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Abstract: Increasingly, resource management agencies and researchers have turned their 
analysis and modeling efforts towards spatial and temporal information. This 
is driven by the need to address wildlife concerns, landscape issues, and 
sociaYeconomic questions. Historically, the USDA Forest Service has used 
optimization models (i-e., FORPLAN and Spectrum) for timber harvest 
scheduling in national forest planning. Spatial details often were based on 
geographic strata, model constraints and mapping. Recently, more spatial 
analyses have been used in forest plan revisions. But many spatial analyses are 
limited in their flexibility to address concerns about management standards 
and guidelines and relationships to non-agency lands. To address these 
limitations, we are linking two extant models, Spectrum and HARVEST, for 
forest plan revision on the Chequamegon-Nicolet National Forest in northem 
Wisconsin. Spectrum provides an initial optimal solution given standard linear 
programming inputs. Resulting vegetative treatments are filtered through an 
interface that distributes selected treatments to HARVESTS raster-based 
management areas over time. HARVEST'S p m e t e m  adjust cut sizes, buffers 
and adjacency conside~tions. EMRVEBT is used to simulate implementation 
of Spectrum schedules in a spatial context. Spatial outputs such as area of 
closed forest and patchiness are calculated and displayed for the planning 
horizon. Unsatisfactory spatial patterns can be adjusted through subsequent 
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VEST ms. The Park Falls Ranger District (62,000 ha) and 
nearby private lands are used for this case study. 

Spatial analysis of management direction will be essential for U.S. 
national forests as they revise their forest plans over the next few years. The 
first round of forest plans, completed mostly in the late 1980s, relied on 
aspatial linear p r o g r e n g  models to assess timber sustainability and 
species habitat requiremen&. Since then, many modeling efforts have been 
undertaken to deal with spatial concerns, such as patchiness, edge, and 
harvest adjacency. Some approaches are based on optimization (Hof and 
Bevers 2000), while others simulate change (Gustafson and Crow 1994). 
Optimization and simulation have inherent strengths and weaknesses. For 
example, most linear optimization models can handle and select among 
many harvesting options, but only coarsely address spatial details. 
Simulation models, on the other hand, may deal well with spatial 
considerations, but not as ably with potentidy thousands of constrained 
harvest scheduling choices which are linked to policies such as non- 
declining timber production. We are capitalizing on the strengths of two 
models, HARVEST (for spatial simulation/analysis) and Spectrum (for 
optimizing harvest schedules), by linking them. 

The Chequamegon-Nicolet National Forest (CNNF) is located in 
northern Wisconsin (figure 1). Currently, the 600,000 ha CNNEi is 
unde'rgoing forest plan revision and must consider ecological, economic and 
social sustainability (Committee of Scientists 1999). The revised forest plan 
will address many problems identified through public participation efforts; 
these include ecosystem restoration, landscape patterns, old growth, wildlife, 
and others. Composition and structure of forested ecosystems are integral to 
sustaining ecosystems and are influenced by various ecological processes 
(e.g., productivity, growth, nutrient cycling, energy flow, etc). Composition 
and structure are most often modeled in the planning context with less 
explicit treatment of functions/processes. In combination, HARVEST and 
Spectrum can provide ecological details on projected age-class structure of 
the forest, vegetative structure, species composition, land allocations, and 
landscape patterns. These data are needed to assess emulative effects of 
forest management. 

The purpose of this paper is to describe the modeling approach we 
devised for the 62,000 ha Park Falls Ranger District (figure 1) in north 
central Wisconsin. This portion of the forest is representative of the larger 



Linking Temporal-Optimization and Spatial Simularion 167 

CNNF area in tenns of forest composition and structure as well as 
agement goals. Fist, we discuss the models used and how they are 

linked. Then we identify additional mdefing considerations and future 
work. Overall, we are attempting to create a generic modeling approach that 
is straightforward and adaptable across many national forest areas. Though 
not explicitly included in our current efforts, potential exists to examine the 
interaction of private and public lands management on the structure and 
composition of forested ecosystems. 

Figure 1. Location of Chequanaegon-Nicolet National Forest (grayhlack) and Park Falls 
Ranger District (black) in northern Wisconsin. 

SPECTRUM 

Spectrum and its predecessor, FORPLAN, have been used extensively in 
national forest planning. FORPLAN models were developed in the mid- 
1980s for the Chequamegon and Nicolet National Forests' land and resource 
management plans (before the forests were administratively combined). Due 
to periodic training programs, administrative support and organizational 
memory, SpectrunfFORPLAN is still widely recognized within the Forest 
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Service. As a result, the CNNF planning team decided to use Spectrum in its 
current plan revision ef-forts. As is often the case in forest planning, a 
prototype area was chosen to explore the capabilities and limitations of the 
model; the Park Falls Ranger District was chosen. 

Several versions of Spectrum are available from the USDA Forest 
Service; we are using Version 1.5. This and other versions can be 
downloaded from the USDA Forest Service's hventory and Monitoring 
Institute website. Spectrum is a fairly flexible resource-scheduling model 
that has evolved to provide extensive vegetation manipulation options (e.g., 
clearcutting, shelterwood sequences, etc.) within a constrained optimization 
framework. Our initial modeling has used a "maximize timber volume" 
objective function for a 15decade planning horizon. This insures 
widespread harvesting that helps us test the utility of the spatial HARVEST 
model. Standard nondeclining timber flow constraints are used to create 
period-by-period harvests. Given Committee of Scientists' concerns 
regarding species viability, we are particularly interested in developing a 
Spectrum model that can address wildlife habitat needs. This is approached 
in part by defining Spectrum "levels" related to habitat. While habitat needs 
may be approached with Spectrum alone (see Bevers et al., 1995 and Hof 
and Bevers, 2000), structuring the Spectrum to link with HARVEST 
provides a desired spatial dimension to the analysis. 

Within Spectrum, "1evels"or resource attributes are used to define 
analysis units-the levels are often land layers (e.g., vegetation type, site 
index, etc.). For our prototype Spectrum model, five land layers were 
chosen: forest type, forest-type age class, timber suitability, management 
area, and ranger district. Forest type and age class provide important 
characteristics that help define wildlife habitat. Forest type is an aggregation 
of dominant species used to classify timber stands. For example, we 
combine quaking aspen (Populus tremuloides) and bigtooth aspen (Popukw 
grandidentata) into the aspen forest type. Ten forest types are used: aspen, 
balsam fir, hedock, jack pine, northern hardwoods, oak, paper birch, red 
pine, upland spruce, and white pine. The age classes are 0-9 years old, 10-19 
years old, and so on. Combined, forest types and age classes are associated 
with timber inventory and yield data and the economics of related 
silvicultural practices. Timber suitability segregates national forest lands into 
those that are available for silvicultural treatment and those that are not. 
Finally, management area (e.g., semi-primitive areas) and ranger district 
(e.g., Park Falls) are administrative subdivisions of the forest, though the 
former is often ecologicdy based and provides additional habitat insights. 
In total, the prototype Spectrum model has 204 analysis units defined using 
Spectrum levels. By changing model constraints and management area 
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designations, Forest Service planners can develop alternative scenarios for 
public review. 

Spectrum outputs and reports are numerous. Of particular interest to us is 
a report in coma-delimited format that provides the area of harvest 
treatments @uman-caused distubances) by analysis unit for each decade 
over the planning horizon. From this, harvesting activities can be 
disaggregated to ranger districts and management areas, but not specific 
stand-based locations on the landscape-HmVEST is necessary for that 
step. 

HARVEST 

HARVEST is a well-documented research model that has been applied to 
a number of spatial-temporal problems (Gustafson, 1996, 1998; Gustafson 
and Crow, 1994, 1996, 1999). The software (currently Version 6.0) and 
sample data sets can be downloaded from the USDA Forest Service North 
Central Research Station's website. W W S T  is an interactive simulation 
model that allows users to simulate effects of timber harvest on the structure 
of the forest, Using a random number seed, the model disperses harvests and 
harvest size stochastically across the landscape. HARWST is a raster-based 
model and requires four input map files for forest type, forest age, 
management area, and stands. Hence, three of the maps match the Spectrum 
levels noted above, and timber suitability is reflected in "no harvest" 
treatments for certain analysis units. Since its inception, HARVEST has 
been based on the premise that public land agencies have stand-based data 
on forest attributes. This map allows stand-specific allocation of timber 
harvests consistent with agency data; our prototype model has 5,836 stands. 

A GfJI interface (figure 2) allows users to specify harvest parameters for 
each management area and forest type over each period over the planning 
horizon. Both even-aged and uneven-aged management can be simulated. 
Size of harvest and area harvested are user controlled. Our prototype model 
uses a 900 m2 cell size, so that represents the smallest harvest size. It is 
equivalent to a group selection cut in northern Wisconsin. Different methods 
for dispersing the harvests across the landscape are also available. For 
example, harvests can be widely dispersed or clustered. In addition, harvest 
adjacency considerations (i.e., green-up intervals) and buffers can be 
included. As a group, these harvest parameters provide wide latitude for 
examining effects of standards and guidelines planners propose. 

HARVEST provides several straightfonvard and essential outputs for 
contemporary forest planning. Specifically, it provides tabular summaries 
and maps related to patches and interior forest. Calculated measures of 



170 SYSTEMS ANjlLYS'IS IN FOREST RESOURCES 

landscape patch structure include: age distribution, length of linear edge 
between patches (stands), average size of patches of a similar age, and 
distribution of patch size by age class. Interior and edge habitat are based on 
harvest activities and other forest openings and a user-specified buffer 
distance. In addition, the user indicates the duration of the temporary harvest 
opening before it reverts to a closed canopy condition. Age maps and forest 
interior maps can be saved for each period over the planning horizon. Figure 
3 illustrates a comparison between openings, buffers, and closed forest for 
current and projected forest conditions-larger, more dispersed harvests are 
illustrated in the projected map (Note: the lower left portion of this 107,000 
ha area is in private ownership and other private holdings are interspersed 
throughout the area; these are treated as closed canopy forest.). 

Figure 2. HARVEST parameters interface. 

Thus, HARVEST provides useful data on forest conditions, but requires 
substantial, interactive user input. For national forest planning, efficient 
input is needed due to the large areas covered, complex harvest sequences, 
and numerous plan alternatives . 
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By linking HARVEST with Spectrum we are moving HARVEST from a 
research model to a strategic planning tool. The timing (i.e., decade) and 
general location (i.e., ranger district and management area) for various 
treatments by forest type are generated in Spectrum and linked (via 
additiondl software) to those attributes in HARVEST, by creating a 
HARVEST script file that provides needed inputs. These thousands of data 
inputs save users from the tedious task of entering data by management area, 
forest type, and time period. Other global parameters are also set in this 
process, including: saving age maps; creating a log f i e  of harvests by 
management area, forest type and time period; selecting a random seed 
number related to dispersal of harvests; method of even-aged dispersion; and 
number of time periods. Management area parameters are addressed for 
adjacency constraints and riparian buffers. Finally, treatment type (e.g., 
group selection) parameters for mean harvest size, standard deviation, and 
m i n i m u d ~ r n u m  harvest size are set along with minimum age for 
harvesting by forest type. 

Figure 3. Current (left) and projected (right) openings/buEen (black) and closed (white) 
forest canopy conditions for the Park Falls Ranger District area. 
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In the end, a file is created and read into the HARVEST model that 
reflects Spectrum results and additional HARVEST inputs. Spatial results 
are then generated and evaluated relative to management goals, standards, 
and guidelines. At this juncture, some iteration may be needed if Spectrum 
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results cannot be spatially conf"med, or if changes in HARVEST 
parameters (e.g., harvest size) are tested. Together, these models provide 
useful strategic planning results for forest plan revision. 

We are currently in prototype evaluation. This process has provida 
insights regarding the relationship between optimization and simulatio 
modeling approaches in an applied case. Choices regarding HARVES' 
parameters have been made at the forest, management area, and forest 
levels. An option was also created to recognize that some Spectrum mode 
include sub-forest areas (e.g., ranger districts) and that the results must It 
disaggregated to sub-forest HARVEST models. By providing a flexib 
interface between Spectrum and HARVEST, we are developing a generi 
stand-based modeling approach that can be applied to other national forer 
concerned with spatial analysis of harvest patterns. To a limited exte~ 
private forestland management can also be modeled by including the timi 
and location of private harvest patterns. Then an integrated public-privi 
analysis of landscape effects can be developed. Other models, such 
LANDIS (Gustafson et al. 2000), provide more detailed ecological modeli 
results by incorporating natural disturbance and successional change. Tc 
limited extent, these can be included in our approach. Nonetheless, 
Spectrum-HARVEST approach offers a more readily useable operatio 
modeling framework for forest plan revision. 

We would like to thank Luke Rasmussen for his modeling insights 
programming expertise. Without his efforts, this modeling work would 
be possible. 
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