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Abstract 

Recent research into landscape composition and configuration, or pattern, seeks to identify a core set of metrics and 
determine whether these describe unique gradients or dimensions of pattern across diverse settings. Prior work generally has 
examined relatively large units, and it is uncertain whether this approach will prove useful with small (50-100 krn2) landscape 
units such as the sub-catchment of headwater streams. We estimated 25 pattern variables for the 109 sub-catchment of the 
Huron and Raisin river basins in southeastern Michigan, which are similar in terrain but represent, respectively, urbanizing 
and agricultural conditions. Three principal components analyses (PCA) performed on sub-watersheds within the combined 
area, and for each basin separately, identified five axes that explained -80% of the variation in landscape pattern. The first 
and strongest component described a fragmentation gradient ranging from landscapes dominated by a single land cover 
type to more diverse, patchy landscapes, and was similar in all three analyses. Variables quantifying variation in patch size 
were related to the second component in each analysis. Components three through five quantified different gradients in land 
cover pattern among the analyses, suggesting that gradients of variation in land cover spatial patterns quantified by later 
components are unique to each landscape. Pattern metrics were correlated with proportion of land in a land cover class, 
especially for proportion agricultural and proportion urban land, which exhibited the broadest land cover gradients in the 
study area. Moreover, a number of relationships were non-linear, indicating that the same value for a variable could occur in 
two different landscapes. Overall, we find that a suite of commonly used landscape metrics typically applied to large landscape 
units provides a similar basis for the quantitative description of the major gradients of variation in land cover spatial patterns 
when applied to small landscape units. 
Published by Elsevier B.V. 
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1. Introduction 

The spatial and temporal heterogeneity of ecologi- 
cal systems is widely assumed to influence ecological 
process, and measures of landscape pattern are com- 
monly used to characterize this heterogeneity (Foman 
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and Godron, 1986 Gustafson, 1998). However, there 
is considerable uncertainty regarding the appropriate 
scale for such analyses. For both theoretical and prac- 
tical reasons, analyses often are carried out using large 
landscape units. On the other hand, land use planning 
and the activities of management agencies typically 
take place at the local level and address issues related 
to land useicover over relatively small spatial extent. 
We wished to explore landscape pattern variability at 
this finer spatial scale, as part of an effort to investigate 
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pattern, process and management opportunities within 
individual watersheds of moderate size. 

A large nunber of indices can be used to quantifl. 
spatial heterogeneity; and many of these are correlated 
with one another, or respond to multiple components 
of spatial pattern and thus are difficult to interpret 
(Custafson, 1998). For these reasons, a number of au- 
thors have attempted to identify a core set of metrics 
that can be generally employed as pattern indicators, 
and which can be grouped by factor analysis into a 
modest number of unique dimensions or axes to char- 
acterize landscapes (Riitters et al., 1995; Cain et al,, 
1997 Griffith et al,, 2000). This prior research indi- 
cates that measures of diversity, texture, fractal dimen- 
sion, patch size and shape, interspersion and nearest 
neighbor distance are likely contributors to a thorough 
quantification of land uselcover spatial patterns. How- 
ever, the consistency of metrics and dimensions across 
different landscape conditions is uncertain, warranting 
fkther comparisons across landscape type and spatial 
scale. 

A central premise of landscape ecology is that re- 
gional pattern constrains and often may determine 
ecological condition at a finer scale (Turner, 1989; 
Weins, 1989). Numerous studies of watersheds and 
the ecological condition of their river ecosystems pro- 
vide strong support for this expectation (Hunsaker and 
Levine, 1995; Allan and Johnson, 1997). Studies that 
relate the condition of rivers to the landscape units they 
drain have examined both large watersheds (e.g. Jones 
et al., 2001) and small sub-watersheds (e.g. Castillo 
et al., 2000). Many assessments of stream condition 
focus on small streams in sub-catchments of less than 
a few hundred square kilometers, and often less than 
50km2 (e.g. Roth et al., 1996; Wang et al., 2000). 
Thus it is of interest to ask whether the pattern indi- 
cators and unique dimensions of pattern identified in 
analyses of larger landscape units also are meaningful 
for more finely subdivided landscapes. 

I .  I .  Related studies 

Analyses of landscape pattern have investigated 
whether the same underlying aspects of pattern are 
identified in studies that differ in data resolution 
(Grifith et al., 2000) and diversity of landscapes 
included (Riitters et al., 1995; Cain et al., 1997). 
Indeed, a substantial degree of commonality appears 

to characterize these studies. Using a factor analysis 
approach, typically three to five components explain 
80% or more of the variation in landscape patterns 
s m a r i z e d  by some 20-30 pattern variables. Some 
measures such as texture, defined as the frequency or 
organization of spatial changes or adjacencies in land 
cover types (often determined by contagion, diversity 
and dominance measures) are particularly consistent 
across landscapes, and the first several components 
tend to be similar, but not all metrics or components 
appear consistent. 

Investigating 85 land uselcover maps across the 
USA and using factor analysis, Riitters et al. (1995) 
reduced 55 pattern variables to 26 variables and 
six factors interpreted as average patch compaction, 
overall image texture, average patch shape, patch 
perimeter-area scaling, number of attribute classes, 
and large-patch density area scaling. Cain et al. 
(1997) tested these factors for their stability across 
maps that differed in resolution, number of attributes, 
and method of delineating landscape unit boundaries. 
Although patch compaction and shape were not con- 
sistent indicators of land uselcover pattern in this 
analysis, diversity, texture and fractal dimension were 
consistent across different map types. 

An investigation of a Kansas landscape (Griffith 
et al., 2000) identified five major factors necessary to 
characterize the spatial patterns of that region: overall 
landscape texture, patch shape and size, variables spe- 
cific to the dominant land cover type, patch intersper- 
sion and nearest neighbor distance. Metrics emerging 
as most important in that study included measures of 
diversity, fractal dimension, and the interspersion and 
juxtaposition index. Unique to this investigation was 
the conclusion that class-specific variables for the most 
dominant land uselcover type explained a significant 
proportion of the variance among landscapes. 

Each of these studies used landscape units of large 
spatial extent. Riitters et al. (1995) analyzed 85 US Ge- 
ological Survey's land use data and analysis (LUDA) 
database maps, each approximately 21,600 krn2, se- 
lected to represent a rough comparison across phys- 
iographic regions of the USA. Grifith et al. (2000) 
analyzed 67 equal-area hexagons of a Kansas land- 
scape, each 2560 km2 in area. Focusing on the Chesa- 
peake Bay and Tennessee a v e r  basins, Cain et al. 
(1 997) used 1200 and 1 800 km2 equal-area sub-units, 
as well as 8-digit watersheds (hydrologic unit code, 
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or HUG; Seaber et al., 1987) of the 180,000km:! 
Chesapeake Bay basin. In comparison, our study area 
encompasses just two 8-digit watersheds totaling ap- 
proximately 5000 km2, and as units we employed 109 
small sub-catchments averaging 43 km2 in area. These 
small sub-catchments, and their wadeable streams, 
constitute the spatial scale at which much stream 
assessment and management, as well as watershed 
planning, takes place. Changes in spatial extent may 
alter the analysis of landscape pattern (Tumer, 1989) 
inviting an examination of prevailing land cover pat- 
tern metrics in smaller landscape units. 

1.2. Objectives 

This study investigates the small-scale spatial pat- 
terns in land cover within two river basins in south- 
eastern Michigan. Our study region encompasses a 
wide range of conditions in land cover composition 
and configuration, including the city of Ann Arbor, 
suburban and exurbanizing areas, as well as highly 
agricultural areas. Twenty-five pattern variables were 
selected a priori, based on work described above, and 
we employed principal components analysis (PCA) 
to identify major gradients of variation in land cover 
patterns. Because one river basin contains more sub- 
urban and undisturbed land while the other is much 
more agricultural, we attempt to determine whether 
results vary depending upon the level of dominance 
in a landscape. We then explore the responses of spa- 
tial pattern metrics to variations in the proportions of 
four land useicover classes: agriculture, urban, forest, 
and wetland. From this, we wish to understand the 
strength and nature of relationships between spatial 
pattern metrics and land useicover proportions. 

2. Methods 

2.1. Study area 

Both the Huron (2330 lad) and Raisin (2780 km2) 
are 8-digit watersheds draining into the western end 
of Lake Erie (Fig. I). They are characterized by 
hilly to moderately undulating topography in their 
upper basins, consisting of moraines, till and out- 
wash plains; and a relatively flat terrain in their lower 
basins, underlain by sands and clays from glacial 

Lake Erie (Knutilla and Allen, 1975). The upper basin 
is part of the eastern Corn Belt Ecoregion, whereas 
the lower basin falls within the Huron-Erie Lake 
Plain Ecoregion (Omemik, 1987). As of 2000, some 
406,000 people resided within the boundaries of the 
Huron, and some 152,000 within the Raisin basin. 
The Huron contains larger urban centers (h Arbor, 
population 114,000; Ypsilanti, 22,000) than does the 
Raisin (Monroe, 22,000; Adrian, 22,000). In addition, 
the upper basin of the Huron is close to the spread- 
ing fringe of Detroit, whereas the Raisin watershed 
contains the largest proportion of agricultural land 
of any watershed in Michigan (Dodge, 1998). Thus, 
although these two watersheds are adjacent and share 
similar geologic features, their modem development 
pathways show marked differences. 

Urban growth and suburban sprawl both are acceler- 
ating in southeastern Michigan, and it is predicted that 
33% more land will be urbanized between 1990 and 
2020 (SEMCOG, 1998). Two types of urban growth 
were evident in the period 1965-1995: denser urban- 
ization adjacent to previously developed areas, and the 
scattering of new homes and sub-divisions in more ru- 
ral areas. Exurban development refers to low-density 
residential development that occurs beyond incorpo- 
rated city limits (Nelson and Dueker, 1990; Knight, 
1999). The vast majority of projected development 
is expected to continue the trend toward scattered 
low-density development, and to take place in the de- 
velopment fringe and rural areas of the region. 

2.2. Land cover data set 

We used 199511998 land useicover data for the 
landscape pattern analysis and sub-catchment bound- 
aries to subdivide the landscape into 109 units. Land 
useicover data for the northern two-thirds of the study 
area were compiled by Southeast Michigan Council 
of Governments (SEMCOG) using a 1978 Michi- 
gan Resource Inventory System (MIRIS) land use 
map as a template and aerial photography &om 1995 
to update areas that underwent urban development. 
Land usei'cover data for the remaining area (Lenawee 
County, Michigan) was surveyed and compiled in 
1998. These data have a positional accuracy o f f  25 m 
and categorize land use to at least Anderson level 
2 classification (see Anderson et al., 1976). We ag- 
gregated land useicover into four major categories: 
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Fig. 1. The Huron and Raisin River basins are sub-divided into 109 sub-catchments averaging 43 km2 in area. The two river basins 
combined comprise some 5000 km2 in southeastern Michigan, and drain into western Lake Erie. 

forest, agriculture, wetland, urban. These classes ac- 
counted collectively for 75- 100% (mean 97.1 %) of 
the land in each sub-unit. The 109 sub-catchments 
of the Huron and Raisin basins were delineated by 
the Michigan Department of Natural Resources and 
mostly delineate the basins of small tributaries, al- 
though a small number represent segments along the 
river mainstems (Fig. 1). 

2.3. Landscape pattem metrics 

Spatial pattern variables were derived using the 
vector version of Fragstats Spatial Pattern Analysis 
software (McGarigal and Marks, 1994). Fragstats 
computes both landscape-level variables, derived 
from all patches in a landscape irrespective of land 
useicover class, and class-level variables, which are 
derived only fiom patches of a given land useicover 

type (e.g. agricultural patch density). Twenty-five 
spatial pattern variables were selected, a priori, based 
on those variables that most consistently explained 
landscape spatial pattern in prior work. The variables 
are described in Table 1; for a more detailed descrip- 
tion of each see McGarigal and Marks (1994). To 
quantify a fragmentation gradient, patch density and 
edge density metrics were selected. To characterize 
overall composition of the landscape, a dominance 
metric (1-Shannon's evenness index) was selected. 
Mean patch size and patch size coefficient of variation 
were used to account for variation in patch size. Patch 
interspersion was quantified using the interspersion 
and juxtaposition index, a metric similar to conta- 
gion but which can be computed from vector maps. 
Additionally, and where possible, we detemined 
class-level variables for four land useicover classes: 
urban, agriculture, forest, and wetland. Several metrics 
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Table f 
Description of land cover rnetrics selected for landscape analysis, their acronym, and their units 

Acronym Descation Units 

Land cover percentage metrics 
Agriculture Agncultusal land cover within a sub-catchment 
Urban Urban land cover within a sub-catchent 
Forest Forested land cover within a sub-catckment 
Wetland Wetland land cover within a sub-catchment 

Landscape-level spatial pattem meh-ics 
PD Patch density 
PSCV Patch size coefficient of variation 
ED Edge density 
DOM Dominance 
IJI Intaspersion and juxtaposition index 

Class-level spatial pattern variables 
ub4D 
ag P D  
fo4D 
W 4 D  
ub-MPS 
agMPS 
fo-MPS 
wt-MPS 
ub-PSGV 
agSSCV 
fo_PSCV 
Wt4SCV 
ub-ED 
ag-ED 
fo-ED 
wt-ED 
ub-IJI 
aglJ1 
fo-IJI 
we-IJI 

Patch density of urban patches 
Patch density of agricultural patches 
Patch density of forested patches 
Patch density of wetland patches 
Mean patch size of urban patches 
Mean patch size of aMcultural patches 
Mean patch size of forested patches 
Mean patch size of wetland patches 
Patch size coefficient of variation of urban patches 
Patch size coefficient of variation of agricultural patches 
Patch size coefficient of variation of forested patches 
Patch size coefficient of variation of wetland patches 
Density of urban edges 
Density of agricultural edges 
Density of forested edges 
Density of wetland edges 
Interspersion and juxtaposition index for urban patches 
Interspersion and juxtaposition index for agricultural patches 
Interspersion and juxtaposition index for forested patches 
Interspersion and juxtaposition index for wetland patches 

#patches/100 ha 
94 
m%a 
None 
% 

identified as important in prior work could not be 
applied in this study because of limitations of scale 
and differences in the format of the original land 
cover data from which the variables were derived. 
Fractal dimension and other shape metrics were not 
included in this analysis, because the small spatial ex- 
tent of the sub-catchments limits the sample number 
of patches available, making these metrics subject to 
spurious results (McGarigal and hilarks, 1994). Mean 
patch size and patch density are redundant measures 
at the level of the landscape but account for different 
aspects of pattern at the class-level (McGarigal and 
Marks, 1994); therefore, mean patch size was omitted 
from the list of landscape-level variables but retained 
at the class-level. 

2.4. Statistical analysis 

Variables were transformed to achieve a normal 
distribution when possible. All percentage data were 
arcsine-square root transformed. To ensure that vari- 
ables chosen were not strongly redundant, pair-wise 
correlation coefficients were calculated. No variables 
had Pearson correlations greater than 0.90, the crite- 
rion for data reduction used by Riitters et al. (1995); 
all were retained for principal components analysis. 
We used PCA to group our 25 variables into a se- 
ries of components in metric-group space representing 
high within-group correlation among metrics and low 
between-group correlation. We then identified vari- 
ables that had the highest loadings (the correlation 
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between a variable and a component) on each com- 
ponent and examined them to detennine whether they 
could be associated with a particular aspect of land- 
scape pattern. 

PCA was used to identify major gradients of varia- 
tion in land cover pattern for three different geograph- 
ical extents. The combined basin analysis ordinates 
109 sub-catchents located within the adjacent Huron 
and Raisin River basins. Then separate analyses were 
performed on each of the two basins, using the 54 
sub-catchments within the Huron River basin and the 
55 sub-catcbents within the Raisin River basin. To 
assess similarities and differences among components 
of all three analyses, Speannan rank correlation co- 
efficients were determined between the component 
loading patterns for each PCA. 

We then used regression analysis to explore the re- 
sponse of spatial pattern metrics to changes in the pro- 
portion of land cover types within the sub-catchments 
of the Huron and Raisin River basins. Pattern variables 
were regressed against land uselcover proportion data. 
Best fit was detemined using a visual assessment of 
the biplot and residuals plot, and by comparison of 9 
values between a linear fit and a second-order polyno- 
mial fit. We anticipated that spatial autocorrelation, the 
tendency for observations in close proximity to have 
similar values and a common obstacle in the analy- 
sis of data derived from a contiguous landscape unit, 
would influence our regression results. Therefore we 
used a spatial autoregressive model, which adjusts the 
linear regression model to account for the idluence of 
neighboring values and results in less biased tests of 
significance, to test for possible biases resulting from 
spatial autocorrelation. The simultaneous autoregres- 
sive (SAR) model (Kaluzny et al., 1998), implemented 
in the S-PLUS extension for Arcview 3.2, was used 
for this test. 

3. Results 

3.1. Basic landscape description 

A wide range in land useicover is seen within the 
combined area of the two basins. Area occupied by 
natural land cover types occurs over a limited range, 
with minimum values near zero and maximum values 
of 27.3% for wetland and 28.6% for forest. In contrast, 

the range of values for agricultural land (0.1-91.8%) 
and urban land (3.3-7 1.6%) is great. The 25 spatial 
pattern variables also show a considerable range in 
values across the 109 sub-catchments of these two 
basins (Table 2). 

Land useicover composition differs significantly be- 
tween the Huron and Raisin River basins (Table 3). 
Land uselcover in the Raisin basin is predominantly 
agricultural (average of 55 sub-catchments = 62.6%), 
and urban land is relatively low at 12.1%. In contrast, 
agriculture comprises just 24.6% of land uselcover 
within the Huron River basin, and urban averages 
28.3%, more than twice the value for the Raisin. Huron 
sub-catchments have, on average, considerably more 
area occupied by natural land cover types (24.2% for- 
est and wetland), compared with the Raisin (1 6.0% 
forest and wetland). 

3.2. PCA components and their associated 
variables 

P ~ c i p a l  components analysis of pattern variables 
found that the first five components together explained 
approximately 80% of the variation in the 25 land- 
scape variables for the Huron and Raisin basins com- 
bined (hereafter, combined basin analysis), and also 
for each basin alone (Table 4). Components were ro- 
tated using a varimax rotation to aid in interpretation. 
All retained components had an eigenvalue greater 
than one. Variables retained for component interpreta- 
tion were those variables associated with a particular 
component which explained at least 30% of the vari- 
ance in that component (i.e. rotated component load- 
ing 20.55 or (-0.55) and had a greater loading with 
that component than with any other. 

In the combined basin analysis, the first five com- 
ponents in the ordination explained 78.7% of the vari- 
ance in the landscape pattern variables. Metrics highly 
correlated with the first component included most of 
the patch density and edge density variables (Table 4). 
Additionally, dominance and agricultural mean patch 
size exhibited strong negative loadings with this com- 
ponent. This component can be summarized as a 
fragmentation gradient ranging from landscapes dom- 
inated by a single land useicover type, generally with 
large patches of agriculture, to more diverse, patchy 
landscapes. The second component summarizes patch 
size variation within a landscape. Variables with high 
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Table 2 
Sumrnary statistics and transfornation infomation for spatial pattern metrics det ed from a combined analysis of 109 sub-catchens 
of the Huron and Raisin River watersheds 

Variable Minimum Maximum Mean S.D. Transformation Normal after or without 
transfomafion 

Agriculture 
Urban 
Forest 
wetland 
PD 
PSCV 
ED 
DOM 
IJI 
ubSD 
ag-PD 
foSD 
wtSD 
ubMPS 
agMPS 
fo-MPS 
wt-IPS 
ubYSCV 
ag-PSCV 
foSSCV 
W-PSCV 
ub-ED 
ag-ED 
fo-ED 
wt-ED 
ub-IJI 
ag-IJ1 
fo-lJ1 
wtlJ1 

arcsin sqrt 
arcsin sqrt 
arcsin sqrt 
arcsin sqrt 

log 10 

In 

sq* 

sqrt 
In 
log 10 
log 10 
la 
In 
In 
In 
la 

sq* 
arcsin sqrt 
arcsin sqrt 
arcsin sqrt 
arcsin sqrt 

No 
No 
Yes 
No 
Yes 
No 
No 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
No 
No 
No 
Yes 
No 
Yes 
No 
No 

S u i n m q  statistics show unmnsfomed values (see Table 1 for units). 

loadings on component two include landscape-level 
and agricultural patch size coefficient of variation, as 
well as agricultural edge density. Urban mean patch 
size is negatively correlated with this component. 
Landscape-level interspersion and juxtaposition index 
and agricultural IJI were positively correlated with 
component 3, indicating that this component sum- 
marizes a patch interspersion gradient. Additionally, 
forest mean patch size loaded highest on component 
3. The fourth component summarizes spatial patterns 
in urban land cover. A second interspersion gradient 
is also contained within this component, correlating 
strongly with the interspersion and juxtaposition in- 
dex for urban land cover and the natural land cover 
categories, forest and wetland. The fifth component 
sumarizes wetland patch size. 

Of the five retained components, component one 
(the fragmentation gradient) and component two 
(patch size gradient) best separate the sub-catchments 
by their respective basins (Fig. 2). Sub-catchments of 
the Huron River basin tend to occupy the positive end 
of component 1 and the negative end of component 2, 
indicating a highly fragmented landscape with rela- 
tively homogenous patch sizes. Sub-catchments of the 
Raisin River basin tend to occupy the negative end of 
component 1 and the positive end of component 2 in- 
dicating a more dominant, contiguous landscape with 
greater patch size heterogeneity. However, there are 
many exceptions to the above generalities, signifying 
overlap in spatial patterning between the two catch- 
ments. Further components do not separate sub-catch- 
ments based on their membership in a given basin. 
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Table 3 
Peicentag~ of four land cover classes for the sub-catchments of 
the Huron kver basin, the Raisin River basin, and the two basins 
combined 

Land cover Statistic Huron Raisin Combined basins 

A ~ c u l t u r e  Maximum 
Mean 
Minimum 

Urban Maximum 
Mean 
Minimum 

Forested Maximum 
Mean 
Minimum 

and c), comparisons reveal strong similarities in the 
first two components although there are some differ- 
ences in which variables load on these components 
and the magnitude of their loadings. The first com- 
ponent explained a lower fraction of variance for the 
Huron analysis than it did for either the Raisin or for 
the combined basin analysis. Subsequent components 
deviate further when compared between analyses. 

For the Huron River basin, 77.2% of the variance in 
the spatial pattern variables was explained in the first 
five components. Several patch density and edge den- 
sity variables were most highly correlated with com- 
ponent one, and forest mean patch size was negatively 
correlated with this component (Table 4b). Component 

Wetland Maximum 27.33 25.22 27.33 one can be summarized as a fragmentation gradient 
Mean 12.1 1 7.74 9.94 
Minimum 2.21 1.2 1.2 with larger contiguous forest patches characterizing 

one end of the gradient, and with high density of 
Kruskal-Wallis tests revealed means for each land cover class to patches and edges at the other extreme. ~h~ set- 
be significantly diflaent between the sub-catchments of the Huron 
and Raisin River basins (P 5 0.00 1). ond component describes the spatial patterning of 

the developed land useicover types. Patch size and 
3.3. Basin comparisons variability variables of agriculture and urban patches, 

as well as the edge density of these land use types, 
When principal components are derived for the loaded on component two. Component three summa- 

sub-catchments of each basin separately (Table 4b rizes the interspersion of land use!cover types within 

tow 

BMuron 

9 Raisin 

Low ----+ Patch density and Edge densit High 
Nigh 4------ Dramjnatlce Law 

Fig. 2. Biplot of rotated principal components 1 and 2 from the combined basin PCA shows some differentiation between sub-catchments 
of the Huron and Raisin basins. Components are labeled with the metrics that had high loadings on each axis, and the direction of the 
correlation. 
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the sub-catchents. It represents a gradient from a 
landscape dominated by a single land use/cover type 
where patches are not well interspersed to a more 
diverse landscape in which the land use!cover types 
are highly interspersed. All interspersion and juxta- 
position indices were most highly correlated with this 
component. Dominance was negatively correlated 
with component three. Components four and five 
describe the two natural land cover types, forest and 
wetlands, respectively. 

For the Raisin River basin, 83.3% of the variance 
in spatial pattern variables was explained by the first 
five components. Again, most of the patch density and 
edge density variables correlated with the first com- 
ponent (Table 4c). Component one is a fragmentation 
gradient, very similw to that seen in the combined 
basin analysis. Component two can be su 
the variation in patch sizes in the: landscqe, and is 
highly correlated with the variation in the size of agri- 
cultural patches. Additionally, the mean. patch size of 
wetlands is inversely correlated with this component. 
Unlike the other two analyses, agricultural edge does 
not load strongly on component 2 in the Raisin basin. 
The third component represents a s u m w  of urban 
patch size, Component four describes the variation in 
the patch sizes of two natural land cover categories, 
forests and wetlands. Component five describes aa in- 
terspersion gradient, 

Shilarities among the comgonents of the corn- 
bined basin analysis and those of the basins consid- 
ered separately are h d e r  documented by Spe 
rank correlations among components (Table 5). The 

first component, the: fragmeraation gradient, is highly 
conelated mong all three analyses. The second corn- 
psnent, representing a gradient in patch size variation, 
is moderately conelated w o n 8  wnalyses also. This 
provides evidence that these gradients consistently ac- 
count far the majority sf vasiatian in spatial patterns 
koughout the study area. The remaining components 
lack consistency mong all three analyses although 
similarities between malyses are evident. 

$3 the combhed basin malysis to the 
Huron basin malysis, component 2, a patch size vari- 
ation gradient, arzd component 5, a wetland gradient, 
respectively, are highly correlatptsd, Component 3 is 
an interspersion gradient in both analyses; fiowever, 
the combined basin eulalysis draws solely sn the 
lmdscape-level and agricultural IJI to characterize 
the gradient whereas the Huron analysis includes the 
landscape-level and all class-level I91 vaxiables. Corn- 
psnent 4 is not significantly correlated between the 
two analyses, In several cases, conrelations did oc- 
cur between non-correspondhg components. Huron 
component 4, a forest gradient, weakly correlates to 
cornbined analysis components 1 and 3. Huron com- 
ponent 2 is negatively correlated to the combined 
component 4. This relationship illus.trates hat  high 
values for most agricultural patterns variables carre- 
spond to low values for usban pattern vkables md  
low IJI for urban, forest, and wetland patches. 

The similarities between the combined basin anal- 
ysis and the Raisin River basin alone are fewer, Corn- 
ponent 2 is moderately correlated, quantifying patch 
size variation in both but deviating in the impornee 

Table 5 
Speman rank correlations beween factor isadhgs of principal components from each of the thee analyses 

Component 

Huron and hisin 1 0.91 
2 - 
3 - 
4 - 
5 - 

Huron 

Dashes (-) indicate non-sipificmt correlations ( P  > 0.05). 
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of the loadings of several other variables. Component 
4 is weakly correlated, sharing only a high loading 
for forest IJI. Again, correlations occurred between 
non-corresponding components. Raisin component 3 
is most similar to combined analysis component 4, 
sharing a description of variation in patterns of ur- 
banization. Raisin component 5 is highly correlated 
to combined analysis component 3, illustrating that 
though IJI metrics do account for variation in both 
landscapes, when the Raisin River sub-catchments are 
considered alone this metric declines in importance. 

3.4. InJuence ofland cover on spatial pattern rnetrics 

Spatial pattern metrics were influenced by changes 
in the proportion of land cover classes to varying de- 

grees as detected by regression analysis (Table 6). Spa- 
tial pattern rnetrics were determined to be spatially au- 
tocorrelated by the Geary's C and Moran's I (except 
for wt_PSCV and agJJI), therefore the results from a 
spatial regression analysis of the same data were used 
to determine if regressions remained significant after 
correcting for spatial autocorrelation. All significant 
regressions remained significant when adjusted for au- 
tocorrelation except for the relationship between IJI 
and proportion of agriculture land cover and between 
IJI and the proportion of urban land cover. To simplify 
presentation and interpretation of results and to permit 
comparison of the standard ? measure of regression 
fit, which is not relevant in spatial regression models 
(Kaluzny et al., 1998), the traditional regression re- 
sults are reported. Table 6 can, therefore, be used to 

Table 6 
The ? values behveen land cover proportions and spatial paaern metrics 
-- 

Metric Forest Wetland Agriculture Urban 

Landscape-level spatial pattern metric~ 
PD 
PSCV 
DOM 
IJI 
ED 

Class-level spatial pattern variables 
ub2D 
~b-ll/lPS 
ubSSCV 
ub-IJI 
ub-ED 
ag 2 D  
agA4PS 
ag2SCV 
ag_lJI 
a g 3 D  
fo-PD 
foMPS 
fo-PSCV 
fo-IJI 
fo-ED 
w t P D  
wt-MPS 
wt2SCV 
wt-IJI 
wt-ED 

Total number of significant relationships 
Total number of non-linear relationships 

Simificant (P < 0.01) values are shown: dash (-) indicates non-si~ificant relationships. Values >0.70 are shown in bold. Asterisks (*) 
indicate where second-order polynomial was used to achieve best fit. 
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determine only the general patterns of relationships, 
which was our goal. 

Consistent with previous simulation studies 
(Gustafson and Parker, 1992; Hargis et al., 1998), 
most of the landscape-level pattern variables showed 
some sensitivity to variations in the proportion of the 
four land useicover types, especially agriculture and 
urban. Edge density and dominance were the two 
metrics most likely to exhibit such sensitivity. Though 
the specific set of metrics exhibiting non-linear rela- 
tionships may be affected by the type of regression 
model used (i.e. ordinary least squares versus spatial 
regression) and the range of land useicover propor- 
tions exhibited within the data set, it is clear that 
several metrics exhibit non-linear relationships that 
can be approximated with second-order polynomials. 

Several metrics consistently showed a non-linear 
response to change in agricultural land cover, the 
anthropogenic land cover class that occurred over 

-3 
Proportion of agriculture (arcsin sqrt) 

the broadest range of values across sub-catchments 
(Table 2). Dominance and edge density at both the 
landscape-level and the class-level (Fig. 3) exhib- 
ited highly significant relationships with proportion 
agriculture. However, significant responses of pattern 
variables to variations in proportion of land uselcover 
were less fkequent when forest or wetland was used as 
the predictor variable. The proportions of these land 
useicover types occur over a relatively small range in 
values within our data set (Table 2), which limits the 
opportunity to display more complex relationships. 

Class-level edge density showed a tight relationship 
with changes in the proportion of the corresponding 
land cover type (Fig. 3). Urban, wetland and forest 
edge density increased linearly as urban, wetland and 
forest land cover, respectively, increased. Edge density 
of agriculture patches displayed a non-linear response 
to increases in agricultural land. Some other metrics, 
including patch density and patch size coefficient of 
variation, were only moderately influenced by, or not 
influenced by, changes in the proportion of the four 
land useicover types. 

4. Discussion 

This analysis of spatial pattern in land useicover, 
applied to small sub-catchment units of two adjoin- 
ing watersheds in southeastern Michigan, identified a 
number of components and their associated variables 
that explain much of the variance in land uselcover 
spatial pattern. Similar to the findings of others 
(Riitters et al., 1995; Cain et al., 1997; Criffith et al., 

too i000), five components captured the prin- 
.$ so 
C 

cipal gradients in land useicover patterns. Because 

+j so our analysis focused at a smaller spatial extent, used 
al a smaller number of land useicover categories and 
3 40 
LU attempted to differentiate between patterns in land 

20 uselcover where development type differed, our re- 

0 
sults confim generalities that can be drawn fiom, 

0,2 0*4 0,6 O.B , 1,4 as well as identify the limitations of, previous work. 

Proportion of agriculture (arcsin sqrt) The first two components, fkagmentation and vari- 
ation in patch size, were strong descriptors of land 

Fig. 3. Pattan metrics showed both linear and non-linear relation- useicover patterns for both an agricultural landscape 
ships with proportion land cover. Nan-kear relationships were and a suburbanizing landscape. Submcatchments of 
most common in relation to proportion agricultural land, which 

- 
the Huron River basin tended to have greater edge 

exhibited the greatest range of any land cover. The non-linear 
response of dominance (top) and edge density (bottom) are illus- and patch density with less variation in patch 
trated. size, whereas the Raisin River basin was a landscape 



R.L. Cguldi er al. /Landscape and U&un Planning 66 (2004) 107-123 119 

with high dominance, lower edge and patch density, 
and greater va~ation in patch size. Further eomp- 
nents deviated between the two basins likely due to 
a shift from a homogeneous landscape dominated by 
a single land useieover type to a more heterogeneous 
and diverse landscape. Additionally, spatial pattern in 
land use:cover exhibited both linear and non-linear 
relationships with changing amounts of the proportion 
of a given land useicover type. Non-linear relation- 
ships may more comonly  be encountered when the 
land useicover type in question exhibits a large range 
of values. Understanding these relationships is nec- 
essary for accurate interpretations of spatial patterns 
and their relationship to ecological processes. 

Nearly 80% of the spatial variation in land cover 
in this analysis was explained by five factors of a 
PCA. Each component represents a gradient in land 
cover patterns that can be visualized from examples 

of extreme conditions (Fig. 4). The first encompasses 
a fiagmentation gradient with sub-catchents having 
high patch and edge densities at the positive end of 
the component. These occur predomhantly just out- 
side town centers where agriculture and natural lands 
are being converted to urban, creating a heteroge- 
neous patchy landscape. The exception is Ann h- 
bor, the most populous city within the study area, 
and can be attributed to the dominance of urban de- 
velopment there. Sub-catchments at the negative end 
of the component are characterized by having a high 
dominance value and larger mean size of agricultural 
patches. Most of these sub-catchments occur in the 
lower reaches of the Raisin River basin, where agri- 
cultural development is most extensive. 

Components 2-5 cumulatively accounted for less 
variation than the first component alone, illustrating 
the relative importance of the fragmentation gradient 

Fig. 4. A comparison of sub-catchment maps which had relatively high and low factor scores for the five factors from the combined basin 
analysis (see Table 4). Map pairs illustrate range of condition among sub-catchments showing examples of extreme condition of a given 
factor. Catchments with low factor scores are on the left and high values on the right of the (A) fragmentation gradient (factor 1); (B) 
variation in patch size (factor 2); (C) variation in patch interspersion (fBctor 3); (D) an urban land cover and interspersion gradient (factor 
4); and (E) variation in wetland patch size (faetor 5). 
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in quantifying variation in land cover spatial pat- 
terns. The second component identified a gradient in 
variation in patch size, with the narrowest range in 
variation occurring throughout the Huron and upper 
Raisin, and the widest range occurring in a limited 
area of the lower Raisin where agricultural land is 
greatest. Agricultural patch size drives the relation- 
ship between PSGV and component 2. Interestingly, 
high urban mean patch size values occur only where 
variation in patch size is low showing that, in this 
landscape, larger urban areas do not occur in highly 
agricultural areas. Component three reflects a patch 
interspersion gradient. High landscape interspersion 
values are most often associated with a more even dis- 
tribution of land cover types. In this study agricultural 
interspersion and juxtaposition index was the vari- 
able most highly correlated with component 3, and 
low IJI values were associated with sub-catchments 
with either a very high or very low percentage agri- 
culture. Both scenarios, though very different in land 
useicover composition, limit the interspersion poten- 
tial of a land useicover type. 

Components 4 and 5 are class-specific gradi- 
ents accounting for variation in urban and wetland 
land useicover types, respectively, illustrating that 
class-level variables account for variation in the data 
left unaccounted for by landscape-level variables. 
Additionally, component four quantifies a second in- 
terspersion gradient. The component correlates highly 
with urban, forest and wetland IJI. The IJI vari- 
ables loaded highest on two different components, 
a result that can be seen throughout the compo- 
nent loading pattern with other metrics. The land 
useicover type with the highest proportion of total 
land area is likely driving the relationship between 
landscape-level IJI and a principal component. Gen- 
erally, the landscape-level variable and corresponding 
agricultural variable correlated most strongly with 
the same component, with the exception of the edge 
density metric. 

The suite of spatial pattern metrics chosen for this 
study explained similar proportions of variance and 
identified a similar number of components in com- 
parison with previous studies attempting to summa- 
rize spatial variability in land cover. Riitters et al. 
(1995) explained 82.7% of the variance in five signif- 
icant components for 26 land cover pattern variables. 
Griffith et al. (2000) explained between 81 and 89% 

of the variance in five components of 27 pattern vari- 
ables. This study explained between 77 and 83% of 
the variance in the same number of components for 25 
land cover pattern variables. Metrics defining signifi- 
cant components common to all of the above analyses 
were those quantifying diversity, contagion, and edge 
and patch density related metrics. Likewise, Cain et al, 
(1997) found measures of diversity and image texture 
to consistently account for large portions of variation 
in land cover patterns when tested among maps vary- 
ing in resolution, number of attributes and method of 
delineating landscape unit boundaries. Patch size met- 
r i c ~  also were strong correlates with factors in each 
of the three studies. Common between Griffith et al. 
(2000) and this study were the importance of the in- 
terspersion and juxtaposition index and of class-level 
pattern variables, particularly when derived for the 
dominant land cover type (e.g. grassland and cropland 
in Grifith et al., and agriculture in this study). Inter- 
estingly, the lack of patch shape and nearest neighbor 
distance metrics in this study did not reduce the vari- 
ation explained, indicating that these metrics may not 
be accounting for variance that cannot be accounted 
for by other pattern metrics. 

Land useicover pattern indices have been shown to 
be sensitive to the spatial extent of a landscape and 
the number of land cover types used to derive the in- 
dices (Turner et al., 1989; Cain et al., 1997), which 
may account for some differences in factor pattern 
interpretation between this study and previous work. 
This analysis used much smaller landscape units than 
prior work, and four possible land cover categories, 
versus six categories used by Griffith et al. (2000) 
and 37 used by Riitters et al. (1 995). Additionally, the 
importance of components determined using a factor 
analysis will be influenced, in part, by the metrics in- 
cluded in the analysis and what aspect of landscape 
structure those metrics quantify (Cain et al., 1997). 
While we chose metrics to closely match the aspects 
of landscape structure captured in prior studies, we 
were unable to use fractal dimension metrics because 
the small number of polygons in each sub-catchment 
could lead to spurious results. The vector format of 
the land useicover data excluded the use of conta- 
gion and nearest neighbor distance metrics. Details 
of the analysis and comparisons with other studies 
likely would be altered if these metrics were incorpo- 
rated. 
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Separate principal components analyses of the 
Raisin and Huron River basins revealed consider- 
able additional complexity in land useicover pattern. 
Mi'hile the major landscape gradient, fragmentation, 
was identical in the two basins, the remaining com- 
ponents exhibited rather pronounced differences in 
factor patterns. Evidently the shift Grom a landscape 
with high dominance in land useicover (Raisin) to a 
landscape with more diversity in land cover (Huron) 
alters the secondary gradients in landscape patterns. 

A landscape that shows high dominance by a single 
land useicover is likely to differ from a more hetero- 
geneous land cover in a number of pattern metrics. 
On the other hand, there is rarely a one-to-one rela- 
tionship between metric values and landscape config- 
uration (Gustafson, 1998). Both linear and non-linear 
relationships might be expected depending upon the 
nature of the landscape and the extent of variation in 
proportion of a land cover. 

Proportion of agriculture in a basin explained the 
most variance in spatial pattern (Table 6). Variance 
explained by the proportion of urban land exceeded 
variance explained by the natural categories, although 
natural land cover types had a similar number of sig- 
nificant relationships to spatial patterns. These two 
classes showed the widest range in values, which 
may also account for the occurrence of non-linear 
responses of metrics with increasing proportions of 
agriculture and urban. Non-linear responses occurred 
with the landscape-level variables DOM, IJI and ED, 
and most class-level IJI and ED variables also showed 
a non-linear response to variations in land useicover. 
Metrics with consistently linear responses included 
PD, PSCV and MPS. Variables showing a non-linear 
response to variations in the proportion of a given land 
useicover type illustrate that the same value for that 
variable can occur in two very different landscapes. 

Though most variables used in these regressions 
exhibited conspicuous patterns of spatial autocorrela- 
tion, with only a few exceptions traditional regression 
models matched autoregressive models in the determi- 
nation of significance. We used results from the tradi- 
tional regression to facilitate qualitative comparisons 
of the strength of relationships between land useicover 
proportions and pattern metric values. The general 
patterns in our empirical results agree with previous 
simulation studies (e.g. Gustafson and Parker, 1992), 
showing that there are significant relationships be- 

tween the proportion of a landscape in a given land 
cover type and the pattern of that landscape. However, 
as in other actual landscapes (e.g. Coppedge et al., 
2001), relationships between pattern and proportion 
are not as clean as those produced in simulated land- 
scapes. These findings provide furtfier evidence for 
the need for research that seeks to identify an inde- 
pendent ecological effect of landscape configuration, 
above and beyond the effects of landscape compo- 
sition (i.e. proportion data). Our results also confirm 
that some of these relationships are non-linear, sug- 
gesting that, in order to interpret metrics of spatial 
configuration one also needs to know something about 
land useicover composition. Spatial configuration 
metrics should, therefore, not be used in isolation. 

5. Conclusion 

In summary, this analysis supports prior efforts 
to identify a sufficient set of measures of landscape 
pattern that will be effective in quantifying land 
cover across a wide range of landscapes and spatial 
scales. Pattern metrics that accounted for variation in 
larger landscape units (2000-20,000 lud )  also were 
effective with units averaging <50lud.  A primary 
dimension of fragmentation appears to be common 
to most studies, although subsequent axes may be 
landscape-specific. Nonetheless, our results agree 
with the findings of others (Riitters et al., 1995; Cain 
et al., 1997; Griffith et al., 2000) that the metrics 
employed here describe variation in land useicover 
and are useful in identifying three to five independent 
components of landscape pattern. 

mether  all of the landscape heterogeneity that can 
be mapped and quantified is of relevance to the eco- 
logical process under investigation is often uncertain 
(Turner, 1989; Gustafson, 1998). The proportion of a 
land useicover type may be as effective in predicting 
a variable of interest as are the many measures of 
heterogeneity one can calculate (Gustafson, 1998). 
In our study, the proportion of land in agriculture 
exhibited the greatest range of any single land cover 
category, and was predictive of a number of pattern 
measures. Hence, it remains to be determined whether 
variation in stream habitat and biota are better ex- 
plained by configuration metrics than simple propor- 
tions (i.e. composition). However, pattern variables 
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have improved statistical relationships between dynamics in fhgmented southern Great Plains grasslands, USA. 
land cover and in-stream variables in several cases Landscape Ecol. 16, 677-690, 

(Hunsaker and Levine, 1995; cifaldi, 2001). Ad&,, Diana. M., 2002. Habitat and land We inRuences On the hdex of 

findhgs suggest that our ability biotic diversity (IBI) in headwater sb.ems of the Huron River 
and Raisin River watersheds in southeastern Michigan, USA. 

to predict fish assemblage metrics from landscape Master's thesis, School of Natural Resources and Environment, 
and habitat data is improved by dis-aggregating the The University of Michigan, Ann Arbor, MI. 
Huron and Raisin watersheds (Diana, 2002), a finding Dodge, K., 1998. River Raisin assessment. Michigan Depmene  

that accords with the marked differences in landscape of Natural Resources, Fisheries Division, Special Report 

pattern that this study reveals between the two basins. Number 23, Ann Arbor, MI. 
Forman, R.T.T., M. Godron, 1986. Landscape Ecology. Wiley, 

Aquatic systems integrate the terrestrial landscape New York. 
and hence reflect its condition. Ultimately, research Griffith, J.A., Martinko, E.A., K.P., 2000. Landscape 
into land use/cover quantification should culminate in structure analysis of Kansas at three scales. Landscape Urban 
the knowledge necessary to determine the mechanistic plan. 52, 45-61. 

links between the way humans have shaped the land- 
scape and the implications for ecological cornunities 
and processes. The pattern variables identified in other 
studies, and echoed here at a scale where the majority 
of aquatic studies occur, should be used to improve 
our predictive capacity of land use impacts upon the 
integrity of these systems. 
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