
BIOLOGICAL

CONSERVATION
Biological Conservation 119 (2004) 565–574

www.elsevier.com/locate/biocon
One- and two-objective approaches to an area-constrained
habitat reserve site selection problem

Stephanie Snyder a,*, Charles ReVelle b, Robert Haight a,1

a USDA Forest Service, North Central Research Station, 1992 Folwell Avenue, St. Paul, MN 55108, USA
b Department of Geography and Environmental Engineering, Johns Hopkins University, Ames Hall, 3400 North Charles Street, Baltimore,

MD 21218, USA

Received 19 February 2003; received in revised form 15 November 2003; accepted 14 January 2004
Abstract

We compare several ways to model a habitat reserve site selection problem in which an upper bound on the total area of the

selected sites is included. The models are cast as optimization coverage models drawn from the location science literature. Classic

covering problems typically include a constraint on the number of sites that can be selected. If potential reserve sites vary in terms of

area, acquisition cost or land value, then sites need to be differentiated by these characteristics in the selection process. To address

this within the optimization model, the constraint on the number of selected sites can either be replaced by one limiting the total area

of the selected sites or area minimization can be incorporated as a second objective. We show that for our dataset and choice of

optimization solver average solution time improves considerably when an area-constrained reserve site selection problem is modeled

as a two objective rather than a single objective problem with a constraint limiting the total area of the selected sites. Computational

experience is reported using a large dataset from Australia.
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1. Introduction

Escalating rates of land conversion from open space

to more developed and extractive uses are threatening

biodiversity in many parts of the world today. A com-

mon strategy to reduce the loss of biodiversity on the
landscape is to establish a system of biological reserves

to preserve key habitat, species and ecological features

(Pimm and Lawton, 1998). Because inclusion of sites in

a protected reserve network often limits or precludes

other uses of that land, trade-offs must be carefully
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considered and weighed. This is particularly important

as conservation planners are often constrained by bud-

gets and restrictions on the total area that may be de-

voted to reserves. Optimization models for reserve site

selection have emerged as tools that can assist decision

makers in making difficult land use protection decisions.
Over the past 20 years many optimization models and

solution methodologies have been developed to facilitate

the efficient and effective selection of sites for inclusion

in a protected reserve network. One of the most com-

mon expressions of the reserve site selection problem has

been to maximize species or habitat type representation

for a given budget, where a species is represented or

covered if it is present in one or more of the protected
sites. This maximal species� covering problem, formu-

lated as a linear integer-programming model, is derived

from the classic Maximal Covering Location Problem

specified in the location science literature (Church and

ReVelle, 1974).
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Many researchers have solved examples of the reserve

site selection problem cast as a maximal covering type

formulation (including, Underhill, 1994; Camm et al.,

1996; Csuti et al., 1997; €Onal, 2004). Additionally,

Church et al. (1996) and Arthur et al. (1997) also solved
the equivalent minimal uncovering model for a reserve

site selection problem, noting computational advantages

of this model structure over the maximal covering

structure.

Many of the reserve site selection applications in

the literature have assumed that the eligible sites did

not differ in size, quality, cost or land value. Thus, a

constraint would be included in the model limiting the
number of sites that could be selected. A more real-

istic approach to this site selection problem would be

to differentiate eligible parcels by some of these other

features. To do so in the context of the maximal

covering formulation requires that the constraint lim-

iting the number of sites selected be replaced by a

constraint limiting the total area or cost of the se-

lected sites. Some examples of this problem specifica-
tion can be found in the conservation literature (for

example, Snyder et al., 1999; Polasky et al., 2001).

Snyder et al. (1999) solved a reserve site selection

model that included a constraint on the maximum

total area of selected reserve sites. Their model was

applied to a small problem on the Superior National

Forest in Minnesota with 33 potential reserves and 63

vegetation communities. Polasky et al. (2001) solved a
reserve site selection model that included a constraint

on total land acquisition costs. Their model was ap-

plied to a medium-sized problem of the Oregon Gap

Analysis data with 289 sites and 415 species. Neither

reported any computational difficulties solving their

applications using the budget or area-constrained

maximal covering formulation. However, as ReVelle et

al. (2002) point out, a covering formulation with a
conventional budget constraint in which the cost or

area coefficients are not 0 or 1 is not likely to be

integer-friendly or readily able to be solved to opti-

mality quickly (ReVelle, 1993). That is, significant

branching and bounding is likely required to find an

integer-optimal solution, particularly for large prob-

lems. Further, research has begun to suggest that the

data structure of reserve site selection problems plays
a significant role in ease of solution (Pressey et al.,

1999; ReVelle et al., 2002). Thus, while Snyder et al.

(1999) and Polasky et al. (2001) reported no difficul-

ties in solving their instances of budget-constrained

maximal covering formulations, other reserve selection

datasets are likely to exist in which computational

difficulties will occur (Church et al., 1996; Rodrigues

and Gaston, 2002; €Onal, 2004).
To address this, an alternative way to include the

requirements of a budget or area constraint is to cast it

as a second objective of cost or area minimization. A
two-objective reserve site selection problem can then be

formulated in which species� or habitat coverage is tra-

ded off against total area or cost of selected sites, with

solution by the multiobjective weighting method (Co-

hon, 1978). With this approach, the non-integer-friendly
budget constraint is taken out of the constraint set, often

leading to a much easier integer-programming problem

to solve (ReVelle, 1993). In one of the few multiobjective

reserve selection applications in the literature, Rothley

(1999) developed and solved a three-objective maximal

covering reserve site selection problem to maximize

connectedness and total area of the reserve system, and

to maximize the number of rare plant species repre-
sented. A constraint was included to limit the number of

sites selected, along with other logic constraints. The

model was applied to a small problem with 20 potential

reserve sites and solved using the multiobjective con-

straint method. Church et al. (1996) and ReVelle et al.

(2002) suggested that cost or size differentials of parcels

could be handled as a second objective in a reserve site

selection problem. However, neither formulated, solved
nor reported any computational experience with this

two-objective reserve site selection problem specifica-

tion. It is here that our work makes a contribution.

In this paper, we formulate, solve and compare

solution effort for several equivalent one- and two-

objective specifications of an area-constrained, reserve site

selection problem. Within this context, we also compare

the solution performance of the maximal covering for-
mulation with the equivalent minimal uncovering for-

mulation in both one- and two-objective models. The

computational impact of designating the coverage de-

cision variables as either binary or non-negative is also

explored. Computational experience is reported using a

large, real dataset from Australia. The purpose of our

research is to demonstrate that gains in computational

efficiency may be possible if a modeler is willing to ex-
plore alternative, but equivalent formulations for a

particular decision problem, dataset and choice of

optimization solver.
2. Methods

2.1. Data

We used a dataset from the Western Division of New

South Wales, Australia (Pressey and Logan, 1995;

Pressey et al., 1999). The data consisted of a set of 1886

pastoral land holdings, their area, and the occurrence of

each of 248 land systems (recurring patterns of land-

forms, soils and vegetation) within the set of sites

(Mabbutt, 1968; Walker, 1991). The total area of the set
of sites was 325,058 km2, with a range from 0.25 to

507.25 km2 and a mean area of 262.875 km2. Refer to

Pressey and Logan (1995) for a map.
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2.2. Models

To address the problem of selecting reserve sites

under area limitations, we formulated several 0–1

integer-optimization models. The models are based
upon the maximal covering location problem (Church

and ReVelle, 1974). The following notation was used:
2.2.1. Single objective, area-constrained, maximal cover-

ing reserve site selection model

i; I are the index and set of land systems,

j; J are the index and set of sites,

L is specified upper bound on total area of the se-
lected reserve sites,

Aj is the area of site j,

Ni is the set of sites, j, that contain land system i,

Xj ¼ {a 0–1 decision variable equal to 1 if site j is se-

lected for protection, and 0 otherwise}

Yi ¼ {a 0–1 decision variable equal to 1 if land system

i is represented by the selected set of sites, and 0

otherwise}
The model was formulated as follows:
Model 1 : maximize
X
i2I

Yi ð1Þ

subject to :
X
j2J

AjXj 6 L; ð2Þ

Yi 6
X
j2Ni

Xj 8i 2 I ; ð3Þ

Xj; Yi 2 f0; 1g: ð4Þ

The objective (1) maximizes the number of unique

land systems represented or covered by the set of se-

lected sites. The first constraint (2) ensures that the

total area of the selected set of sites does not exceed

L, the specified upper bound on total area of selected

sites. The second set of constraints (3) defines the

conditions of land system coverage. That is, this

constraint stipulates that a land system is covered if at
least one of the eligible sites containing it is selected

for protection. Constraint (4) defines the integer re-

strictions for the decision variables. Note, however,

that research with the maximal covering formulation

has shown that the coverage variables, yi, do not have

to be declared as binary variables for them to solve

with these values. The structure of the formulation

will naturally force these variables to the values of 0
or 1 if they are simply defined as non-negative vari-

ables with an upper bound of 1 (Church et al., 1996).

The significance of this is that reducing the number of

binary variables is typically thought to create an easier

optimization problem to solve. So, for our analysis,

the binary restriction on these variables was replaced
with the requirement that the variables be non-nega-

tive with an upper bound of 1.
2.2.2. Single objective, area-constrained, minimum uncov-

ering reserve site selection model

We next specified the equivalent, �uncovering� ver-
sion of the one-objective reserve site selection model.
The model is based upon work by Church et al.

(1996) and Arthur et al. (1997) in which a reserve site

selection model with a limit on the number of sites

selected was developed.

New notation. Ui ¼ {a 0–1 decision variable equal to 1

if land system i is not covered by the selected set of sites,

and 0 otherwise}

Our area-constrained, uncovering model is formu-
lated as follows:
Model 2 : minimize
X
i2I

Ui ð5Þ

subject to :
X
j2J

AjXj 6 L; ð6Þ

Ui þ
X
j2Ni

Xj P 1 8i 2 I ; ð7Þ

Xj;Ui 2 f0; 1g: ð8Þ
The objective (5) minimizes the number of unique

land systems that are not represented or covered by

the set of selected sites. Constraint (6), as in the

previous formulation, constrains the total area of

the selected set of sites. Constraint set (7) defines the

conditions under which a land system is not covered.
That is, this constraint stipulates that a land system

remains uncovered if none of the eligible sites con-

taining it are selected for protection. Constraint (8)

defines the integer restrictions for the site selection

decision variable. As with the previous formulation,

the �uncoverage� variable, Ui, does not actually have to

be declared binary in this specification of the problem,

nor does it have to be upper-bounded at 1.0. The
variable can simply be declared a non-negative vari-

able. The lack of a required upper bound on this

variable is the feature of the Minimum Uncovering

formulation that makes it more computationally effi-

cient than the equivalent Maximum Covering formu-

lation (Church et al., 1996). As with the previous

formulation, we relax the binary requirements for the

coverage variable in this model.
2.2.3. Two-objective maximal covering reserve site selec-

tion model

We next formulate a two-objective version of the

area-constrained maximal coverage model.
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New notation.

B is the total area of selected sites,

S is the total number of covered land systems,

w1 and w2 are non-negative objective function

weights whose sum equal 1 ðw2 ¼ ð1� w1ÞÞ.
The model is formulated as follows:

Model 3 : maximize w1�
X
i2I

Yi

 ! !

� w2�
X
j2J

AjXj

 ! !
ð9Þ

subject to :
X
j2J

AjXj ¼ B; ð10Þ

X
i2I

Yi ¼ S; ð11Þ

Yi 6
X
j2Ni

Xj 8i 2 I ; ð12Þ

Xj; Yi 2 f0; 1g;

BP 0; SP 0: ð13Þ

The objective (9) is a statement of our two objectives

to maximize the number of land systems covered while

minimizing the total area of the selected sites. Maxi-

mizing the negative of the budget is equivalent to

minimizing this value. The weights, w1 and w2, are

non-negative values whose sum is equal to 1. The first
constraint (10) is a definitional constraint that calcu-

lates the total area of the selected set of sites, B. Un-

like the single objective models, B is now a decision

variable rather than a known parameter. Constraint

(11) is another definitional constraint that sums the

number of covered land systems. Strictly speaking,

constraints (10) and (11) do not need to be included in

the model. They are included for our analysis so the
values of each of the objective functions can be readily

calculated. Both values could be determined by man-

ually summing the Yi and AjXj from the model output.

Constraint set (12) defines the conditions of coverage.

Constraint (13) defines the integer restrictions for the

coverage and site selection decision variables, and the

non-negativity requirement for the area variable, B,
and the variable defining the sum of the covered land
systems, S. As with the single objective model, the

binary restrictions on the coverage variable can be

replaced by non-negativity requirements and an upper

bound of 1.
2.2.4. Two-objective minimum uncovering reserve site

selection model

Finally, we specify a minimum uncovering version of

the two-objective model. The model is formulated as

follows using previously defined notation:
Model 4 : minimize w1�
X
i2I

Ui

 ! !

þ w2�
X
j2J

AjXj

 ! !
ð14Þ

subject to :
X
j2J

AjXj ¼ B; ð15Þ
X
i2I

Ui ¼ S; ð16Þ

Ui þ
X
j2Ni

Xj P 1; 8i 2 I

ð17Þ
Xj;Ui 2 f0; 1g;

BP 0; SP 0: ð18Þ

The objective (14) is a statement of our two objectives to

minimize the number of uncovered land systems covered
while also minimizing the total area of the selected sites.

Constraint (15) and (16) are the definitional constraints

for the two-objective function values. Constraint set (17)

defines the coverage conditions. Constraint (18) defines

the variable types. Again, the binary restrictions on the

coverage variables are relaxed.
2.3. Solution method

For the two-objective problems the multiobjective

weighting was used as the method of solution (Cohon,

1978). The weights, w1 and w2, were systematically

varied and the problem re-solved for each set of weights

to produce a trade-off curve between the number of land

systems covered and the total area of the selected sites.

As w1 was increased relative to w2, more weight was
given to the first objective, causing both coverage to go

up as well as the total area of the selected sites. The

opposite trend occurs as w2 increased relative to the

value of w1. The multiobjective problems were run first,

producing a value for the total selected area variable, L,
for each set of weights. These values were then used to

solve the single objective problems as the specified upper

bound on total selected area. That is, the single objective
problem was solved successively with the same values of

L previously generated through the two-objective prob-

lems, only now used as a known parameter. With this

approach, the same 25 solutions were generated by both

the single and two-objective models. Therefore, direct

comparisons can be made of the computational effi-

ciency of each model in generating those 25 solutions.

On a further computational note for the one-objective
problems, the optimality criteria was set to a value of

0.9999 in all of the runs in the branch-and-bound solu-

tion algorithm. This means that once the absolute opti-

mality gap was less than 1.0, the program could be

prematurely terminated and the resulting solution would



Table 1

Values and relationships between weights, total selected area, and

number of (un)covered land systems

Solution

number

w1 Total area

(km2)

Land

systems

covered

Land

systems

uncovered

1 0 0 0 248

2 0.3 1 4 244

3 0.5 2.5 6 242

4 0.6 6.25 9 239

5 0.7 15 13 235

6 0.8 40.75 21 227

7 0.9 60.5 24 224

8 0.92 117.5 29 219

9 0.93 219.5 37 211

10 0.94 497 56 192

11 0.945 709.75 69 179

12 0.95 817.5 75 173

13 0.955 1025.5 85 163

14 0.96 1118.5 89 159

15 0.965 1599 108 140

16 0.97 2772.5 147 101

17 0.975 2915.5 151 97

18 0.98 3675.5 167 80

19 0.982 3978 174 74

20 0.985 5723.25 204 44

21 0.99 7012.25 219 29

22 0.992 7665 225 23

23 0.995 10268.5 242 6

24 0.997 11231.25 246 2

25 0.998 12070.75 248 0

300
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be optimal. €Onal (2004) made this observation, noting

that since the objective function of maximal covering

formulations can only take on integer values (e.g.,

number of land types or species covered), a current so-

lution could not be improved upon once the gap was less
than 1. This intervention technique can result in signifi-

cant timesavings when solving 0–1 integer-programming

problems of this nature. Exploiting this characteristic of

the maximal covering/minimal uncovering formulation

in our research resulted in significant timesavings for the

one-objective problems. This protocol, however, could

not be applied to the two-objective problem since the

objective function was no longer integer in nature.

2.4. Software

All of the problems were solved on an IBM Pen-

tiumTM 4 personal computer, using the integrated so-

lution package GAMS/OSL 2.25 (GAMS Development

Corp, 1990), which was designed for large and complex

linear and mixed integer-programming problems. Input
files were created using GAMS (General Algebraic

Modeling System), a program designed to generate data

files in a standard format that optimization programs

can read and process. The models were solved using

IBM�s OSL (Optimization Subroutine Library), a For-

tran-based subroutine library designed to solve optimi-

zation problems. The revised primal simplex algorithm,

in conjunction with the branch-and-bound algorithm
for integer-variable problems, were used to solve the

models.
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Fig. 1. Trade-off curve between land system coverage and total

protected reserve area.
3. Results

3.1. General results

Each of the models was solved 25 times, varying ei-

ther the set of objective weights for the two-objective

problem or the corresponding parameter, L, for the

bound on total selected area for the single objective

problem. The weights, total area parameter values and

levels of coverage are contained in Table 1 and corre-

spond to the 25 runs for each model. The trade-off curve

that corresponds to the output of each model solved in
this analysis is shown in Fig. 1. Each point on the curve

represents one of the 25 solutions, illustrating the

number of land systems that are (un)covered for each

upper bound on total selected area.

Obviously, as the total area of selected sites increases,

coverage increases as well. This is achieved in the two-

objective models by incrementally increasing the value

of w1 while simultaneously decreasing the value of w2. In
the one objective models, this is achieved by incremen-

tally increasing the bound on total selected area. All 248

land systems can be covered by selecting sites whose
total area is 12075.5 km, 3.7% of the total area of 1886

eligible sites. Thus, complete coverage, as coverage is

defined here, can be achieved for a relatively small

percentage of the landscape. Additionally, a decision-

maker can see what levels of coverage are possible for

lower investments in total area. We should note that the

solutions displayed in Fig. 1 are by no means exhaustive,

but rather a representative sample meant to illustrate the
range of the values of the two objectives. Additional
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solutions may exist for different values of the parameter

on total selected area and different sets of objective

weights. Once an approximation of the trade-off curve

has been generated, a decision-maker may then decide to

focus more closely on a portion of the curve, generating
additional solutions in a specific range.

3.2. One- and two-objective maximal covering problems

The results of the comparison between the one- and

two-objective maximal covering problems, models 1 and

3, are listed in Table 2. We compared average solution

time over the set of solutions and number of branch-
and-bound nodes and iterations. We found that average

solution time for the two-objective maximal covering

formulation was more than three orders of magnitude

faster than the one-objective version, 3.17 versus

7962.79 s. Note that for runs when the maximum area

limit was less than or equal to 500 km2, both models

solve very rapidly with no required branch-and-bound

nodes. With budget levels greater than 500 km2, com-
putational effort increases for both models, but at a

much higher rate for the single objective formulation.

The average number of iterations and branch-and-

bound nodes are more than two orders of magnitude

less for the two-objective version of this problem.
Table 2

Comparison of solution characteristics of the one and two-objective, maxim

Solution number One objective

Time (s) B&B nodes Iterations

1 0.003 0 0

2 0.090 0 8

3 0.109 0 16

4 0.09 0 23

5 0.09 0 42

6 0.09 0 67

7 0.098 0 91

8 0.113 0 167

9 0.152 0 206

10 0.23 0 386

11 2.281 126 2198

12 4.527 324 4670

13 26.008 2448 19,431

14 6.332 470 6454

15 16.078 1657 7304

16 25.898 925 30,458

17 141.539 8093 159,132

18 587.961 40,477 571,719

19 804.48 49,052 861,436

20 631.398 17,646 511,338

21 52884.605 870,391 10,425,376

22 20245.08 320,945 6,394,809

23 799.281 36,120 648,600

24 86248.451 906,914 8,922,934

25 36644.777 917,903 17,066,480

Average:

7962.79 127751.6 1,825,334
3.3. One- and two-objective minimal uncovering problems

A similar comparison was done of the one- and two-

objective minimum uncovering problems, models 2 and

4. Results are listed in Table 3. Average solution time
for the two objective, minimal uncovering formulation is

again over three orders of magnitude faster than the

corresponding one-objective model, 2.53 versus 9297.92 s.

As with the previous set of runs, both models solve

easily and quickly when the maximum budget level is

less than or equal to 500 km2. Above that, computa-

tional effort increases for both models, but again at a

much higher rate for the single objective formulation.
The average number of iterations and branch-and-

bound nodes are over two orders of magnitude less for

the two-objective version of this problem.

These results clearly illustrate that for our data set,

the two-objective formulations are much more efficient

than the equivalent one-objective formulations. Our

findings when comparing the maximal covering to

minimal uncovering formulation differ somewhat from
findings made by Church et al. (1996) and Arthur et al.

(1997). They both found that the minimum uncovering

reserve site selection formulation when a constraint on

the number of sites is included solves more quickly than

the maximal covering formulation. We found virtually
al covering formulation with coverage variables declared non-negative

Two objective

Time (s) B&B nodes Iterations

0.152 0 0

0.152 0 253

0.152 0 256

0.16 0 258

0.148 0 263

0.152 0 275

0.148 0 281

0.16 0 289

0.16 0 298

0.16 0 317

0.188 7 343

0.219 10 375

0.258 7 445

0.238 3 510

0.297 4 569

0.559 27 775

0.551 31 948

1.281 82 2026

2.309 191 3008

2.082 112 3248

11.508 1180 10,892

20.199 2046 17,958

1.93 137 3233

11.551 1206 8172

24.367 2673 14,486

3.16684 308.64 2779.12



Table 3

Comparison of solution characteristics of the one and two-objective, minimal uncovering formulation with the uncoverage variables declared non-

negative

Solution number One objective Two objective

Time (s) B&B nodes Iterations Time (s) B&B nodes Iterations

1 0.27 0 0 0.129 0 42

2 0.24 0 13 0.121 0 9

3 0.229 0 15 0.141 0 21

4 0.240 0 21 0.133 0 23

5 0.25 0 34 0.129 0 32

6 0.24 0 39 0.117 0 44

7 0.26 0 51 0.133 0 45

8 0.27 0 64 0.129 0 51

9 0.289 0 108 0.141 0 72

10 0.299 0 106 0.148 0 89

11 2.738 126 1492 0.188 6 112

12 5.109 325 3018 0.238 10 132

13 40.23 2449 13,741 0.199 7 131

14 7.07 399 4480 0.199 3 221

15 21.691 1659 6028 0.227 4 222

16 29 912 24,452 0.48 27 466

17 174.93 7808 146,681 0.457 31 593

18 935.799 27,469 686,545 0.949 70 1053

19 1054.66 48,827 849,488 2.23 208 2356

20 1295.562 34,902 781,372 2.039 148 2061

21 79929.234 953,362 11,134,104 12.762 1383 10161

22 26683.75 278,263 500,2856 9.391 958 8527

23 2478.152 45,110 919,060 1.781 145 2097

24 8187.449 128,077 2,639,414 10.34 1013 7547

25 111,600� 1,389,535� 10,793,021� 20.371 2255 11808

Average:

9297.922 116768.9 1,320,248 2.52688 250.72 1916.6

*Note. This run terminated after 31 h without an optimal solution because OSL encountered solution difficulties.
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no difference in average solution time when comparing

the two-objective maximal covering problem with the

two-objective minimal uncovering formulations of our
model specifications with area considerations. Further,

we found that the average solution time of the area-

constrained maximal covering formulation was over 20

min faster than the equivalent minimal uncovering for-

mulation, 7962.79 versus 9297.92 s.

3.4. Binary versus non-negative coverage decision vari-

ables

As pointed out by Church et al. (1996), the coverage

variables, yi, and the uncoverage variables, ui, do not

have to be declared binary in order for them to solve as

such in the conventional maximal covering location

problem when a limit on the number of selected sites is

included. Relaxing these binary variable restrictions has

been shown to lead to savings in solution time and ef-
fort. In all of our runs reported in Tables 2 and 3, the

binary restrictions were relaxed. However, the effect of

this variable designation has not been tested on the area-

constrained maximal covering/minimal uncovering for-

mulations. To test this, we repeated the runs of all 4 of
our model specifications, now requiring the coverage

variables to be binary. The results of this can be evalu-

ated by comparing the appropriate columns in Tables 2
and 3 with those in Tables 4 and 5 for both the one and

two-objective models. For both the maximal covering

and minimal uncovering versions of the two-objective

problem, average solution time was virtually the same

whether the respective coverage/uncoverage variables

were made binary or non-negative. Average solution

time for all 4 sets of runs was around 3 s. However,

dramatic and unexpected differences arise with the one-
objective formulations. For the one-objective maximal

covering formulation, average solution time was 3 times

faster when the coverage variables were declared binary

rather than non-negative and upper bounded at 1

(2294.08 versus 7962.79 s). For the one-objective mini-

mal uncovering formulation, average solution time was

an order of magnitude faster when the �uncoverage�
variables were declared binary rather than non-negative
(633.89 versus 9297.92 s). While the variable designation

seems to have no effect in the two-objective models,

there is a pronounced effect with the one-objective

models. So, despite theory that would suggest fewer

binary decision variables would make for an easier



Table 4

Comparison of solution characteristics of the one and two objective, maximal covering formulation with the coverage variables declared binary

Solution number One objective Two objective

Time (s) B&B nodes Iterations Time (s) B&B nodes Iterations

1 0 0 0 0.121 0 0

2 0.23 0 8 0.137 0 253

3 0.23 0 15 0.16 0 256

4 0.25 0 23 0.152 0 258

5 0.24 0 42 0.16 0 263

6 0.26 0 67 0.148 0 275

7 0.25 0 91 0.16 0 281

8 0.26 0 167 0.16 0 289

9 0.309 0 206 0.16 0 298

10 0.439 0 386 0.188 0 317

11 2.637 101 1603 0.219 7 343

12 28.309 1207 22,223 0.27 10 375

13 1.609 36 1164 0.262 8 445

14 91.859 1037 28,089 0.25 3 510

15 12.508 202 6618 0.309 4 569

16 129.98 1602 70,382 0.559 27 766

17 109.691 1037 38,498 0.539 14 939

18 463.117 13,427 298,020 1.367 87 2060

19 794.988 11,877 394,002 2.418 187 3065

20 400.84 4068 203,366 2.152 133 3259

21 449.559 6585 230,384 11.762 1169 10881

22 131.34 2571 83,227 19.859 2015 17522

23 70.061 1797 50,824 2.258 177 3341

24 19793.02 276,890 6,457,608 11.629 1206 8172

25 34870.031 917,903 17,066,480 24.852 2673 14491

Average:

2294.081 49613.6 998139.7 3.21044 308.8 2769.12
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problem to solve, we did not find that to be the case with

our data when an area or budget constraint is included

in maximal coverage/minimal uncovering formulations.
4. Discussion

We addressed the problem of selecting sites for pro-
tection with the objective of maximizing land type rep-

resentation subject to a constraint on the total area of

the selected sites. We formulated and compared com-

putational efficiency of several models of this problem

specification. Our results showed that for our data set

and choice of optimization solver the two-objective

formulations performed consistently better than one-

objective formulations in terms of average solution time,
number of iterations and nodes. Many instances of our

one-objective problem took hours to over a day to solve,

a prohibitive amount of time to make such models

useful to planners often in need of real time feedback

and information. However, all instances of our two-

objective formulations could be solved in less than 24.85 s.

Thus, while some reserve site selection coverage models

have been readily able to be solved as single objective
problems with area restrictions, we found the solvability

of our models and data to be greatly enhanced by a
multiobjective approach. The reader should also bear in

mind that the solution performance of the one-objective

models in this analysis was enhanced through the use of

the optimality criteria discussed in Section 2. Without

this intervention, the disparity of performance between

the one and two-objective models would have been even

greater.

We also found that when cast as a two-objective
problem, both the maximal covering and minimal un-

covering formulations solved equally fast. When cast as

a single objective formulation, the average solution time

of the maximal covering formulation was surprisingly

faster than the uncovering formulation. Finally, even

more surprising, was the finding that solution speed is

enhanced by declaring the coverage variables as binary

in the single objective problem specifications. We should
point out, however, that our results are conditioned

upon the use of our particular data set and solver, and

as such, our findings might not be generalizable to other

data sets. We suggest, however, that our results can be

used to guide other researchers in their exploration of

alternative model specifications if solution difficulties are

encountered in solving area-constrained reserve site se-

lection formulations. We found significant computa-
tional savings through the formulation and solution of

alternative, equivalent models.



Table 5

Comparison of solution characteristics of the one and two objective, minimal uncovering formulation with the uncoverage variables declared binary

Solution number One objective Two objective

Time (s) B&B nodes Iterations Time (s) B&B nodes Iterations

1 0.20 0 0 0.539 0 2013

2 0.441 0 15 0.172 0 453

3 0.438 0 27 0.402 0 1305

4 0.441 0 47 0.383 0 1213

5 0.441 0 58 0.48 0 1629

6 0.461 0 87 0.457 0 1851

7 0.488 0 187 0.363 0 1131

8 0.598 0 394 0.512 0 1679

9 3.191 0 614 0.449 0 1513

10 1.48 0 1800 0.5 0 1686

11 3.469 53 2748 0.508 7 1732

12 117.133 2955 67,394 0.609 10 1562

13 1.551 2 2013 0.621 8 1844

14 1.77 4 2288 0.449 3 1257

15 1.719 3 2247 0.59 4 1766

16 38.293 677 23,058 0.75 27 1549

17 95.562 1394 56,083 0.762 15 1672

18 670.379 15,677 392,672 1.328 78 1978

19 117.18 1113 47,957 2.5 206 2916

20 404.75 3835 168,923 2.031 125 2538

21 353.008 6120 218,773 8.488 865 7871

22 165.18 2928 76,898 16.051 1638 13,449

23 89.461 2107 47,251 1.18 94 930

24 10411.211 128,077 2,639,414 8.578 874 5434

25 3368.289 52117 1,117,568 22.398 2485 11,127

Average:

633.8854 8682.48 194740.6 2.844 257.56 2883.92
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Each of the models was solved 25 times, varying ei-

ther the set of objective weights for the two-objective

problem or the corresponding parameter, L, for the

bound on total selected area for the single objective

problem. The weights, total area parameter values and

levels of coverage are contained in Table 1 and corre-

spond to the 25 runs for each model. The trade-off curve

that corresponds to the output of each model solved in
this analysis is shown in Fig. 1. Each point on the curve

represents one of the 25 solutions, illustrating the

number of land systems that are (un)covered for each

upper bound on total selected area.

Obviously, as the total area of selected sites increases,

coverage increases as well. This is achieved in the two-

objective models by incrementally increasing the value

of w1 while simultaneously decreasing the value of w2. In
the one-objective models, this is achieved by incremen-

tally increasing the bound on total selected area. All 248

land systems can be covered by selecting sites whose

total area is 12075.5 km, 3.7% of the total area of 1886

eligible sites. Thus, complete coverage, as coverage is

defined here, can be achieved for a relatively small

percentage of the landscape. Additionally, a decision-

maker can see what levels of coverage are possible for
lower investments in total area.

Using the weighting method we were quickly able to

generate an estimate of the trade-off curve between the
two objectives, shown in Fig. 1. The multiobjective

weighting method, used to solve our two-objective

problems, is an efficient and well-known means to gen-

erate an estimate of the trade-off curve for problems

with binary decision variables. Our intent was not to

enumerate every feasible solution on the trade-off curve.

We suggest, moreover, that a decision-maker is unlikely

to be interested in every possible feasible solution to a
problem. Instead, the decision maker is likely to find

specific regions on the trade-off curve to be of particular

interest.

The particular shape of any trade-off curve, when

generated through the weighting method, often reveals

regions of the curve in which solutions are tightly

packed and also regions where gaps between solutions

indicate that further exploration might be warranted.
The shape of the curve may also illustrate where the

value of one objective is changing rapidly, and thus,

where sharp trade-offs are occurring. It is only after a

reasonable approximation of the trade-off curve has

been generated that a decision maker is likely to focus

attention on specific regions of the curve. Once a deci-

sion-maker has identified an area(s) of interest on the

curve, then the modeler can go back and solve the
problem via the multiobjective weighting method within

a tighter range of weights. If gaps between solutions in

the area of interest still remain, then solution techniques
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other than the multiobjective weighting method may be

useful in more closely exploring the solutions in that

region.

If gaps between solutions on the curve remain after

having explored the region of interest with a series of
weights, then the modeler may want to solve specifica-

tions of the corresponding single objective problem via

the constraint method. With the constraint method, the

upper bound on the total selected area parameter in our

single objective model is systematically varied and the

problem resolved with each new value. The reason for

using the constraint method in conjunction with the

weighting method is that when applied to a integer-
programming problem, the multiobjective weighting

method may not be able to find all possible non-inferior

solutions due the presence of ‘‘gap points.’’ Gap points

are noninferior solutions to a multiobjective integer

model that cannot be found by the weighting method.

These can occur because the surface of the trade-off

curve may not convex/concave due to the integrality of

the variables. (Refer to Cohon, 1978 for a discussion of
gap points.)

Despite the possible presence of gap points, however,

an analyst can still likely generate a very good estimate

of the non-inferior set of solutions using the multiob-

jective weighting method. This then allows the decision

maker and analyst to locate the solution regions of

greatest interest relatively quickly and efficiently, thus

reducing the need to solve many instances of the less
computationally efficient, single objective version of the

problem via the constraint method.

In addition to formulating an area-constrained re-

serve selection model that can be quickly solved, we

suggest our findings have additional significance. Spe-

cifically, since the area-constrained two-objective prob-

lem can readily be solved, additional constraints may be

able to be added to this formulation allowing for even
more realistic reserve selection model specifications.

Additional work is planned to extend the concepts de-

veloped in this paper to a multi-period site selection

application. Further, we plan to explore in relation to

our findings the development of the much more difficult

reserve site selection problem that requires a minimum

area of each land type be included in selected reserve

sites before the land type is considered covered.
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