications assume that the land protection de-
cisions are made all at once. In practice, however, the de-
cisions take place sequentially as funds and political sup-
port become available. Further, land availability is dynamic:
sites currently available may be developed if protection is
delayed, or sites not immediately available may be open for
protection later. Methods are needed to address this sequen-
tial site selection problem and account for the uncertainties
in budget and site availability.

We formulated a 2-period site selection model that maxi-
mizes the expected number of species represented while ac-
counting for uncertainty in site development between peri-
ods and constraints on the number of sites selected. The
model is based on the idea that development uncertainty can
be characterized by a set of scenarios, each of which is a
possible second-period development outcome for the set of
sites. Those scenarios, together with estimates of their prob-
abilities of occurrence, are incorporated into an optimization
model to determine the best set of sites to protect now and
the best set of sites to protect in the second period under each
scenario. The formulation is a linear-integer program apply-
ing logic from robust or scenario optimization [18–20].

Researchers are just beginning to address multi-period
site selection problems with uncertainty in site development.
Costello and Polasky [21] used a dynamic programming al-
gorithm to solve problems with up to 10 candidate sites
and 6 periods. Because computational burden increased
exponentially with the number of sites, they investigated
the performance of simple heuristics and found that sequen-
tial application of a 1-period look-ahead heuristic provided
solutions almost as good as those from the multi-period al-
gorithm. Our scenario optimization model limits the time di-
mension to 2 decision periods and employs a linear-integer
formulation, which allows solution of problems with hun-
dreds of sites using commercial software. Solving these
large problems can still be computationally intensive be-
cause the number of possible development scenarios in-
creases exponentially with the number of sites. Therefore,
we investigated problems in which development uncertainty
was approximated with a limited number of scenarios.

We first present the optimization model and then de-
scribe its application to a problem of acquiring natural ar-
eas for protection in the Fox River watershed in the Chicago
metropolitan area. The Chicago area is the third largest
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metropolitan region in the United States. The region ex-
perienced rapid population growth and land conversion in
the 1990s [22], and the size of the metropolitan area could
double in the next 30 years [23]. In response, county forest
preserve districts evaluate and acquire privately-owned open
space for protection [24]. Our application used 146 sites
containing 116 rare species and analyzed protection strate-
gies when the budget was limited and development was un-
certain.

2. Methods

2.1. Site selection model

To address the planner’s problem, we formulated a 2-
period, 0–1 integer optimization model to select the set of
sites that maximizes the expected number of species con-
served at the end of the second period subject to an upper
bound on the number of sites that can be protected each pe-
riod. The model assumes that we have a list of sites, each of
which is available for protection at the beginning of the first
period. If a site is not selected for protection at the begin-
ning of the first period, there is a probability that it becomes
developed and unavailable for protection at the beginning of
the second period. The model also assumes that we have
a list of the species present in each site and that a species
is conserved if it is present in at least one site selected for
protection.

To handle uncertainty about the development of unpro-
tected sites, we created a set of scenarios of site develop-
ment. Each scenario is a list of the 146 sites in the Fox River
watershed identifying whether each is developed or undevel-
oped in period 2 and represents one possible development
outcome. Associated with each scenario is a probability of
occurrence.

The model has 2 sets of 0–1 site selection decision vari-
ables. The first set of decision variables are the yes–no
choices for the sites to be selected for protection in the first
period. The model assumes that the protection decisions in
the second period are made after the decisions in the first pe-
riod are implemented and the site development scenario is
revealed. The second set of decision variables are the yes-
no choices on sites that are to be selected for protection in
the second period under each of the development scenarios.
The model includes logic from scenario optimization prob-
lems [20] and maximal covering problems in reserve selec-
tion science [9] and is expressed with the following notation:

i, I = index and set of species,

j, J = index and set of potential reserve sites,

s, S = index and set of site development scenarios,

ps = probability that scenario s occurs,

b1 = upper bound on number of reserve sites selected in
period 1,

b2 = upper bound on number of reserve sites selected in
each scenario in period 2,

djs = 0, 1 parameter; 1 if site j is undeveloped in period 2
scenario s, 0 otherwise,

Ni = set of sites j that contain species i,

xj1 = 0, 1 variable; 1 if site j is selected for protection in
period 1, 0 otherwise,

xj2s = 0, 1 variable; 1 if site j is selected for protection in
period 2 scenario s, 0 otherwise,

yis = 0, 1 variable; 1 if species i is represented in one or
more of the parcels chosen for protection in periods 1
or 2, given that scenario s occurs, 0 otherwise.

The model was formulated as follows:

Maximize
∑
s∈S

(
ps

∑
i∈I

yis

)
, (1)

subject to:

xj1 + xj2s � 1 for all j ∈ J and s ∈ S, (2)

xj2s � djs for all j ∈ J and s ∈ S, (3)∑
j∈J

xj1 � b1, (4)

∑
j∈J

xj2s � b2 for all s ∈ S, (5)

yis �
∑
j∈Ni

(xj1 + xj2s) for all i ∈ I and s ∈ S, (6)

xj1, xj2s, yis ∈ {0, 1}. (7)

The objective (1) maximizes the expected number of
species represented by the set of selected sites in period 1
and by the selected sites in each scenario in period 2. Con-
straint (2) specifies that site j can at most be selected for
protection in either period 1 or period 2, but not both, over
all scenarios. Constraint (3) specifies that site j can only be
selected for protection in period 2 in scenario s if site j is
undeveloped in that scenario. Constraint (4) limits the num-
ber of sites selected for protection in period 1 to at most b1.
Constraint (5) limits the number of sites selected in each sec-
ond period scenario to at most b2. Constraint (6) defines the
conditions under which a species i is protected. This con-
straint stipulates that in order for a species to be protected if
scenario s occurs, at least one site that contains that species
must be selected for protection either in the first period or in
scenario s in the second period. The result is a set of sites
for protection in period 1 and a set of sites for protection in
period 2 under each scenario.

2.2. Study area and data

The study area was the Fox River watershed, which cov-
ers more than 4,000 km2 in parts of ten counties in northeast-
ern Illinois, USA (figure 1). The topography is flat with el-
evations of 150–300 m. The climate is continental with hot,
humid summers, cold winters, and precipitation through-
out the year. The watershed covers prairie, savanna, and
woodland ecosystems and includes 1,389 plant and animal
species, 44% of the species in Illinois. More than 100 of
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Figure 1. Fox River watershed in counties of northeastern Illinois, USA.
The application used 146 sites in the dark shaded area covering 7 counties.

those species are listed as threatened or endangered in the
state.

Another feature of the watershed is its proximity to the
city of Chicago, which is located in Cook County on the
shore of Lake Michigan (figure 1). The Chicago metropoli-
tan area includes Cook County and nine surrounding coun-
ties. In the 2000 census, the region had more than eight
million people, making it the third largest metropolitan re-
gion in the United States [22]. Of this eight million popu-
lation, about 64% of the people lived in Cook County, and
36% lived in the nine surrounding suburban counties. While
the regional population increased 11.6% in the period 1990–
2000, the population growth in the nine suburban counties
was more than twice the population growth in metropolitan
Cook County.

In response to population growth and conversion of open
space to housing and commercial development, county gov-
ernments in the Chicago metropolitan area have acquired
open space for a variety of public goals, including protect-
ing the habitat of rare animals and plants and providing eq-
uitable public access to recreation and educational opportu-
nities [24]. In 1995–2000, the voters in 6 counties approved
bond referenda, backed by property tax increases, to finance
more than $400 million of open space acquisition.

Our analysis was conducted using information from 365
natural areas in 7 counties of the Fox River watershed (fig-
ure 1). The information was obtained from the Fox River
Watershed Biodiversity Inventory, which was conducted in
the 1990s under the direction of Chicago Wilderness, a coali-
tion of organizations dedicated to the survival of the natural
ecosystems of the Chicago area. The Nature Conservancy
shared the information with us. The natural areas were iden-
tified using a variety of criteria. Some sites contained high
quality natural communities or habitat for rare animal or
plant species. Other sites were significant open spaces that
contained potentially restorable natural communities, spe-
cial geological or archaeological features, rare species, or

large grasslands. Each site was described by a list of rare
plants and animals living in the site. Collectively, 116 rare
species were found in 146 sites. We used this subset of
146 sites in our analysis. To demonstrate our model, we
assumed that none of the natural areas were already pro-
tected and that each site had a 50% chance of development,
although local government or planning agencies may well
have specific knowledge of the probability of site develop-
ment.

2.3. Generating scenarios

Solving the optimization model can be computationally
intensive because the number of possible development sce-
narios increases exponentially with the number of sites. For
example, if the development of any particular site is inde-
pendent of the development of any other, then with 146 sites,
each with a 50% probability of development, there are 2146

possible development scenarios, each with a 0.50146 proba-
bility of occurrence. Because even modest sized 0–1 integer
programming problems can quickly become unwieldy and
difficult to solve to optimality, we needed to explore ways
to reduce the number of development scenarios in the model
while adequately representing the development uncertainty.

We reduced the number of scenarios by randomly select-
ing a subset of n scenarios to include in the model. Each
scenario djs , j = 1, . . . , 146 was a vector of 0–1 parame-
ters where djs = 1 meant that site j was undeveloped un-
der scenario s. The value of each parameter djs was deter-
mined by comparing a uniform 0–1 random number from
a prime modulus multiplicative linear congruential genera-
tor [25, p. 227] with the probability of development (0.50).
A single seed was used to generate the subset of scenarios.
The probability of occurrence of each scenario was 1/n.

2.4. Testing model performance

Because we included only a subset of possible develop-
ment scenarios in the model, our primary research question
was how many randomly selected scenarios provided an ad-
equate representation of development uncertainty. To deter-
mine the impacts of increasing the number of scenarios, we
formulated and solved two problems, one in which 2 parcels
were selected in each period and the other in which 4 parcels
were selected in each period. We solved 3 sets of 50 repli-
cates of each problem, where each set of replicates included
a unique set of 1, 10, or 100 scenarios. If the optimal first-
period site selections showed little variation across a set of
50 replicates, then we would conclude that the number of
scenarios used in that set adequately represented the site de-
velopment outcomes.

We continued the analysis of model performance by ex-
ploring the computational impacts of incrementally increas-
ing the upper bound on the number of sites selected each
period from 1 to 34. Each problem maximized the expected
number of species covered subject to an upper bound on the
sites selected and included 100 randomly selected develop-
ment scenarios. We solved 50 replicates of each problem,
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and a common set of random numbers was used to create
the scenarios across the problems to allow for comparison.

Another test of model performance was a compari-
son of results from the 2-period site selection model with
those from the sequential application of a 1-period maximal
species coverage model that does not account for develop-
ment uncertainty. In the latter case, the 1-period model was
used to select sites in the first period, and then the 1-period
model was used again in the second period under a given de-
velopment scenario while accounting for the sites selected in
the first period. This sequential procedure was repeated for
each development scenario, and the objective function val-
ues were averaged to obtain the expected number of species
covered. The difference in expected numbers of species cov-
ered obtained from the two types of models represented the
gain from accounting for development uncertainty in the 2-
period model. The gains were estimated for problems in
which 1–10 sites were selected each period.

2.5. Estimating the cost of delaying site protection

To demonstrate how the model could be used in policy
analysis, we estimated the cost of delaying protection when
a total of 8 sites could be protected over 2 periods. We com-
puted the optimal site selections for problems in which 0–8
sites could be selected in the first period. The differences
in the expected numbers of species covered were estimates
of the costs of delay. To examine the impacts of increasing
the likelihood of development, we computed and compared
the optimal site selections for problems in which the second
period development probability was increased from 50–75%
for every site. Each problem was solved using the same set
of 100 randomly selected scenarios.

2.6. Solution method

All of the problems were solved on an IBM Pentium™4
personal computer, using the integrated solution package
GAMS/OSL 2.25 [26], which was designed for large and
complex linear and mixed integer programming problems.
The input files were created using GAMS (General Alge-
braic Modeling System), a program designed to generate
data files in a standard format that optimization programs
can read and process. The models were solved using IBM’s
OSL (Optimization Subroutine Library), a Fortran-based
subroutine library designed to solve optimization problems.
The revised primal simplex algorithm, in conjunction with
the branch and bound algorithm for integer-variable prob-
lems, were used to solve the models.

3. Results

3.1. Number of scenarios

The impacts of increasing the number of development
scenarios in the 2-period site selection problem are listed in

table 1. In the base case, we maximized the expected num-
ber of species covered while selecting 2 sites in each period.
We found that increasing the number of scenarios used in
the model reduced the variability in the first-period optimal
solutions. From the 50 replicates with 1 scenario, 6 different
pairs of sites were found in the first period solutions. With 10
scenarios, 3 different pairs of sites were selected for the first
period with frequencies ranging from 26–42% of the repli-
cates. With 100 scenarios, the same 3 pairs of sites were
selected for the first period solutions, and one pair emerged
76% of the time: sites 52 and 146. Individually, site 52 was
selected in 90% of the replicates and site 146 in 86% for the
first period solution. The implication of finding a particular
first-period solution 76% of the time is that this solution is
likely to perform well as a solution to a problem in which
uncertainty is fully represented.

Increasing the number of scenarios reduced the mean of
the expected number of species covered (table 1). The mean
decreased 4% from 62.44 species with one scenario to 59.93
with 100 scenarios. We expected this decrease because in-
cluding more scenarios in the model increased the uncer-
tainty about site development. With one scenario, the best
set of sites in the first and second periods was selected for
a single development outcome known with certainty. With
100 scenarios, the best set of sites in the first period had to be
determined with 100 possible outcomes of site development
in the second period.

The mean solution time and the number of branch and
bound nodes increased with the number of scenarios in the
model (table 1). With up to 10 scenarios, problems were
solved in less than 5 seconds, and most solutions required
no branch and bound nodes. With 100 scenarios, the mean
solution time for 50 replicates was 1,675 seconds with an av-
erage of 6,002 nodes. About 20% of the replicates with 100
scenarios had very long solution times: up to 22,000 seconds
and 81,000 nodes. The other replicates solved in less than
300 seconds with no nodes. We hypothesize that the rea-
son for the inordinate amount of branch and bound in these
problems with very few sites being chosen is that a large
number of alternate optima exist in these problems. Branch
and bound is known in cases of alternate optima to take very
many nodes of exploration since all alternate optima need to
be generated in order to declare an optimal solution.

We repeated the analysis using a problem in which 4 sites
could be selected in each period and found the same pat-
tern of results (table 1). While 34 different solutions were
found in 50 replicates of the problem with one scenario, one
solution was found in all 50 replicates of the 100-scenario
formulation (sites 6, 52, 11, and 146). As a result, a decision
maker could be reasonably confident that this set of sites is
the optimal first-period solution to a problem in which un-
certainty is fully represented. Increasing the number of sce-
narios produced a slight decrease in the mean of expected
species coverage. The mean solution time increased from
less than two seconds for the replicates with up to 10 sce-
narios to 214 seconds for the replicates with 100 scenarios.
Very few of the replicates required branch and bound nodes.
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Table 1
The impacts of increasing the number of development scenarios in the 2-period site selection problem.

Results are based on 50 replicates of each problem.

Scenarios Expected number of Mean Mean Optimal first period
species covered solution number of solutions

Mean Std. dev. time (sec) nodes Sites Freq. (%)

Select 2 sites each period
1 62.44 1.15 0.11 0.12 6, 52 28

6, 134 18
134, 146 16
52, 134 14
52, 146 12
6, 146 12

10 60.43 0.88 2.50 6.00 52, 146 42
6, 52 32
6, 146 26

100 59.93 0.25 1675.00 6002.00 52, 146 76
6, 52 14
6, 146 10

Select 4 sites each period
1 83.36 1.32 0.09 0.00 34 solutions

10 80.23 0.69 1.71 0.60 6, 52, 111, 146 74
6, 52, 77, 146 8
6, 52, 134, 146 4
6, 8, 52, 111 4
6, 8, 111, 146 2
6, 8, 52, 98 2
6, 52, 98, 146 2
6, 8, 52, 146 2
6, 77, 111, 146 2

100 79.54 0.19 213.83 0.18 6, 52, 111, 146 100

Based on these results and the relatively small variability
in the first-period solutions over many replicates, we con-
cluded that using 100 randomly selected site development
scenarios in problems with up to 4 sites selected each pe-
riod adequately represented all possible development out-
comes for our data and problem specification. Further, we
concluded that most problems with 100 scenarios could be
solved in less than 5 minutes, but a few problems could take
much longer. We therefore decided to use 100 scenarios in
the remainder of the analyses discussed.

3.2. Number of sites selected

Increasing the number of sites selected each period in-
creased the variability of the optimal solutions found in 50
replicates of each problem (table 2). Solutions to problems
with up to 6 selected sites each period were relatively sta-
ble: fewer than 3 first-period solutions were found to each
problem over all replicates, and one of those solutions was
obtained most of the time. As the number of sites selected
in each period increased beyond 6, the stability of solutions
deteriorated: there were many first-period solutions to each
problem, and none was dominant. The means of the ex-
pected species coverage increased with the number of sites
selected in each period, and the standard deviations were less
than 1% of the means. Solutions to problems with more than
4 sites selected were usually obtained without branch and
bound nodes.

The results in table 2 show that sites selected in the first
period depend on the subset of scenarios used. How will a
first-period solution perform if a scenario other than one in
the subset used to obtain that solution occurs? We addressed
this question using the eight first-period solutions listed in
table 2 for 8 sites selected. Recall that each of those so-
lutions was obtained with a different set of 100 randomly
selected scenarios. We forced each first-period solution into
the optimization model and computed the best second-period
solution and total number of species covered for each of 100
new randomly-generated scenarios. In terms of mean cover-
age, there was very little difference in the performance of the
first-period solutions using new sets of randomly generated
scenarios. Across the eight first-period solutions, the aver-
ages of the number of species covered ranged from 95.01
to 95.18. In terms of the range of coverage, there was no
difference in the performance of the first-period solutions
using new sets of randomly generated scenarios. For each
first-period solution, the minimum and maximum number of
species covered were 90 and 98, respectively, across the 100
new scenarios. These results suggest that each of the first-
period solutions obtained with a subset of randomly selected
scenarios is likely to perform well in terms of expected num-
ber of species covered in a problem in which uncertainty is
fully represented.

It is interesting to note that the first-period solutions ob-
tained with different sets of randomly selected scenarios had
much overlap in terms of sites selected (table 2). For exam-
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Table 2
The impacts of changing the number of sites selected each period in a 2-

period problem. Results are based on 50 replicates of each problem.

Sites Expected number of Optimal first period solutions
selected species covered

Mean Std. dev. Sites Freq. (%)

1 38.47 0.18 146 100
2 59.93 0.25 52, 146 76

6, 52 14
6, 146 5

4 79.54 0.19 6, 52, 111, 146 100
6 89.54 0.16 6, 8, 52, 98, 111, 146 86

6, 8, 52, 77, 111, 146 10
6, 8, 52, 111, 134, 146 4

8 95.30 0.12 6, 8, 52, 77, 98, 111, 134, 146 68
6, 8, 11, 52, 77, 98, 111, 146 8
6, 8, 52, 98, 105, 111, 134, 146 6
6, 8, 29, 52, 77, 98, 111, 146 4
6, 8, 52, 57, 98, 111, 134, 146 4
6, 8, 52, 77, 98, 111, 134, 146 4
6, 8, 29, 52, 98, 111, 134, 146 4
6, 8, 52, 57, 77, 98, 111, 146 2

10 100.35 0.09 6, 8, 11, 29, 52, 77, 98, 111, 134, 146 12
17 other solutions 88

15 108.83 0.19 Many solutions
20 111.52 0.15 Many solutions
25 113.90 0.11 Many solutions
30 115.41 0.05 Many solutions
34 116.00 0.00 1, 4, 6, 8, 11, 17, 20, 22, 23, 25, 28, 29,

31, 32, 35, 52, 57, 64, 68, 69, 71, 75,
77, 85, 92, 93, 98, 100, 105,
111, 114, 118, 134, 146

ple, six sites (6, 8, 52, 98, 111, and 146) appeared in solu-
tions to all 50 replicates of the problem in which 8 sites were
selected each period, and sites 134 and 77 occurred in solu-
tions to 86% of the replicates. This overlap helps explain
why any of the different first-period solutions are likely to
perform well and suggests sites that are likely to be selected
in the optimal solution to a problem in which uncertainty is
fully represented.

The variability of the first period solutions over many
replicates suggested that more than 100 randomly selected
scenarios were needed to adequately represent uncertainty
in site development in problems where many sites can be
selected; e.g., choosing 10 or more each period. To see if
we could increase the stability of the solutions, we solved
50 replicates of a problem in which 10 sites can be selected
each period using 500 randomly selected scenarios. Com-
pared to the formulation with 100 scenarios which produced
18 different solutions, only 10 different sets of sites were
produced by the formulation with 500 scenarios. The 500-
scenario problem produced a set of 8 sites (6, 8, 52, 77, 98,
111, 134, and 146) that appeared in the solutions to all 50
replicates. The mean objective function value from the 50
replicates of the 500-scenario problem was only 0.08% less
than the mean obtained with the 100-scenario formulation,
and the standard deviation was less than 1% of the mean.
The average solution time increased from 152 seconds with
100 scenarios to 4,386 seconds with 500 scenarios, and none
of the replicates required branch and bound nodes. From

these results we concluded that increasing the number of
scenarios beyond 500 would further reduce the number of
solutions obtained in replicates of the problem and increase
the number of sites common to those solutions. However,
the value of increasing solution stability by increasing the
number of scenarios must be weighed against the cost of the
additional computational burden.

3.3. Gain from accounting for uncertainty

Results from the 2-period site selection model and the se-
quential application of a 1-period model are listed in table 3.
The 2-period model was solved using 100 development sce-
narios, and the sequential application of the 1-period model
was repeated using the same 100 scenarios. The gain in the
expected number of species covered from using the 2-period
model was up to 2% of the expected coverage using a 1-
period model sequentially. In addition, the best set of sites
to select in the first period was different when taking into
consideration site availability in the second period. For ex-
ample, when 2 sites were selected each period, the 2-period
model selected sites 52 and 146 in period 1 while sites 6 and
146 were selected by the 1-period model. While sites 6 and
146 maximized species coverage given that no more sites
could be protected, sites 52 and 146 were optimal given that
a pair of available sites could be protected later. This result
illustrates that the 2-period model was not simply making
the most greedy choice in the first period regardless of what
can be protected in the second period. While the gain in ex-
pected coverage from using a 2-period model was small in
our case, the magnitude of the gain may be a function of the
data, and greater gains may be found with different data.

3.4. Cost of delaying protection under different
probabilities of development

The impacts of delaying site protection when a total of 8
sites can be protected over 2 periods are listed in table 4.
If all 8 sites were protected in period 1, 84 species were
covered. Expected coverage dropped with a decrease in the
number of sites selected in period 1 because delaying pro-
tection made sites vulnerable to development. Although the
reduction in the expected coverage was 18 species if no sites
were protected in period 1, the reduction was fewer than 4
species if the delay involved fewer than 4 sites. The reduc-
tion in the expected coverage was small because many of
the species were present in more than one site. If a partic-
ular site was developed, an alternative site was selected to
compensate. With a 75% probability of development, the
impacts of delaying site protection had the same trends as
with a 50% probability of development (table 4), although
losses in expected coverage were greater. Again, we might
observe more dramatic changes in coverage with different
data sets.
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Table 3
Comparison of results from a 2-period site selection model that accounts for development uncertainty
and the sequential application of a 1-period maximal covering model that does not account for develop-

ment uncertainty.

Number of sites Expected number of Optimal first period solution
selected species covered

each period 2-period model 1-period model 2-period model 1-period model

1 38.37 38.37 146 146
2 59.57 59.22 52, 146 6, 146
4 80.18 78.95 6, 52, 111, 146 6, 52, 134, 146
6 89.53 88.63 6, 8, 52, 6, 52, 58,

98, 111, 146 111, 134, 146
8 95.18 95.18 6, 8, 52, 77, 6, 8, 52, 77,

98, 111, 134, 146 98, 111, 134, 146
10 100.21 100.06 6, 8, 29, 52, 57, 77, 98 4, 6, 8, 11, 52, 77, 98

111, 134, 146 77, 98 111, 134, 146

Table 4
The impacts of delaying site protection when 8 sites can be selected in 2

periods.

Number of sites selected Expected number Sites selected

Period 1 Period 2 of species covered first period

Probability of development = 0.50
8 0 84.00 6, 8, 52, 77, 98, 111, 134, 146
6 2 82.12 6, 8, 52, 98, 111, 146
4 4 80.18 6, 52, 111, 146
2 6 74.16 6, 52
0 8 66.23 none

Probability of development = 0.75
8 0 84.00 6, 8, 52, 77, 98, 111, 134, 146
6 2 80.60 6, 8, 52, 111, 134, 146
4 4 76.90 6, 52, 111, 146
2 6 67.39 6, 146
0 8 52.48 none

4. Discussion

We addressed the problem of selecting sites for protection
over time with the objective of maximizing species represen-
tation, with uncertainty about future site development, and
with periodic constraints on the number of sites that can be
selected. We showed that a 2-period problem could be for-
mulated as a discrete, 0–1 integer optimization model using
logic from the scenario optimization and reserve site selec-
tion literature [9,20]. This is important because the model
can be solved using commercial software to determine the
best set of sites to protect immediately and the best set of
sites to protect next period depending on the observed de-
velopment.

While the model incorporates development uncertainty
using a probability distribution of development scenarios for
the set of sites, the model can be computationally intensive
because the number of possible scenarios increases exponen-
tially with the number of sites. We reduced the number of
scenarios by randomly selecting a subset to include in the
model. Recognizing that a model with a subset of possible
scenarios could bias the optimal solution, we investigated
the impacts of the number of randomly selected scenarios
on solutions to problems with 146 sites and 116 species. We

found that the optimal solutions varied little across 50 repli-
cates of a problem with 100 randomly selected development
scenarios and an upper bound of 2 sites selected each period.
However, the stability of the optimal solutions to problems
with 100 scenarios decreased as the number of sites selected
each period increased beyond 6. Despite their variability,
solutions to the replicates of a given problem had almost the
same expected coverage and contained many of the same
sites, suggesting that any one of the solutions would perform
well as a solution to the problem in which uncertainty in site
development was fully represented. We also found a gain
in the expected number of species covered when using the
2-period model versus using a 1-period, deterministic model
solved sequentially. Although the gains were not extremely
large, they nonetheless signify that a planner is able to make
better near-term decisions by taking into consideration what
the development landscape may look like in the near future.
Finally, we found that when we delayed site protection for
the case in which a total of 8 sites can be protected over
2 periods, the expected species’ coverage dropped with the
proportion of the sites selected in the second period. Thus,
there is a premium to being able to protect sites sooner rather
than later. As we wait to make protection decisions, sites be-
come vulnerable to development and opportunities are lost.
The same trend was found with development probabilities
of both 50% and 75%, although, as would be expected, the
drop in expected species’ coverage was greater when the de-
velopment threats were higher.

We found that our scenario optimization models did not
take long to solve, despite their size. While problems with
146 sites, 116 species, and 100 development scenarios in-
cluded 26,346 discrete 0/1 variables for site selection and
species representation and 26,301 structural constraints, the
majority of problems solved without any branch and bound
nodes in a matter of seconds to a few minutes. We believe
our dataset is representative in size of real-world reserve site
selection applications, and that our model and solution ap-
proach would be applicable and readily able to handle many
other reserve site applications.

We suggest that our 2-period formulation is consistent
with the uncertain nature of future budget and site availabil-
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ity. These uncertainties are often too great to reliably spec-
ify site selection decisions for years in the future. Instead,
results from a 2-period model inform managers about the
impacts of their current site selection decisions taking into
consideration near-term uncertainties, which can be speci-
fied relatively easily and accurately.

We also suggest that our 2-period model can be used in
a sequential fashion that is consistent with adaptive plan-
ning. The model solution includes a set of sites to protect
in the current period and another set of sites to protect in
the next period for each of the development scenarios. Only
the set of decisions in the current period would be imple-
mented. Then, once the development outcome is revealed,
the 2-period model can be used again to determine the best
sites to protect under the new conditions while accounting
for uncertainty in the subsequent period. This recursive pro-
cedure gives the decision maker a tool to deal with an uncer-
tain future as it unfolds allowing adaptation to the vagaries
of development. While we cannot say from our analysis how
different or better the solutions from our model might be if
we included a third or fourth period, we suggest that includ-
ing more than 2 planning periods will provide diminishing
returns. Three period models may be able to be constructed,
although they may not be solvable by the scenario approach
because the expansion of scenarios rapidly increases the di-
mensions of the problem. Limited useful information would
be expected to result from three periods, however, because
the first period’s decisions are conceived of as the only de-
cisions that would ever be implemented. Costello and Po-
lasky [21] found that sequential application of a 2-period
model with just one decision period performed almost as
well as solving a full dynamic program to the end of the
planning horizon all at once.

The scenario optimization model can be extended in at
least four ways to enhance its applicability. First, we could
add site costs as a function of the site size and quality.
Then, a 2-period problem could be formulated to maxi-
mize the expected species’ representation subject to peri-
odic budget constraints. Next, sites could be included that
are not available for protection in the first period, and the
uncertainty about the availability of those sites for protec-
tion in the second period could be represented with scenar-
ios. Then, a 2-period problem could be formulated to max-
imize the expected species’ representation subject to peri-
odic budget constraints and an allowance for using surplus
first-period funding in the second period. The third ex-
tension would treat the second period funding as uncertain
and represent this budget uncertainty with a set of scenar-
ios. Then, a 2-period problem could be formulated to max-
imize the expected species’ representation subject to peri-
odic budget constraints that are conditioned on the budget
scenarios. While each of these extensions can be formulated
as a linear-integer program, their solvability cannot be pre-
dicted a priori. We recognize that replacing a constraint on
the number of selected parcels with one restricting the total
area or cost of selected parcels may create a more difficult
0–1 integer programming model to solve. Finally, a regret-

based approach could also be developed in which sites are
selected such that the average or maximum regret associated
with sub-optimal choices is minimized. We are actively ex-
ploring these models.
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