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Abstract

Insects and diseases are common disturbance agents in forested ecosystems. Severe outbreaks can cause significant chanc
in tree species composition, age structure, and fuel conditions over broad areas. To investigate the role of biological disturbances
in shaping forest landscapes over time, we constructed a new “biological disturbance agent” (BDA) module for a landscape-level
forest succession and disturbance simulator, LANDIS. The BDA module is designed to simulate tree mortality following major
outbreaks of insects and/or disease. Major outbreaks are defined as those significant enough to influence forest succession, fire
disturbance, or harvest disturbance at landscape scales. Module design is flexible to accommodate a diversity of life history
traits characterizing destructive insects and diseases, and more than one BDA can be simulated to examine their interactions.
Five main elements control the probability of biological disturbance within the module: (1) local host dominance on a given
site; (2) host value modifiers that reflect environmental conditions and recent disturbance history; (3) host dominance within a
user-specified neighborhood; (4) the temporal outbreak pattern characteristic of the BDA, and (5) BDA dispersal in cases where
the annual dispersal range of the BDA is small relative to the study area. In this paper, we describe the first four elements of
the BDA module, and present the initial testing of the module on a variety of neutral landscape patterns, using Eastern spruce
budworm as a test case. Our results are consistent with published successional patterns of spruce-fir and mixed forests affectec
by spruce budworm, but also highlight areas of uncertainty in the spatio-temporal patterns of budworm-caused tree mortality
and biological disturbances in general. We suggest that the behavior of the module is consistent with the design and intended
purpose of LANDIS as a probabilistic landscape-level simulator of forest disturbance and succession.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction provide importantinsights into the spatio-temporal pat-
terns of biological disturbances in forest ecosystems.
Biological disturbances, such as insect and disease The vast majority of modeling studies investigat-
outbreaks, are critically important agents of forest ing forest insects have focused on their population
change, causing tree mortality at scales ranging from dynamics. These models include conceptual models
individual trees to entire regions. Damage caused (e.g.,Holling, 1986, models based on life tables (e.g.,
by biotic agents such as Eastern spruce budworm Royama, 1984; Dale et al., 1991and highly so-
(Choristoneura fumiferarjaand mountain pine beetle  phisticated time-series analysis designed to elucidate
(Dendroctonus ponderospean dwarf other natural the mechanisms driving insect population dynamics
disturbances Kleming et al., 2000; Samman and (Turchin, 2003. Most of these population-based ap-
Logan, 2000, and interact synergistically with fire proaches do not consider spatial processes affecting
disturbance by greatly enhancing fuel loading and population dynamics in heterogeneous environments.
the risk of high-intensity firesHessburg et al., 1999;  An exception is the use of reaction—diffusion models to
Fleming et al., 2002 Due to their host-specificity, elucidate mechanisms underlying population viability
biotic disturbances are also sensitive to host abun- in heterogeneous environmenfslgther and Bevers,
dance and landscape distribution, and therefore likely 2002 and regional synchronicity Bjornstad and
respond to feedback associated with forest successionBascompte, 2001; Bjornstad et al., 2p02onetheless,
and change Rergeron and Leduc, 1998; Hessburg the behavior of spatially explicit population models
et al., 1999. Depending on their severity and extent, is complex, even within homogeneous environments
these disturbances have important and long-lasting (Kareiva and Wennergren, 1995
consequences for long-term forest composition and  Holling (1986, 1992)oted that the dynamics of in-
pattern at landscape scalétegsburg et al., 1999 sect outbreaks are complex because they are controlled
There are few examples of landscape-level biotic by multiple constraints operating at vastly different
disturbance—succession models published in the liter- temporal and spatial scales. For example, endemic
ature (sedRykiel et al., 198&ndFall et al., 200for spruce budworm populations are held in check by a
notable exceptions). Nonetheless, decades of researcltomplex of natural enemies that can respond quickly to
and forest monitoring provide some insight into some minor fluctuations in budworm populationRgyama,
of the essential elements required to simulate interac- 1984. During endemic periods, food resources for the
tions between biotic disturbance agents and their hostsbudworm slowly increase to a level that can sustain an
in forested landscapes. For example, forest ecologistsoutbreak. Once the system has reached this threshold
have quantified many of the local stand characteristics state, a relatively minor event (e.g., weather conditions
(e.g., host abundance, age, stand structure, soil mois-or budworm immigration from neighboring forests) can
ture, etc.) that determine the relative vulnerability of a rapidly shift the control of budworm populations to
stand to an outbreak should one ocdBatzer, 1969; their food resource, and their population growth be-
Wulf, 1985; Shore and Safranyik, 1992; Bergeronetal., comes exponentiaHolling, 1989. While predicting
1995; Chojnacky et al., 2000; Orwig et al., 200nter- the triggering event or the specific year of an outbreak is
mediate scale factors affecting forest vulnerability are nearly impossible, predicting whether an outbreak will
less understood, but expert opinion (e\yylf, 1985 occur within a larger temporal window (e.g., a decade)
and empirical evidence suggests that characteristics ofbecomes more feasiblalfen and Hoekstra, 1992
the surrounding landscape can also influence stand vul- ~ Since forest succession is very slow relative to insect
nerability to a given biotic disturbanc&€éppuccino population dynamics, the fine-scale temporal details of
et al., 1998; Radeloff et al., 20R0At the regional pest populations are less important than the more gen-
scale the regularity, periodicity, and synchronicity of eral temporal pattern of damage (i.e., mortality) that
insect outbreaks have been well documented throughthey cause. Thus an alternative approach to simulat-
aerial survey programge(ickson and Hastings, 1978; ing forest-pest interactions is to use the characteristic
MacLean and MacKinnon, 199@nd dendrochronol-  patterns of biotic disturbance from the past to predict
ogy studies Blais, 1983; Swetnam and Lynch, 1993; their behavior in future landscapes. This is analogous
Bergeron, 200p Collectively, these monitoring efforts  to using the statistical properties of past fire regimes to
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simulate interactions between fire disturbance and for- erance, fire tolerance, seed dispersal, ability to sprout
est succession in future landscapes, an approach thatregetatively, and longevity. The forest harvest mod-
has been widely and productively applied in the past ule of LANDIS simulates forest management distur-
(e.g.,.Baker, 1992; He and Mladenoff, 1999 he idea bance using a suite of ranking algorithms that can
is not to accurately predict the dynamics of a given be related to specific management godsgtafson
site on the landscape, but rather to capture the essentiakt al., 2000. The model operates on a raster (grid)
patterns of disturbances at landscape scales. This apimap, where each cell contains information on the pres-
proach is consistent with the design and philosophy of ence/absence of tree species and their 10-year age-
LANDIS, a landscape-scale forest succession and dis- cohorts (species-age list), but not information about
turbance simulator that trades mechanistic detail for the the density or size of individual stems. Model input in-
ability to simulate large areas over long periods of time cludes mapped land types/ecoregions, initial species-
(Mladenoff, this volumg age conditions, mapped stands and management ar-
This paper provides a detailed description of a new eas, as well as parameters for species establishment,
biological disturbance agent (BDA) module designed fire characteristics, and fuel accumulation regimes for
to complement the LANDIS simulation framework. each landtype/ecoregion. Several new improvements
The BDA module is designed to simulate tree mortal- to LANDIS, described in this paper and others in this
ity following major outbreaks of insects and/or disease, special issueHe et al., this volume; Shang et al., this
where major outbreaks are defined as those significantvolume; Scheller and Mladenoff, this volume; Yang et
enough to influence forest succession, fire disturbance,al., this volumgwill be integrated into subsequent ver-
or harvest disturbance at landscape scales. The mod=sions of the model.
ule is flexible enough to accommodate several types of
destructive insect and disease species, and more than
one BDA can be simulated concurrently to examine 2. Biological disturbance agent module
their interactions. For clarity, we focus our presenta-
tion of the module and its behavior using a case study 2.1. Overview
forest-pest — Eastern spruce budworm. For the initial
testing, we evaluate the relative influence and interac-  The temporal resolution for a given BDA is limited
tions between the spatial pattern of the environment, by the time step of LANDIS, currently fixed at ten
neighborhood effects, and tree species diversity on theyears. Given this temporal resolution, only tree mor-
abundance, severity, and pattern of budworm-causedtality, rather than defoliation or infection, is simulated.
tree mortality on neutral landscapes. We then discuss Biological disturbances are probabilistic at the site
the limitations and future development directions of (i.e., cell) scale, where each site is assigned a probabil-
the module in the context of other types of destructive ity value calledSite Vulnerability(SV), and compared

forest insects and diseases. with a uniform random number to determine whether
the site is disturbed or not. Disturbance causes species-
1.1. LANDIS overview and cohort-specific mortality in the cell. In the simplest

case, site vulnerability equalSite Resource Domi-

The purpose of LANDIS is to simulate the recipro- nance(SRD), a number that ranges from 0 (no suscep-
cal effects of disturbance processes and patterns of for-tible host) to 1 (most susceptible host) based on the tree
est vegetation on each other across largé«10’ ha) species and age-cohorts present in the site. While the
landscapes and long time scales (50-1000 years). Thepresence of susceptible hostis required for disturbance,
current version of LANDIS (v3.7) simulates differ- four other factors may also modify site vulnerability:
ential reproduction, dispersal, and succession patterns(1) environmental and/or other disturbance-related
using the vital attributes of species, and incorporates stress $ite Resource Modifiers(2) the abundance
effects of natural disturbance (fire and wind) and en- of host in the neighborhood surrounding the site
vironmental heterogeneity interacting spatially across (Neighborhood Resource DominaficéNRD); (3)
the landscapeMladenoff and He, 1999 Vital at- user-defined temporal functions (e.g., cyclic, ran-
tributes influencing forest succession include shade tol- dom, or chronic) that affect the temporal pattern of
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Table 1 etal., 1983. Since black sprucd( mariang is consid-
Host preference look-up table example using spruce budworm, where ared g secondary hodtlacLean, 1980; Montgomery
the age range listed represents the ages at which the species exist%t al., 1983, it never reaches primary f,10$t status (i.e

within the host preference class . . g
minimum primary host age > longevity).

Species Minor host ~ — Secondary host Primary host SRD for a given site varies between 0 and 1, and rep-
(min—-max age) (min-max age) (min—-max age) A .
o o010 020 50120 resents the relative resource value of a site for the BDA.
alsam 1ir —. — — . . .
Black spruce 0-40 50-200 095999 The relative resource value of a given species cohort

White spruce 0-10 20-40 50-200 is defined by its host preference class, where preferred
host = 1.0, secondary host = 0.66, minor host = 0.33,
A value of 999 indicates that the species never reaches a given hostand non-host = 0. While these rank-ordered host values
preference class, and species not listed (e.g., trembling aspen) are, . . . -
considered non-hosts by default. Iog|c_ally correspond with published host susceptibility
rankings for many forest pests (e.ylacLean, 1980;
Hall et al., 1998; Chojnacky et al., 200@ve caution

disturbances across the entire spatial domain of the y,5; gisturbance probability is not necessarily a linear
simulation Regional Outbreak StatygROS); and (4)  fnction of host susceptibility. The BDA module

spatial epidemic zones defined via simulateq dispersal compares the look-up table with the species cohort list
of a BDA through a heterogeneous landscadpsiier-  generated by LANDIS to calculate SRD using one of
sal). Any combination of the optional factors can be 66 methods: (1) the maximum host preference class
simulated to capture the essential dynamics for a given yeqent (2) an average resource value of all tree species
BDA; multiple BDAs can be simulated simultaneously  resent, where the resource value of each species is
for a given landscape; and interactions between on eqented by the cohort with the maximum host pref-
BDAs may be simulated via disturbance-related goronce and (3) an average resource value for all tree

stress. This model description starts by describing .,ports present. When the biomass option becomes
the simplest case (i.e., site-level resources), and theny siiable in LANDIS Gcheller and Mladenoff, this

builds further complexity into the module by adding oymg), a fourth option will use the biomass of each

optional elements 1-3 above (dispersal algorithms yo0 shacies cohortto weightits relative resource value.
will be described in a forthcoming manuscript). A SRD is required to calculate a site’s vulnerability

flow diagram for the module is shown fig. 1 that ultimately dictates the probability and severity of
biotic disturbance on a given site. Though other con-

2.2. Site resource dominance tributing factors may be simulated, the simplest calcu-
lation of SV is:
Site resource dominance indicates the relative quan-
tity/quality of food resources on a given site and isa SV =a x SRD (N}

combined function of tree species composition and age-

cohorts present on that site. The relative food resourceswherea s a user-defined calibration parameter. By de-
provided by a given tree species in a particular age classfault, a = 1. BDA disturbance events are determined
is defined by its host preference. Four host preference for each site by comparing SV with a uniform random
classes are rank-ordered according to their relative re- number ranging from 0 to 1.

source value: primary, secondary, minor, and non-host.  Once a site is disturbed, the disturbance severity is
A host preference parameter look-up table provides a calculated for the site to determine which species co-
flexible method for defining the age range at which horts die, based on their tolerance as a host. While host
a given species exists within a given host preference tolerance (species susceptibility to BDA disturbance) is
class. Tree species not listed in the look-up table are typically related to related to its host preference (value
assumed non-hosts. For example, in a simple borealas afood resource), there are often differences between
forest system disturbed by Eastern spruce budworm the two that are significant enough to warrant a new set
(Table 7 balsam fir and white spruce are minor hosts of parameters. For example, all cohorts of a species
in the youngest cohort, secondary hosts at ages 20—40may be equally sensitive to a disturbance, even though
and reach primary host status by age Bldftgomery older cohorts provide greater food resources.
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Fig. 1. Logical flow diagram for the biological disturbance agent module.

Disturbance intensity is a direct function of SV,
where SV < 0.33 = light; 0.33 < SV < 0.67 = mod-
erate; SV > 0.67 = severe disturbance. Cohort mortal-
ity follows the following rules: light disturbance kills
all vulnerable cohorts, moderate disturbance Kkills all

tolerant and vulnerable cohorts, and severe disturbance
kills resistant, tolerant, and vulnerable cohorts.

If no other BDA options are simulated, the BDA
module finishes by updating species cohort lists, up-
dating the time since last biological disturbance, out-
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putting a map of BDA disturbance events, and updating types of disturbances. To calculate the DM for a given
the BDA log (ig. 1). disturbance:

This algorithm produces landscape patterns of tree  if DM _duration > T;,
mortality with qualities desirable for simulating dis-
turbances by insects and disease. First, the probability DM; = DM_Max; x ! )
of disturbance is a direct function of host value and DM _duration

susceptibility to the BDAKig. 2. The resulting dis-  where DMMax is the maximum modifier for distur-
turbance patternis a logical extension of the stand-level phance, DM_duration is the maximum amount of time
risk factors that are often well documented in the liter- g disturbancé can influence SRD, an@; is the time
ature. Hence, disturbances are randomly distributed if since the last disturbancexperienced on that site. We
the host is randomly distributed, anéig. 2b) hierar-  assume that for those sites experiencing multiple recent
Chically distributed when the host is spatially clustered disturbances, the modification to SRD is equa| to the
(Fig. 2d). Second, there is no additional autocorrela- sym of all disturbance modifiers:

tion in the disturbances other than that caused by spa-

tial autocorrelation of the host. This assumption is due PDMiinal = (DMgist1 + DMgist2 + . . . DMdist:) 3)

to the paucity of studies qu_antlfylng the _spat|a| struc- Disturbances that may affect a given BDA include fire,
ture of mortality caused by insects and disease at land-

. . ind, another BDA, and user-specified harvest pre-
scape scales. However this assumption can be relaxed. ."’. . o )
) : : . . scriptions. SRD is then modified by LTM and Giy:
if more information on the drivers of disturbance pat-

terns is known through the use of optional procedures SR, = SRD+ LTM + DMjinaj (4)
described below.

DM _duration — T;

Site vulnerability is then calculated by substituting
2.3. Site resource modifiers SRDy for SRD in Eq. (1) Hence direct effects of
environment and recent disturbance on a given BDA
Site resource modifiers are optional parameters usedare assumed to be additive. Note that both land type
to adjust SRD to reflect variation in the quality of and disturbance may also affect the BDA indirectly by
food resources introduced by both site environment modifying the tree species and age structure across the
(i.e., land type) and recent disturbance. For exam- landscape.
ple, dry land types or ecoregions may be more prone The user should calibrate the above modifiers to re-
to a given BDA due to drought streskléttson and flect the relative influence of species composition/age
Haack, 198Y. The modifier need not be positive, as structure, the abiotic environment, and recent distur-
some environmental conditions may either make hosts bance. For example, an LTM value of 0.33 is equal to
more resistant to a given BDA, or make the BDA it- a full step increase in disturbance intensity above that
self less likely to be present (e.g/an Arsel et al., calculated using species composition alone, and would
1967). Similarly, recent disturbances such as defo- cause resistant hosts to respond as tolerant hosts and
liation or fire may weaken the surviving trees, also tolerant hosts to respond as vulnerable hosts to a BDA
making them more prone to certain types of biolog- eventin that land type. Note that white. (4)allows
ical disturbances (e.gWallin and Raffa, 200), and SRDy, to exceed 1.0, by definition SV cannot exceed
others (e.g., spray programs via human management)1.0 (i.e., 100% probability of disturbance). SRDal-
make them more resistant. Hence both land type mod- ues exceeding 1.0 can therefore only enhance the prob-
ifiers (LTMs) and disturbance modifiers (DMs) can ability of disturbance further if additional variables,
range between-1 and +1, and will be added to the such as neighborhoods or temporal disturbance func-
SRD value of all active sites where host species are tions (described below) are applied.
present.
While LTMs are assumed to be constant for the en- 2.4. Neighborhood resource dominance
tire simulation, the magnitude of a DM is assumed to
decline linearly with the time since last disturbance, Several recent studies suggest that the landscape
and SRD of a given site can be influenced by multiple context of a site also influences the probability and
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severity of disturbance Qappuccino et al., 1998;
Radeloff et al., 2000 The mechanisms for this “neigh-
borhood effect” are not well-understood, but may in-
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andais a user-defined calibration parameter defined in

Ea. (1)
Importantly, the landscape mean value of SV cal-

clude (a) enhanced ability of a dispersing BDA to detect culated usingEq. (7) is generally lower than if the
host species when the host trees are embedded withinneighborhood calculation is not applied (Sturtevant,
a matrix of host Greenbank et al., 1980or (b) re- unpublished data). This effect is observed because sites
duced natural enemies within landscapes having a low with low SV decrease the SV of their neighbors, but
diversity of tree specieCappuccino et al., 1998A their own probability of disturbance cannot increase
neighborhood effect is modeled as the mean SRD above zero unless the SV of their neighborhood is
each cell within a user-defined radiRsusing one of greater than their threshold tolerance. The neighbor-
three radial distance weighting functions listed in in- hood impact on landscape-level disturbance probabil-
creasing order of local dominance: uniform, linear, and ity is greatest when hosts and non-hosts are highly in-
gaussian@rr, 1999. The linear radial distance func- terspersed (e.grig. 2c). As the spatial autocorrelation
tion is calculated using the: of hostincreases, the landscape-level probability of dis-
R—D turbance approaches that expected if no neighborhood
Weight= R was applied, though the spatial pattern of disturbances
is modified Fig. 2f).

(5)

whereD is the distance from the focal site. The gaussian
radial distance function was adapted fr@nmr (1996)

2

2.5. Regional outbreak status

Weight=exp— —— (6) Several insect pests fluctuate fairly regularly in time,
(R/2) causing periodic disturbance over broad spatial scales.
Dividing the radius by 2 irEq. (6) assumes that the  This type of regional synchronicity is most often ob-
radial distance function includes 2 standard deviations served in highly vagile species such as Lepidopterans
of the distribution with a maximum radius & (Kendeigh, 1979; Blais, 1983; Swetnam and Lynch,
Neighborhood resource dominance is calculated for 1993. Several simple temporal patterns may be sim-
all sites containing host species (i.e., SRD > 0). For ulated in the BDA module to represent general out-
large neighborhoods (e.g., hundreds of cells), the NRD break trends for the entire study landscape. Temporal
calculation is computationally expensive, because the patterns in a given BDA are assumed constant for the
SRD value for each cell in a site’s neighborhood must length of the simulation, and are defined by a suite
be accessed and averaged with the SRD of all other of temporal disturbance functions that define the land-
cells within the neighborhood, and this process is re- scape scale severity of the BDA at a given time step.
peated for every site containing host. We have there- These temporal disturbance functions can vary in com-
fore added an optional sub-sampling procedure basedplexity from a chronic BDA that occurs with the same
on the observation that adjacent sites share a significantseverity each time step to cyclic or random tempo-
portion of neighbors. The sub-sampling procedure cal- ral patterns that can further vary in severity, and may
culates the NRD for every other site, and the NRD of be parameterized from a variety of historical outbreak
the remaining sites are estimated by the mean NRD of records.
adjacent sites in the four cardinal directions. We define the regional outbreak status as an estimate
Site vulnerability can now reflect (a) the species and of the severity of the regional outbreak, distinguished
age composition of the site (SRD), (b) modified by land from disturbance severity at the local scale. Units are
type and past disturbance (SR)p and (c) the species integer classes ranging from 0 (no outbreak) to 3 (severe
and age composition of the neighborhood (NRD): outbreak). The time to the next outbreak is calculated
SRDy + (NRD x NW) following each outbreak eve_nt using eithera “gniform”
or a “normal” random function. Two user-defined pa-
1+ NwW rameters control each function. The uniform random
where NW is a parameter designed to define the relative function assumes that the outbreak interval varies be-
importance between site and neighborhood resourcestween a minimum Nlinl) and maximum axl) with

SV=

()
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F = uniform, T = pulse, Minl = 10, F = uniform, T = pulse, Minl = 40,
Maxl = 10, MinROS = 0, MaxROS = 2 P, =40, MinROS = 0, MaxROS =3
34 3
2 2
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0 - 0 A=ttt L
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(@ (b)
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3 3- ﬂ

2 ﬂ h H N H N ﬂ 2 A
14 1

T S e -
0 50 100 150 200 250 300 O 50 100 150 200 250 300
(c) (d)
F = uniform, T = vpulse, Minl = 0, F = uniform, T = vpulse, Minl = 10,
Max! = 80, MinROS = 0, MaxROS =3 Maxl = 16, MinROS = 0, MaxROS = 3
3q 3 -
2 2
1 1
0 0
0 50 100 150 200 250 300 0 50 100 150 200 250 300

() U]

Fig. 3. Examples of temporal patterns in regional outbreak status (ROS) simulated using different combinations of random functions and
available parameters = random function (uniform, normalJ = outbreak type (pulse, variable pulse), MinROS = minimum ROS, MaxROS =
maximum ROS. FoF = “random”, Minl and MaxI| equal the minimum and maximum outbreak interval, respectivel{ £6normal”, u and

o equal the mean and standard deviation in outbreak interval, respectively.

equal probability. The normal random function selects terns. Though the actual time periods between out-
the time to the next outbreak from a normal distribu- breaks will be constrained by the time step of LANDIS

tion with a mean 3 and standard deviationes= Either (currently set at 10 years), the random outbreak func-
of the random functions can be parameterized to pro- tions may be used to vary the outbreak interval such
duce chronic (i.e., outbreak every time stém. 3a), that theaverageinterval between outbreaks observed

cyclic (i.e., evenly spaced outbreaksg. 3), pseudo- during the length of the simulation approximates that
cyclic (Fig. ), and randomRKig. 3d) outbreak pat-  expected by the user.
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The magnitude of simulated regional outbreak and 1G RAM. Four factors were evaluated for their
severities is controlled by the MinROS and MaxROS effect on module performance: map size (5000,
parameters. MinROS defines the “background” out- and 2008 cells 1 ha in size), neighborhood radius (O,
break activity that will occur in each time step, andis set 500, 1000, and 2000 m), neighborhood option (normal
to zero by default. Outbreak type determines whether or sub-sampling procedure), and number of tree species
outbreaks are binary (either MinROS or MaxROS; out- simulated (5, 10). Iteration time increased as a nearly
break type =“pulseFig. 3b—d) orifthe ROS canrange log-linear function of both map size and neighborhood
betweenthose values (outbreak type = “variable pulse”; radius, with a maximum run time of 27 min per iter-
Fig. 3e—f). For the variable pulse outbreak type, the ation when the largest neighborhood was applied to
ROS value israndomly selected for each outbreak eventthe largest map using the “normal” calculation. The
from the range between MinR®*+ 1 and MaxROS. We  sub-sampling option significantly reduces run time by
are currently developing a third outbreak type (“con- 42-49%, depending on the neighborhood radius. Dou-
tinuous”) that will interpolate ROS between outbreak bling the tree species number effectively doubled run
and non outbreak periods. time for simulations without a neighborhood calcula-

Site vulnerability can now reflect (a) the species and tion, but had very little effect (<5%) on run time for
age composition of the site, (b) modified by land type scenarios where neighborhoods were applied.
and past disturbance (SR (c) the species and age
composition of the neighborhood (NRD), and (d) the 2.8. Application: spruce budworm disturbance
regional outbreak status (ROS) during any given time
step. We tested the behavior and sensitivity of the BDA

module in simulated forest ecosystems affected by

SROm + (NRD x NW)} (ROS) (8) Eastern spruce budworm. Neutral landscape patterns
1+NW) 3 ranging from random to multifractal maps with high

Since SV controls both the probability of disturbance spatial autocorrelation were created using the pro-
and the severity of a disturbance once it occurs, ROS gram RULE Gardner, 199pto represent different spa-

<3 will decrease both (a) the probability of disturbance tial arrangements of three land types with equal area.

and (b) the severity of the disturbance for the entire The three land types represented xeric, mesic, and hy-

SV =a x

landscape. dric environmental conditions, respectively. These land
types controlled the distribution and abundance of dif-
2.6. Dispersal ferent host and non-host species through their relative

species establishment coefficients and the initial pat-

The above disturbance modeling strategies all as- tern of species and age classes on the landscape. We
sume spatial synchrony of the epidemic. Some epi- also evaluated how two other factors, neighborhood ef-
demics occur at spatial scales smaller than the typi- fects and tree species richness, affected budworm dis-
cal simulation area of LANDIS. Accounting for BDA  turbance behavior.
dispersal and spread will be necessary for these cases. Table 1shows the host preference parameters for
The dispersal procedures for the BDA module are still the three simulated budworm host species: balsam
under development and will be elaborated in a future fir, black spruce, and white spruc®dtzer, 1969;
publication. Nonetheless, the objective of the BDA dis- MacLean, 1980 All other species were assumed to
persal procedure will be to define smaller spatial zones be non-hosts. The “mean species” option (i.e., host re-
within the modeled landscape where insect disturbance source value averaged across all tree species present)

can actually occur for a given time stdgad. 1). was used to calculate site resource dominance. Host
vulnerability parameters were identical to host prefer-
2.7. Module performance ence, except that white spruce was parameterized as a

tolerant host instead of a vulnerable host. This is based

Module performance was evaluated using the run- on observations that, unlike fir, the older needles of
ning time for a single iteration of the BDA module ona spruce are rarely consumed by spruce budworm, and
personal computer with a 2.53 GHz Pentium Illl CPU therefore spruce in general are more resistant to bud-
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worm damage than are balsam fitfdntgomery et al., mixed forests of Northern Minnesota, USByYrns
1982. and Honkala, 1990Species attributes were interpreted
Simulations were simplified to focus on the behav- from the literatureTable 2 Burns and Honkala, 1990
ior of the budworm disturbance as affected by the three Species establishment coefficients were used to param-
variables of interest (i.e., land type pattern, neighbor- eterize three land types (xeric, mesic, and hydric) rep-
hood influence, and species diversity). No other dis- resenting a moisture gradiefiable 3. Establishment
turbances were simulated, no land type modifiers were coefficients were estimated using presence/absence
applied, and the calibration paramegefEq. (1) was patterns and successional pathways describétar
set to unity. A simple cyclic temporal pattern of dis- and Burger (2000pr three representative habitat types
turbance, using the “pulse” outbreak type and a 40- of North Central Minnesota. To focus the comparison
year outbreak interval, was simulated using the param- on species diversity rather than climate, establishment
eters shown fofFig. 3b. This pattern roughly corre-  coefficients for boreal species were identical in both
sponds with the periodicity of spruce budworm in bo- boreal and subboreal systems.
real ecosystemd(ais, 1983. The time since the last Initial conditions for simulations were populated as
regional outbreak was set at 20 years. a function of land type. For each land type, one of
To evaluate the effect of tree species richness on bud- six communities were randomly assigned to a given
worm disturbance behavior, we simulated two types of site, representing common or rare early successional
systems, one representing a boreal, species-poor syseommunities, common or rare mid-successional com-
tem, and the other representing a subboreal, speciesmunities, and common or rare late successional com-
rich system. The boreal system contained nine speciesmunities, based on their current distribution in North
(Table 2 typical of Northwestern Ontario (Canada), Central MinnesotaTable 3 Kotar and Burger, 2000
and the subboreal system contained the same nineFor each land type, the three common communities
species plus an additional nine species typical of were randomly assigned in equal proportions to 90%

Table 2

Species parameters used in the test simulations

Scientific name Lng Mat Shd Fire EffD MaxD Species establishment coefficient
Xeric Mesic Hydric

Abies balsamea 120 25 5 1 30 160 25 05 0.05

Acer rubrum 150 10 3 1 100 200 .25 025 0

A. saccharum 300 40 5 1 100 200 0 .0 0

Betula alleghaniensis 300 40 4 2 100 400 0 .25 0

B. papyrifera 120 30 2 2 200 5000 .05 05 0.05

Fraxinus nigra 150 20 2 1 100 200 0 .05 005

Larix larix 180 15 1 1 50 200 0 .05 025

Picea glauca 200 10 3 2 30 200 @5 005 0

P. mariana 200 30 3 3 80 200 a5 005 025

Pinus banksiana 70 15 1 2 50 250 as 005 0

P. resinosa 250 35 2 4 12 275 60 005 0

P. strobus 400 15 3 3 100 250 .60 01 0

Populus balsamifera 150 10 1 2 200 5000 0 B 0

P. tremuloides 90 15 1 2 500 5000 .05 Q75 0

Prunus penssylvanica 30 10 1 1 30 3000 05 05 0

Quercus rubra 250 25 3 3 30 3000 0 .25 0

Thuja occidentalis 350 30 4 1 45 60 0 a5 005

Tilia Americana 250 15 4 2 30 120 0 Q 0

Species in bold were used in both boreal and subboreal scenarios, all others were used exclusively in subboreal scenarios. Vital attribute
parameters were adapted fr@uarns and Honkala (1990and species establishment coefficients were estimateddatan and Burger (2000)
SeeSection 2.2

a Parameter abbreviations: Lng = longevity; Mat = Maturity; Shd = shade tolerance, Fire = fire tolerance, EffD = effective seeding distance,
MaxD = maximum seeding distance.
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Table 3
Initial conditions used for LANDIS simulations
Communities Ab® Bp LI Pg Pm Pb PbaP Pt Pp Ar As Ba Fn Pr Ps Qr To Ta
Xeric
Early-com 20 20
Early-rare 10 10 10 10
Mid-com 10 20 20 50 20 50
Mid-rare 10 70 20 70 20 70
Late-com 60 60 80 120
Late-rare 80 100 150
Mesic
Early-com 10 10 10 10
Early-rare 20 20
Mid-com 10 70 20 70 70 30 10 10 70 50 10
Mid-rare 10 50 10 10 10
Late-com 60 60 100 60 100 60
Late-rare 80 100 80 100 120 100
Hydric
Early-com 20
Early-rare 20 20
Mid-com 70 30
Mid-rare 70 70 30 10
Late-com 100
Late-rare 50 100 50

Each of the three common (Com) community types were populated on 30% of the land type, and each of the three rare community types were
populated on 3.3% of the land type. Species in bold were simulated in both boreal and subboreal scenarios, species in plain text were only
simulated in subboreal scenarios. Initial conditions were based on current distributions in North Central MinnesotéotdSan¢l Burger,

2000.

2 First letter of genus and species showTable 2

b Populus balsamifera

of available sites, and the three rare communities were
randomly assigned in equal proportions to the remain- their interactions were evaluated using analysis of
variance (ANOVA) at the last outbreak, using ax3
The following response variables were used to 2 x 2 factorial design. Three replicate landscapes
with 512 by 512 one-hectare cells (total landscape
landscape-wide disturbance; (2) land type-level distur- size ~262,000 ha) were generated for each of three
bance; and (3) the degree of spatial aggregation in bud-land type patterns (random, multifracted = 0.1,
worm disturbance patterns. The clumpiness index from multifractal H = 0.6; Gardner, 1999 Neighborhood
Fragstats (v 3.3) was used to describe aggregation oneffects were evaluated using “no neighborhood”

ing 10% of sites.

evaluate the behavior of the BDA module: (1) total

a continuous scale from1 to 1, where-1 = uniform
pattern 0 = arandom pattern, ah1l = amaximally

proportional deviation of the proportion of like adja-

Responses to the three independent variables and

and 1000 m neighborhood radius scenarios. Species
richness was evaluated using the boreal and subboreal
aggregated pattern. The clumpiness index equals thescenarios. Simulations were each run for 25 time steps
(250 simulation years).

cencies from that expected under a spatially random
distribution McGarigal et al., 2002 The temporal pat-
terns of tree species abundance were also evaluated t8. Results
determine whether the simulation results were com-
patible with successional pathways published in the

literature.

Each of the three factors examined (land type pat-
tern, tree species diversity, and neighborhood influ-
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Table 4

Analysis of variance of the response of the number of sites disturbed at simulation year 220 to the maifRétdcts,

Source of variation df Type lll SS F Prob >F
Land type patternlifp) 2 61268883 11p4 <Q00001
Neighborhoodf) 1 128890609 49@ <0.0001
Species richness)( 1 2889134167 1112@ <0.0001
Itp x n 2 18325192 7B5 <00001
Itp x r 2 1950382 Bl 0003
nxr 1 12952801 4B7 <00001
taxnxr 2 757731 22 0073
Error () 24 6234082

Total 35 3140547152

ence) had significant effects on the behavior of the sim-  Landscape-scale host response to disturbance was
ulated budworm disturbance. Tree species richness hadhighly dependent on the mixture of species present,
the strongestinfluence on the number of sites disturbed, which was a function of both the land type and the
as indicated by the ANOVA applied to simulation re- forest ecosystem (boreal or subbore&ig( 5. Bud-

sults for simulation year 220Téble 4. At the land worm disturbance promoted diversity of host species in
type-level, tree species richness had the most consis-the xeric and mesic land types of boreal scenarios, and
tent influence over disturbance within xeric and mesic the dominance of balsam fir in these same land types
land types, where species-poor boreal scenarios expe4n the subboreal scenarios. Disturbances in subboreal
rienced higher disturbance than species-rich subboreallandscapes were both less common and less severe, al-
scenariosKig. 4). Since the species richness of the hy- lowing greater survival of balsam fir. This result was
dric land type was similar between boreal and suboreal due to our assumption that the average (as opposed
scenariosTable 3, that variable had less influence on  to maximum) host preference of species present on a

probability of disturbance in hydric land typdsig. 4). given site best reflects hostresources on that site. Hence
Neighborhood influence had the next strongest ef- the increased number of non-hosts simulated in the
fect on the number of sites disturbethble 4. As ex- subboreal scenarios decreased the landscape vulner-

pected, the application of the neighborhood reduced ability to spruce budworm. Competition between non-
the percentage of sites disturbed in all land types at the hosts and hosts also affected the relative abundance of
first outbreak (simulation year 20) when tree species host species. For example sugar maple, a highly shade-
distributions were similarig. 4). However, the neigh-  tolerant tree species, excluded all budworm hosts ex-
borhood influence on the percentage of sites disturbed cept balsam fir within mesic land types of subboreal
in subsequent outbreaks was less consistent. For examscenariosKig. 5h and k).

ple, a neighborhood influence caused wide oscillations  Neighborhood influence on budworm disturbance
in the percentage of sites disturbed within hydric land had a subtle positive influence on primary hosts in xeric
types, particularly within maps with aggregated land land types Fig. 5d and j) and boreal mesic land types
type patternsKig. 4f and i). While ANOVA indicated (Fig. 5). In contrast, neighborhood influence had a
that land type pattern itself also had a significant influ- negative influence on black spruce in hydric land types
ence onthe percentage of sites disturbed at year 220, th€Fig. 5 and I). This negative influence is likely due to a
response was much smaller than for the other two vari- “spill-over” effect, where the host composition of adja-
ables Table 4. This resulted partly because the propor- centland types increased the probability of disturbance
tion of sites disturbed by a BDA could only be directly in this otherwise budworm resistant land type.

affected by spatial pattern of hosts when a neighbor-  The clumpiness index of disturbed sites ranged from
hood effect was applied. This fact explains why the approximately zero (random) to a maximum of ap-
temporal behavior of the budworm disturbance was proximately 0.2, indicating some aggregation. ANOVA
so similar between different land type patterns when applied to the clumpiness index indicated highly sig-
neighborhoods were not applieig. 4). nificant main effects and interactions at simulation
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disturbance events, whereas lines only indicate trends in disturbance events through time. Error bars representing one standard deviation of th
mean of three replicates were too small to display.

year 220 Table 5. Interestingly, the pattern of dis- in the numbers of sites disturbed in the different sce-
turbances in boreal and subboreal landscapes relativenarios Fig. 4. Random pattern of land types, and
to random patterns was identical when no neighbor- presumably hosts, created a disturbance pattern that
hood was appliedHig. 6), despite large differences was also approximately random (i.e., clumpiness in-
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Table 5

Analysis of variance of the response of disturbance clumpiness disturbed at simulation year 220 to the main effed®,mbé8l
Source of variation df Type Il SS F Prob >F
Land type patternlip) 2 0.0061 43®m3 <00001
Neighborhoodf) 1 0.0009 1328 <00001
Species richness)( 1 0.0011 15749 <00001
Itp x n 2 0.0006 4275 <00001
Itp x r 2 0.0004 31 <00001
nxr 1 0.0012 15127 <00001
taxnxr 2 0.0002 1700 <00001
Error () 24 0.0002

Total 35 0.0107

dex~0; Fig. 6a). Increasing land type aggregation in- uate the sensitivity of module behavior to different
creased the aggregation of disturbances, but the dis-assumptions and ecological settings. The simulations
turbance pattern also fluctuated with time. The most presented in this paper demonstrate that the module
striking variation in disturbance aggregation was ob- is capable of producing realistic spatio-temporal pat-
served when a neighborhood was applied to a boreal terns of spruce budworm disturbances on the landscape.
landscape with highly aggregated land typiefg( 6c, We believe that this approach will have wide appli-
Fig. 7). Since there is a negative feedback between dis- cability to a diverse array of destructive forest pests,
turbance amount/severity and the survival of host, there but also recognize that no one approach can model
was some oscillation that occurred in each of the land the rich diversity of biological disturbances in forested
types, but most notably the hydric land typged. 4, ecosystems.
Fig. 7). This oscillation was a combined response to The most important factor controlling the probabil-
the initial conditions Table 3 and differing establish- ity of disturbance in the simulations was the species and
ment coefficients in each of the land types that created age composition in the landscape. This result is a di-
host age class distributions that were not synchronized rect consequence of the assumption that site resources
across the land types. Disturbances therefore becameare best approximated by the average host preference
clustered in certain land types during different distur- on a site. Mixed stands generally experience less dam-
bance eventsHg. 7). The oscillation dampened with  age than pure stands of host in forests disturbed by
time as the dispersion of disturbances became closer tospruce budwormMacLean, 198]) suggesting that the
random. average host value of tree species in a given site is
an appropriate method for quantifying the total value
of the site to spruce budworm. In the boreal scenar-
4. Discussion ios, budworm disturbance promoted species richness
(Fig. 5a and b).Van der Kamp (1991%uggested that
The BDA module was designed to simulate the forest pathogens perform a similar role in many forest
essential spatio-temporal patterns of tree mortality communities by preventing the dominance of shade-
caused by biological disturbance agents that include tolerant species. However, balsam fir still dominated
both insects and disease. Consistent with the design ofthe host composition of subboreal landscapes in land-
LANDIS, the module trades mechanistic detail (i.e., types where it had high establishmeRig. 53 and h).
the details of site-specific BDA population dynamics) This result is consistent with the ubiquity of balsam fir
for the ability to simulate pattern across broad areas in subboreal landscapes of Northern Minnes#iat&r
and long periods of time (Mladenoff this issue). The and Burger, 2000espite repeated budworm outbreaks
application of the module to spruce budworm distur- over the last 40 year&hent et al., (1957found that
bance in subboreal and boreal systems was not in-the influence of budworm disturbance on stand compo-
tended to precisely match the specifics of the distur- sition was sensitive to the survival of fir regeneration
bance behavior of spruce budworm, but rather to eval- following an outbreak. Previous simulations demon-
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Fig. 6. “Clumpiness” of disturbed sites in landscapes with different land type patterns, whereniform pattern0 = arandom pattern, and
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are not shown. Points represent disturbance events, whereas lines only indicate trends in disturbance events through time. Error bars represen
one standard deviation of the mean of three replicates. Note that the clumpiness index for boreal and subboreal without neighborhoods were
nearly identical, therefore boreal no neighborhood symbols cannot be seen in any of the graphs.

strated that the relative amount of balsam fir that per- actual successional dynamics of most boreal and sub-
sisted in the landscape was sensitive to the vulnerabil- boreal systemsBergeron, 200D

ity class of the youngest age cohort (Sturtevant, un-  Neighborhood effects on stand vulnerability have
published data). These results indicate that LANDIS is only recently been quantified in budworm disturbances
producing realistic succession dynamics in response to (Cappuccino et al., 1998; Radeloff et al., 2D0Bim-
budworm disturbances. Combined fire and budworm ulations in this study suggest that neighborhood influ-
disturbance regimes will be required to fully capture ence has some interesting implications for the spatio-
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temporal patterns of biological disturbances. First, the cal gap caused by a mature tree. This approach would
mean resource value of a landscape was reduced by thdikely result in a random pattern of tree mortality that
presence of non-host sites, particularly if the sites are might better represent reality, but the increased reso-
highly interspersedHig. 2). This result is consistent lution would also drastically reduce the performance
with a long-standing but hotly debated “silvicultural of the model and the ability to simulate large land-
hypothesis” of spruce budworm disturbance, which scapes. Alternatively, we might implement “partial”
suggests that the homogenization of forests caused bymortality caused by budworm within a given cell. Fu-
logging practices has increased the amount and severture developments in LANDIS will allow such partial
ity of budworm disturbance throughout much of boreal disturbances through the use of the new biomass mod-
Canada Miller and Rusnock, 1993 Other implica- ule (Scheller and Mladenoff, this volueAt broader
tions ofthe neighborhood are more subtle. For example, spatial scales, the spatial structure of host did cause
while reduced resource values resulted in lower land- some spatial aggregation in disturbance patterns, and
scape vulnerability to a given outbreak, lower distur- this aggregation was enhanced when a neighborhood
bancerates enhanced the survival of hostto be disturbedwas used to calculate the resource dominance of the
at the next outbreakF{g. 4). Neighborhood influ- site (Fig. 6). However, strong spatial aggregation in
encetypically homogenizes disturbance severity acrossdisturbances will likely require spatial constraints on
heterogeneous landscapé&sg( 7). Yet feedback be-  the behavior of the BDA, such as dispersal limitation.
tween host survival and environmentally induced spa-  Biological disturbance agents with limited disper-
tial patterns in host distribution can also create complex sal ability will require simulation of dispersal to cor-
spatio-temporal patterns of mortality across the land- rectly simulate their spatial dynamics. These dispersal-
scapeFigs. 4 and Y. While the silvicultural hypothesis  limited BDAs include many important forest pathogens
is still unresolved Killer and Rusnock, 1993 better such as Armillaria root diseaseArmillaria spp.)
understanding of the interactions between host pattern(Lundquist, 1993 and parasites such as mistletoe
and disturbance at the landscape scale may help clar-(Lavorel et al., 1999 Dispersal of insects or disease
ify the conditions under which forest management can may be modeled as a percolation process within a ras-
affect landscape vulnerability to spruce budworm and terized map with different habitat typesurner et al.,
other forest-pest speciesdwis and Lindgren, 2000 1989, or as focus expansion modekadoks and van

In sharp contrast with fire disturbance ecology, char- den Bosch, 1994 Development of generalized spread
acteristic spatial patterns of biological disturbances are algorithms is underway for the BDA module, but be-
not well-understood, particularly at large spatial scales yond the scope of this paper.
(Hemstrom, 2001 In his review, MacLean (1980) The regional outbreak functions used in this BDA
noted a large degree of spatial heterogeneity in tree module are gross simplifications of population dy-
mortality following spruce budworm outbreaks, where namics. However, there are data sources available
“extremes of greatest and least mortality occurred that can parameterize such simple functions. Ex-
within 50 m of one another, within what appeared to amples for spruce budworm include dendrochronol-
be a uniform stand.” Such patterns indicate that at least ogy studies Blais, 1983; Swetnam and Lynch, 1993;
some stochastic elements are affecting the fine-scaleBergeron, 200pand long-term aerial monitoring ef-
disturbance patterns caused by budwokneeshaw forts (Erickson and Hastings, 1978; MacLean and
and Bergeron (1998hvestigated the gap structure of MacKinnon, 1998. While the two temporal functions
stands disturbed by budworm in Quebec, and found a currently used in the module can be parameterized
high proportion of very small, tree-sized gaps. Distur- to simulate a wide array of historic disturbance pat-
bances simulated here generally approximated a ran-terns (e.g.Fig. 3), the categorical design of the re-
dom spatial distributionKig. 6). However, the resolu-  gional outbreak status may potentially introduce un-
tion of the simulated sites was coarser than the scale of aexpected model behavior that could be avoided with a
typical tree gap. There are two alternative approaches continuous outbreak function. Nonetheless, given that
that could be used to more realistically capture fine- the current LANDIS design is restricted to 10-year
scale disturbance caused by insects. The cell-size couldtime steps, a continuous function will likely exceed
be reduced to better approximate the size of a typi- the level of precision we can simulate with any confi-
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