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Self-organization describes the evolution process of complex structures where systems 
emerge spontaneously, driven internally by variations of the system itself. Self-organi- 
zation to the critical state is manifested by scale-free behavior across many orders of 
magnitude (Bak et al. 1987, Bak 1996, SolC et a1. 1999). Spatial scale-free behavior 
implies fractal properties and is quantified by the fractal dimension. Temporal 
scale-free behavior is evident in power spectra of fluctuations that obey power laws. 
Self-organized criticality is a universal phenomenon that likely produces some of the 
fractals and power laws observed in nature. 

We investigated the historical landscape of southern Wisconsin (USA) (60,000 
km2) for self-organization and complexity. The landscape is patterned into prairies, 
savannas, and open and closed forests, using data from the United States General 
Land Ofice Surveys that were conducted during the 19th century, at a time prior to 
Euro-American settlement. 

We applied a two-dimensional cellular automaton model with one adjustable 
parameter. Model evolution replaces a cell that dies at random times by a cell chosen 
randomly from within a circular radius r, where r typically takes values between 1 
(local) and 10 units (regional). Cluster probability is used to measure the degree of 
organization. The model landscape self-organizes to a realistic critical state if 
neighborhoods of intermediate size (r = 3) are chosen, indicating that (a) no particu- 
lar time or space scale for the clusters is singled out, i.e. the spatial dependence is 
fractal, and temporal fluctuations in the cluster probability exhibit power laws; (b) a 
simple model suffices to replicate the landscape pattern resulting from complex 
spatial and temporal interactions. 

Measures of comparison between the observed and the simulated landscape show 
good agreement: fractal dimensions for simulated (1.6) and observed landscapes 
(1.64), cluster probabilities for simulated (32.3%) and observed (32.6%) landscapes, 
and algorithmic complexity for simulated (6792 bytes) and observed (6205 bytes) 
landscapes. The results are robust towards variation of initial and boundary condi- 
tions as well as perturbations. 
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Ecological systems show complex patterns and behav- Exogeneous models predict details on the behavior of 
ior in space and time (Klomp and Green 1996, Brad- individual biotic units (e.g. ecosystem, tree-species) as a 
bury et al. 2000, Gisiger 2001). This spatio-temporal function of details of the external heterogeneity (e.g. 
complexity can be described using various approaches. climate, soil, disturbance) whose specific environmental 
Among those, models have been widely used to im- processes are mirrored using complex and detailed 
prove the understanding and predictions of observed model parameters. This autecological approach is usu- 
ecosystem function, pattern or diversity. ally strongly reductionist, since the ecosystem under 

Accepted 29 August 2002 

Copyright 8 OIKOS 2003 
ISSN 0030- 1 299 

OIKOS 100:3 (2003) 



study is analyzed for its most likely exernal driving 
forces. In exogeneous models, the temporal and spatial 
scale of the external heterogeneity usually relate to 
particular spatial or temporal scales of the biotic unit. 
The scales range from biomes (Holdridge 1947, Prentice 
et al. 1992, Kirilenko and Solomon 1998), ecosystems 
(Beerling et al. 1997), or vegetation types (Brown 
1994a, Zimmermann and Kienast 1999), to individual 
species (Huntley et al. 1995, Bugmann 1996, Iverson 
and Prasad 1998, He and Mladenoff 1999, Bolliger et 
al. 2000). Such simulations, where the properties of the 
simulated biotic units directly relate to the spatial or 
temporal scale of the external heterogeneity, are called 
scale-variant. 

Simulations from exogeneous models are most realis- 
tic when they encompass the behavior of individual 
biotic units in births, deaths, and movements (Pacala et 
al. 1996). The simulations then exhibit complex spatio- 
temporal behavior. However, when simulating large 
spatial scales, (e.g. landscapes), the general representa- 
tion of the results (e.g. landscape pattern) may be of 
more interest than details of locations, processes, or 
behavior of individuals, especially as corresponding 
data on spatio-temporal details are often incomplete on 
large scales. 

General large-scale representations can be achieved 
using endogeneous modeling approaches, an alternative 
approach to exogeneous models that rely on the varia- 
tion and the internal interaction between the biotic 
units rather than on external heterogeneity. Typically, 
the parameters found in such models are very simple 
and generic in the sense that not much information is 
needed, rather than detailed and specific as in exoge- 
neous models. Also, the system properties found with 
endogeneous models are regarded as universal, i.e. they 
allow generalization of properties across various levels 
of organization while accounting for the properties 
observed at each hierarchical level (Brown 1994b). This 
implies that the properties are true for all hierarchical 
level (large to small scale), indicating that the simulated 
ecosystem does not have any particular space or time 
scale. Such scale-free behavior is called scale-invariant. 

The dynamics between the components of an exoge- 
neous system cause organization by accumulation of 
small changes (Bak 1996). Evolution of these changes in 
succeeding generations allows gradual development 
that eventually generates to order and complex features 
that are more than the sum of the individual parts of 

state is usually characterized by spatial scale invariance 
(fractals) and temporal scale invariance (power laws) 
(Bak et al. 1987, Bak 1996), thus the system exhibits no 
characteristic space or time scale. Such states are called 
self-organized critical (Bak et al. 1987, Bak 1996, Sol4 
et al. 1999). Because scale invariance involves long- 
range correlations, the phenomenon may also reflect 
some key features of how systems are organized and 
how they evolve in time. 

In this paper, we analyze self-organizing aggregation 
in a complex landscape and quantify the resulting Iand- 
scape complexity based on information theory (al- 
gorithmic complexity) using the historical landscape of 
southern Wisconsin (USA) as an example. We hypothe- 
size that complex spatio-temporal phenomena such as 
the evolution of landscape pattern can be sufficiently 
described by an endogeneous model with a single 
parameter, and that landscape complexity need not 
require by complex model constructions. 

Material and methods 

Study area 

The study area covers the southern part of Wisconsin 
(USA), encompassing approximately 60 000 km2 (Fig. 
1). Prior to Euro-American settlement, the landscape of 
southern Wisconsin was patternend into prairie, savan- 
nas and forests, most likely as a function of different 
fire regimes (Curtis 1959, Finley 1976, Whitney 1994). 

The climate is generally continental, and conditions 
range from warm and humid summers to cold and dry 
winters. The climatic pattern is driven by three con- 
trasting air masses: cool-temperate air from the Pacific 
via the Rocky Mountains, subtropical air from the Gulf 
of Mexico, as well as arctic air masses from Canada. 

Major landscape features such as moraines or out- 
wash plains are of glacial origin. The southwestern part 
of the state (Driftless area), however, has not been 
glaciated in recent episodes, and is thus characterized 
by finely dissected topographical features. Early de- 
scriptions picture the widespread occurrence of differ- 
ent species of oaks (Quercus ssp.) on hills, and on dry 
sites. Sand barrens were dominated by pines and oaks. 
Mesic hardwood and lowland forests occurred on 
richer, well-drained soils in the Driftless area and on 
more temperate sites along the Lake Michigan shore. 

the system. This process is called self-organization. 
Self-organization addresses the question of how interac- ~ h ,  historic U.S. ~~~~~~l ~~~d Omee survey 
tions between system structure and processes grow to database 
generate order in large-scale multi-component (com- 
plex) systems (Perry 1995, Bradbury et al. 2000). This The historical landscape of southern Wisconsin is repre- 
synecologial approach views system components as sented by the United States General Land Office Sur- 
non-linearly interacting parts of larger system struc- veys. The surveys were carried out in the 19th century 
tures. A system organizes to a critical state if the from Ohio to the west coast of the United States. In 
dynamics of a system lead it to a complex state. This Wisconsin, the U.S. General Land Office Surveys were 



Fig. 1 .  The study area of 
southern Wisconsin (USA) prior 
to Euro-American settlement. 

conducted between 1832 and 1866 (Stewart 1935). The 
land was divided into township grids, each consisting of 
36 1 -mile (1.6 x 1.6 km2) sections. Survey posts were set 
every half mile (quarter section comers), and every full 
mile (section corners). Typically, one to four trees near 
the posts were blazed (witness trees) to mark the section 
and quarter section corner post locations. The witness tree 
species, diameter, and distance to the corner were 
recorded. Additionally, line trees situated between the 
section and the quarter section corners were noted by 
species, diameter, and distance from the corner. Meander 
posts were set when the surveyors crossed rivers and lakes. 
Descriptive notes on ecosystem properties such as 
swamps, burns, or windfall were recorded, and occasion- 
ally sketched. In spite of various biases and constraints 
(Manies and Mladenoff 2000, Manies et al. 2001, Mlade- 
noff et al. 2002), the surveys are widely recognized to 
provide a reliable basis for large-scale quantitative and 

qualitative information on landscapes prior to Euro- 
American set tlemen t . 

The surveys have been widely used to address a broad 
range of scientific questions such as reconstructing histor- 
ical landscapes (Rodgers and Anderson 1979, Nelson 
1997, Russell 1997, Radeloff et al. 2000b, Schulte and 
Mladenoff 2001; Schulte et al. 2002), landscape classifi- 
cation (Brown 1998a, by Manies and Mladenoff 2000), 
historical landscape-scale disturbance events such as wind 
(Canham and Loucks 1984, Zhang et al. 1999), or fire 
(Kline and Cottam 1979, G r i m  1984), or analysis of the 
historic landscape pattern and their change (Auclair 1976, 
Mladenoff and Howell 1980, Mikan et al. 1994, White 
and Mladenoff 1994, Wallin et al. 1996, Radeloff et al. 
1999), as well as research on the anthropogenic role of 
land-use change (Russell 1981, 1997, Foster et al. 1998, 
Biirgi et al. 2000, Biirgi and Russell 2001), or early 
socio-economic trends (Silbernagel et al. 1997). 
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Table 1. Frequencies of the historical landscape patterns (number of cells and percent of total landscape). 

Closed forest Open woodland Savanna Tamarack swamps Prairie 

The set of original field notes for the entire state of 
Wisconsin was digitally compiled for the purpose of 
ecological analysis and mapping (Sickley 2000). The 
tabular point database contains information on the tree 
species and diameter, tree distances from the section 
corners, and quarter section comer posts, line trees, and 
meander corners. The descriptive surveyor notes on the 
ecosystem characteristics were also compiled. For more 
infomation on methodological details on the survey as 
well as on the database, see Sickley (2000). 

To conduct this study, we used tree density informa- 
tion from all types of corners (section, quarter section, 
line, and meander corners). 

Historical landscape pattern 

Prior to Euro-American settlement, the landscape of 
southern Wisconsin consisted of primarily four major 
vegetation types: prairies, savannas, and open and 
closed forests, mainly dominated by deciduous trees. 
The vegetation pattern is a continuum rather than 
discrete units, and probably the result from differing 
fire regimes (Curtis 1959, Finley 1976, Whitney 1994). 
The landscape pattern was mimicked using treedensity 
information derived from the U.S. General Land Office 
Surveys. 

The tree densities were derived using the AVMwin- 
dows moving windows program that calculates a vari- 
ety of vegetation indices (tree dominance, density, 
relative importance values) based on the basal area of 
trees (He et al. 2000). A11 indices are available at a 
variety of user-defined spatial scales (He et al. 2000). 
We employed a measure for tree density that is calcu- 
lated as the average densities of all witness trees within 
1 square mile, according to a method developed by 
Cottam and Curtis (1956). We chose a 1-mile resolution 
to resemble the original 1-mile resolution of the 
surveys. 

The tree densities were then used to distinguish land- 
scape patterns according to a classification developed 
for a landscape similar to southern Wisconsin by An- 
derson and Anderson (1 975): prairie ( < 0.5 treeslha), 
savanna (0.5-46 treeslha), open woodland (46-99 
treeslha), and closed forest (> 99 treeslha), where 1 
ha = I x f04 m2. Additionally, we categorized pixels 
dominated by tamaracks as tamarack-swamps and in- 
cluded a category for missing data. The historical land- 
scape of southern Wisconsin was dominated by far by 
savanna-type vegetation, followed by closed and open 
woodlands, prairies and swamps (Table 1). 

Single-parameter cellular automaton model 

Cellular automata are spatially extended discrete dy- 
namic systems that are based on regular arrays of cells. 
The cells take n possible states and are usually updated 
simultaneously in discrete time steps. Typically, a cell's 
evolution depends on the states of neighboring cells, 
and the global evolution of the cellular automaton is 
driven by these lucal interactions. 

In our case, the spatial extension of the two-dimen- 
sional square lattice cellular automaton embraces the 
landscape of southern Wisconsin (Fig. 1). The model 
consists of a rectangular array of 253 x 202 cells. The 
cells have a size of 1-square mile to resemble the 
resolution of the survey data. For interpretation of the 
simulation results, only those cells in the array are 
diagnosed that overlap the experimental region, al- 
though all cells in the rectangular array are evolved. 

Each cell has one of six values (representing prairie, 
savanna, open or closed forest, tamarack swamp, or 
missing data) chosen with the same initial probability 
as the observed data. For very long simulations, there is 
a tendency for the minority categories to become ex- 
tinct. To prevent that from happening, the replace- 
ments are made with a probability slightly less than 
100% that is continually adjusted to keep the probabil- 
ity of each category approximately constant, allowing 
long-term simulations. In doing so, we constrain the 
proportions of the landscape pattern to stay constant 
through time, i.e. the environmental constraints that 
shape the landscape (fire, wind, climate) do not change 
through time. Thus we are not attempting to predict the 
probability of the various landscape types, but only the 
spatio-temporal behavior of a landscape with the ob- 
served probabilities. 

The rule for landscape evolution is extremely simple 
in that no biological detail is required. At each time 
step, a randomly chosen cell in the array is replaced by 
a cell chosen randomly from its circular neighborhood 
of radius r (measured in units of the cell size) where r is 
the only parameter of the model measured in units of 
the lattice spacing. The radius r may take values be- 
tween 1 (local) and 10 (regional) units. The r = I unit 
case includes 4, the r = 3 case includes 28, and the 
r = 10 case includes 3 16 grid cells. After 5 1,106 time 
steps, each cell in the array has been replaced once on 
average. This time is referred to as a generation. It 
should correspond roughly to the average life of a tree, 
on the order of 100 years. 

This method differs from other cellular automata 
where all cells are updated simultaneously. We chose 



the method for computational convenience and because 
it better represents real forest evolution where trees die 
somewhat randomly. Tests indicate no significant de- 
pendence on the order in which cells are updated. Our 
cellular automaton resembles the voter model (Clifford 
and Sudbury 1973, Holley and Liggett 1975) that has 
been used to model the behavior of a particularly 
impressionable population in a series of political 
elections. 

bations on the landscape-pattern development is fol- 
lowed through time: Dying perturbations (is. decrease 
in perturbed cells) indicate low sensitivity to the pertur- 
bation, whereas growing perturbations (i.e. increase in 
perturbed cells) over time indicate strong sensitivity to 
the perturbation. 

In a third robustness test, we investigated at the 
model's sensitivity to the original 1-square mile grid size 
by resampling the data on various grid sizes ranging 
from 2 to 8 miles. 

Measures for model robustness 

We tested the model's behavior across a range of Model runs 

conditions. The robustness of the simulations was 
tested for model characteristics such as (1) initial condi- 
tions (random and highly ordered, shown in Fig. 2a, b), 
and (2) boundary conditions (periodic and reflecting). 
With periodic boundary conditions the landscape 
boundaries are folded into a torus. With reflecting 
boundary conditions the landscape boundaries are mir- 
ror imaged i.e. a cell at the rightmost edge of the grid 
is assumed to have a neighbor on its right that is the 
same as on its left, similarly for the other edges top, 
bottom, and left. 

Model simulations were run five times for each 
boundary condition (periodic and reflecting), and for 
each initial condition (random and ordered) for radii of 
r = 1, 3, and 10 units. The simulations were run for a 
period of about 30,000 generations, resulting in a simu- 
lated period of about 3 million years. Averages and 
standard deviations of the five runs were used to plot 
the behavior of the evolving cellular automaton 
through time. 

We also tested the robustness of the simulations 
towards the abundance of the original landscape-pat- Measures of comparison between simulated and 

tern frequencies used to initiate the model. The original observed landscapes 
landscape-pattern frequency is shown in Table 1 with 
savanna as the most frequent pattern, followed by 
closed forest open woodland, prairie and swamp. The 
first perturbation experiment varies these original pro- 
portions of the landscape patterns so that the most 
frequent landscape type savanna is increased 20% and 
all the other landscape types (closed and open wood- 
land, prairie, swamp) are decreased 20% in their fre- 
quencies. Simulations after convergence resulting from 
the perturbed and the unperturbed data set are then 
compared. In a second perturbation experiment the 
landscape types are randomly changed into cells with 
different landscape types for selected cells. The number 
of cells perturbed in this manner ranges from a single 
cell to about half of the cell total (corresponding to 
approximately 14000 cells). The effect of these pertur- 

(a) random (b) ordered 

We compared the simulated to the observed landscape 
using three measures: fractal dimension, cluster proba- 
bility, and algorithmic complexity. 

Fractal dimension and spatial scale-invariance 
Fractal geometry is used to compare properties of the 
spatial structures of simulated and observed landscapes 
since they quantify the spatial complexity apparent in 
landscapes (Mandelbrot 1982, Gardner et al. 1987, 
Milne 1988, 1991, O'Neill et al. 1988, Sprott et al. 
2002). Fractals are mathematical representations of 
complex natural patterns (e.g. sea shores) and provide 
measures of spatial dependence at a variety of scales. 
They are described using algorithms that quantify the 
proportion of the geometrical space that is occupied by 
the fractal. Here, we applied a variant of the Grass- 
berger-Procaccia algorithm to quantify the total struc- 
ture of the landscape (Grassberger and Procaccia 1983). 
The fractal dimension is calculated using correlation 
sums. The correlation sum C(E) is defined as the proba- 
bility that two randomly chosen points of the same 
landscape type (e.g. prairie) are within a distance E of 
one another, where E is taken as the maximum norm 
Ix, - x21 + bI -yZI rather than the usual Euclidean 
norm. 

To assess the pattern-size scale invariance, the log of 
the correlation sum C(E) is plotted versus the log of the 

Fig. 2. Random (a) and ordered (b) initial conditions of the scale size &* The range & Over which the plot is a 
cellular automation. straight line is the scaling region, and the slope of the 
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line dogC(~)/dfog~ is the correlation dimension. The 
correlation dimension is one measure of the fractal 
dimension and a point of comparison between model 
and observations. 

Power laws are usually referred to as a footprint of 
self-organization to a critical state. In a spatial context, 
this indicates that the landscape is dominated by a few 
large, and many small clusters. The observations on 
any scale allow predictions on all scales. 

Cluster probability and temporal scale-invariance (1 /f" 
power laws) 
Cluster probability is used to measure organization and 
the temporal behavior of the simulated landscape. It is 
defined as the portion of cells that are part of a cluster 
on the entire array of cells. A point in the array is 
assumed to be part of a cluster if its four nearest 
neighbors are the same as it is. A highly disorganized 
array has a small cluster probability, and a highly 
organized array has a large cluster probability. The 
cluster probability i.e. the portion of cells that are part 
of a cluster across the entire region is 32.3% for the 
observed landscape (Fig. 1). 

Cluster probability was used to assess the temporal 
scale-invariance as evidenced by l/f temporal fluctua- 
tions in power spectra that are considered to be one of 
the indications of self-organized criticality. In a tempo- 
ral context, l /P  power-laws indicate that no character- 
istic frequencies or time scales exist. 

The power spectrum was derived using software de- 
veloped by Sprott and Rowlands (1998). PCf)  of a 
signal h(t) is defined as the contribution of each fre- 
quency f to the signal h(t). l / P  power spectra contain 
all frequencies with the predominance at the lowest 
frequencies. 

algorithm that is able to reproduce the data. With this 
approach, condensation of the entire set of interactions 
between system components is achieved (Lempel and 
Ziv 1976, Kaspar and Schuster 1987, Manson 2001). 
One way to estimate this quantity takes advantage of 
the fact that GIF graphic files are nearly optimally 
compressed. The algorithmic complexity of the land- 
scape-pattern graphics is determined by the size of the 
GIF file of the landscape image after subtracting the 
fixed size of the file header (Sprott et a1. 2002). Al- 
though this measure is subject to debate (Feldman and 
Crutchfield 1998), it provides a comparison between 
simulations and observations. 

Results 

Measures for comparison between observed and 
simulated landscape 

Spatial scale-invariance (fractals) 
The fractal dimension (slope of the graph) for both the 
observed and simulated landscape for r = 3 after con- 
vergence is about 1.6, indicating that the spatial proper- 
ties of the observed landscape are well reproduced by 
the model (Fig. 3a, b). 

The curves in Fig. 3a and b do not change its slope 
from the smallest scale up to the scale of the entire 
landscape. This indicates no particular spatial scale is 
singled out and that a pattern has the same properties 
when observed at different spatial resolutions. This 
property is referred to as spatial scale invariance, mean- 
ing that the landscape is a fractal (self-similar on scales 
across several orders of magnitude). 

Algorithmic complexity Temporal scale invariance 
Algorithfic complexity is used to compare the come The measure for organization of the landscape, cluster 
plexity of the observed and the simulated landscapes probability, is 32.3% for the observed landscape (Fig. 
and is defined as the size of the simplest computational 4, and b), indicating that 32.3% of the cells are part of. 

clusters that ultimately form the observed landscape 
pattern in Fig. 1. 

(a) (b) The different sizes of neighborhoods (radius sizes) 
Data Model r = 3 used in the model can be viewed as a measure of the 

distance over which cells interact with each other. 
Choosing small neighborhoods (r = 1 corresponding to 
4 neighboring cells), results in over-organization of the 
landscape (Fig. 4a and b), i.e. it reaches a higher 
percentage of clustered cells (68.9%) than the observed 
landscape (32.3%). Since cells within a small neighbor- 
hood are more likely to exhibit similar features, and 
since local interactions due to small radii sizes allow 
only limited connection with the entire set of features 

0 loglo 3 occurring on the landscape, it is more likely that evolv- 

Fig. 3. Fractal dimension as a measure of comparison between ing cells find cells with the same features, and thus 
(a) observed and (b) simulated landscape patterns. over-organize. 
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If large neighborhoods (r = 10 corresponding to 3 16 (a) 
neighboring cells) are chosen, the simulated landscape 
does not self-organize, exhibiting a cluster probability 
less than 10% (Fig. 4a and b). Large neighborhoods 
account for the overall landscape-pattern diversity. In 
such cases the likelihood that cells with identical prop- 
erties interact is small since such cells are often found 
adjacent to each other. 

If intermediate neighborhoods (r = 3 corresponding 
to 28 neighboring cells) are chosen, however, self-orga- 
nization of the landscape to the observed value of 
32.3% (Fig. 4a and b). Intermediate neighborhood sizes 
appear thus to account for large enough landscape-pat- 
tern diversity to allow occasional larger-distance inter- 

. . 
actions, in addition to the small-scale interactions 
between neighbors. 

The effect of the neighborhood sizes on the self-orga- 
nization of the landscape is independent of the initial 

..... . 

.ocmm 
Frequency 

Fig. 5. (a) Power law for the neighborhood sizes of r = 1 and 
r = 3; (b) no power law for the radius size of r = 10. 

conditions. For a completely random landscape in Fig. 
4a, order is created (increasing cluster probability) with 
time. For a completely ordered landscape in Fig. 4b, 
the order is decreased (decreasing cluster probability). 

Analyses of the temporal fluctuations of the cluster 
probability after convergence for the different sizes of 
neighborhoods as analyzed in Fig. 4a and b are shown 
in Fig. 5a and b. W e n  plotted on a log-log scale, the 
power (squares of amplitudes) and the frequency (in- 
verse of the period) of the converged graph of the 
cluster probability exhibit power-law behavior l / P  with 
a = 1.58 for r = 1 and r = 3 (Fig. 5a). Power spectra 
that exhibit straight lines are referred to as power laws. 
The straight line of the power law indicates that no 
particular time scale is singled out, and the properties 
of a given frequency stand for all frequencies (scale 
invariance), indicating that any landscape-pattern 

o f a 3 4 s change may take place any time and is likely to affect 
the entire landscape on every temporal scale. 

Fig. 4. Cluster probability as a measure of comparison be- The neighborhood size of = lo does show 
tween observed and simulated landscape patterns. The land- power-law behavior (Fig. 5b), as particular time scales 
scape evolves with (a) random, and ~rdered initial are singled out (i.e. the slope changes and the graph is 
conditions to the same level of organisation (32.3%) as the not a straight line). ~ l ~ ~ ,  this size of neighborhood observed landscape pattern (cluster probability: 32.3%) if an 
intermediate radius size of r = 3 is chosen. Shown are means strongly under-organizes (Fig. 4% b), with a cluster 
and standard deviations of five runs. probability of 10% instead of the observed 32.2%. 
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Landscape complexity - 4  
The GIF file representing the observed landscape in - 
Fig. 1 compresses to 6205 bytes. The self-organized * 3 
simulated landscape with r = 3 compresses to a size 
similar to the observed landscape (6792 bytes) com- 
pared to a complete random landscape that compresses 
to 8136 bytes. 5 E 1 

Measures for model robustness 0 1 2 3 4 

The results are not sensitive to any of the boundary log (perturbation size) 

(periodic, reflecting) - or initial (random, ordered) Fig. 7. Perturbation experiment using various perturbation 
conditions considered (example show11 in Fig. 4a and sizes. All sizes of perturbations eventually die out. 

b), indicating robust behavior towards the initial states 
of the model. Periodic and reflecting boundary condi- 
tions are indistinguishable. ability over the interval zero to r, probability kernels 

The model exhibits robustness towards variation in that decrease slowly behave similarly including the 
the pattern frequencies for the radii that exhibit self-or- "small world" limit where a small fraction of the 
ganization of the landscape (r = 1 and r = 3) (Fig. 6). replacements are chosen randomly from throughout the 
The effect of the perturbation is larger for r = 10 be- landscape. 
cause the landscape remains essentially random (i.e. not 
self-organizing) and the cluster probability is deter- 
mined primarily by the relative pattern frequencies. 

The model is also robust towards random perturba- 
tions of the landscape pattern, because it is only a 
matter of time until all sizes of perturbation die out. 
Small perturbations die out relatively quickly, whereas 
large perturbations die out more slowly (Fig. 7). 

Tests of the model's robustness to the original resolu- 
tion of the input grid by resampling of the original 1 
mile square grid at resolutions of 2, 4 and 8 mile grids 
show cluster probabilities for the self-organized state 
comparable to the original 1 mile square grid (Fig. 8). 
The simulations are thus robust for the resolutions of 
the input grid, as expected for a fractal. 

The model is also robust to the probability distribu- 

Discussion 

The variety of species and numerous interactions 
among biotic and abiotic factors in ecosystems give rise 
to complex spatio-temporal patterns. In this paper, we 
presented an endogenous approach to describe and 
understand landscape-pattern complexity. As opposed 
to exogenous approaches where biotic units are largely 
interpreted as the product of environmental heterogene- 
ity, endogenous approaches view the observed pattern 
to be a function of internal interactions of the individ- 
ual system components that generate order by accumu- 
lating small changes through time (Bak 1996). The 
development of the organizing aggregation process 

tion of cell replacements. Rather than a constant prob- eventually gives rise to complex structures. One aspect 
of complex behavior is the aggregation into distinct 

Fig. 6. Perturbation experiment using a proportional 200io 
shift in original pattern frequency. The cluster probabilities 
after convergence of the perturbed and the unperturbed simu- 
lation do not statistically differ for the radius sizes of r = 1 and 
r = 3. The perturbed and the unperturbed simulation differ 
however for r = 10 as the landscape stays essentially random. 

spatio-temporal patterns where local rules produce 
global behavior. 

Cell size (miles) 

5 7 
Cluster probability 

Fig. 8. Test for the dependence on the resolution of the grid 
size (originally 1 mile). The data was resampled on coarser 
resolutions between 2 and 8 miles. 
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Simple models may suffice to describe complex 
landscape patterns 

Prior to Euro-American settlement, the landscape of 
southern Wisconsin consisted of a mosaic of prairie, 
savanna, open forest, and closed forest (Curtis 1959, 
Finley 1976). Early descriptions picture the widespread 
occurrence of oak-dominated savannas and prairies on 
hills and dry sites. Common oak species included white 
(Quercus alba L.), bur (Q. macrocarpa Michx.), and 
black oaks (Q. velutina Lam.) (Curtis 1959). Sand bar- 
rens, a type of savanna and dominated by jack's pine 
(Pinus banksiana Lamb.) were primarily found on 
sandy glacial outwash plains. Closed forests, dominated 
by mesic hardwood forests occurred on richer, well- 
drained soils in the west and southwest of the state as 
well as in climatically moderate areas influenced by 
Lake Michigan. These forests were dominated by sugar 
maple (Acer saccharum Marsh.) and American bass- 
wood (Tilia americana L.), with northern red oak (Q. 
rubra L.), white ash (Fraxinus americana L.) and Amer- 
ican beech (Fagur americana Ehrh.). Lowland forests 
near lakes and rivers were composed of eastern cotton- 
wood (Populus deltoides Bartr. ex Marsh.), black ash 
(F. nigra Marsh.), silver maple (A. saccharinm L.), and 
American elm (Ulmus americana L.) (Curtis 1959). 

Landscapes are heterogeneous due to a broad variety 
of processes, ranging from the variability in abiotic 
conditions (e.g. climate: Iverson and Prasad 1998, Bol- 
liger et al. 2000), to biotic interactions (Ives et al. 1998), 
human land-use (Russell 198 1, 1997, Biirgi et al. 2000, 
Biirgi and Russell 2001), disturbance such as fire (He 
and Mladenoff 1999) or insect outbreak (Radeloff et al. 
2000a). The historical landscape of southern Wisconsin 
was structurally very heterogeneous due to the varia- 
tion of the fire return interval that generates different 
successional stages (Curtis 1959, Finley 1976, Whitney 
1994). Comparatively high frequency of fire disturbance 
was the most likely factor maintaining historical land- 
scape patterns such as prairies and savannas, whereas 
low frequencies in fire disturbance caused closed forests 
to form (Curtis 1959). However, such landscape hetero- 
geneity representing different successional stages can be 
generated by various drivers depending on the land- 
scape details. For example, the drivers to maintain the 
heterogeneity of mountainous Iandscapes may be 
avalanches rather than fire. In even another landscape 
wind disturbance may be the driver of successional 
dynamics, rather than fire or avalanches. Thus similar 
patterns such as prairies and closed forests occur in 
completely different environmental settings due to very 
different drivers. However, in a statistical sense the 
effects of such processes are similar on landscapes in 
that the homogenous symmetry of the landscape is 
broken up into patterns of different properties (e.g. age 
structure or vegetation types) and a variety of statistical 
landscape-pattern characteristics are thus largely inde- 

pendent of their drivers. For modeling at the landscape 
scale this may indicate that details are not required to 
describe the general landscape pattern. Thus, very gen- 
eral and simple model parameterization in the sense of 
low detail requirements, rather than complex model 
parameterization, may suffice over a wide range of 
scales. Advantages of simple models include easy con- 
trol over the behavior of the parameters, as opposed to 
complex model parameterization whose parameter in- 
teractions are difficult to quantify (Rastetter 1991). 
Limitations of these simple models include exclusively 
statistical and not spatial representation of the land- 
scape pattern. Also, mechanistic details on the abiotic 
or biotic drivers cannot be addressed with this type of 
model. 

We presented a generic and process-independent 
model that is suMieient for generating a complex pat- 
terns resembling the historical landscape of southern 
Wisconsin (USA). The model uses a single, adjustable 
parameter to mimick low-level interaction processes 
among the landscape components batterns). Our re- 
sults suggest that the simple model yields robust spatio- 
temporal dynamics on a landscape-scale that are 
consistent with the apparent statistics. We thus state 
that models with simple rules that do not specify spe- 
cific processes may SUSC~ to replicate major character- 
istics of the landscape pattern originating from complex 
spatial and temporal interactions. 

Process-independent models (neutral models) have 
played an important role in various fields of ecology, 
including applied fields: landscape patterning (Gardner 
et al. 1987), fire disturbance (Turner et al. 1989, Green 
et al. 1990), effects of habitat fragmentation on birds 
(Hansen and Urban 1992, Andrbn 1994, With and King 
1999) or mammals (Andren 1994), extinction thresholds 
(Lande 1987), or predictions of the efiect of habitat- 
and land-use changes on species (Hansen and Urban 
1992, With and Crist 1995), but also in the field of 
theoretical landscape ecology where the neutral models 
provide generalized null models to generate patterns in 
the absence of specific processes (Gardner et al. 1987, 
Turner et al. 1989, Gardner and O'Neill 1991, With et 
al. 1997, With and King 1999 but see Schumaker 1996) 
with the intention to achieve statistical, rather than 
spatially explicit representations of the landscape under 
study. 

Self-organization and algorithmic complexity to 
measure landscape-patterns and connectivity 

Our model predicts that generic simple rules (a) create 
self-organization by driving the dynamics of a land- 
scape so that order emerges spontaneously from diEer- 
ent initial conditions, and (b) self-organize to a critical 
state by presenting the dynamics as scale-free: tempo- 
rally as power laws and spatially as fractals. Self-orga- 
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nization occurs due to gradual aggregation of landscape 
elements into patterns with identical properties through 
time. Self-organization is a phenomenon that does not 
specify causalities between patterns and environment 
and is generated by internal variation independent of 
external drivers. 

Scale-free behavior is the key phenomenon in nature 
when defining self-organized critical states (Bak et al. 
1987, Bak 1996, Sol6 et al. 1999), and is a phenomenon 
with strong universal and interdisciplinary character 
since fractals and power laws are observed throughout 
nature: earthquakes (Gutenberg and Richter 1954, 
Ceva 1998), quasar luminosities (Press 1978), 
avalanches in sand piles (Bak et al. 1987, Bak 1994, 
1996), or chemical reactions (Simoyi et al. 1982), diver- 
sity (Sol& and Manrubia 1995, Caldarelli et ale 1998, 
Lassig et al. 2001), population dynamics (Hassell et al. 
1994, Perry 1995, Kaitala and Ranta 1998, Katiala et 
al. 2001), fire (Green et al. 1990, Malamud et al. 1998, 
Song et al. 2001), evolutionary ecology (Bak and Snep- 
pen 1993, Sol6 et al. 1999), or forest change during the 
postglacial period (Green 1990). For investigation of 
landscape patterns, scale-free behavior indicates that 
results from investigations observed at one spatial scale 
can be extrapolated to the entire landscape. 

Results from our study show that scale-free behavior 
depends on the neighborhood size within which cells 
potentially interact, thus emphasizing the relevance of 
the magnitude and the pattern of communication (con- 
nectivity) across the landscape. Connectivity has played 
a key role as a landscape pattern descriptor in ecology 
(Taylor et al. 1993, With et al. 1997), particularly for 
quantification of the functional linkage among individ- 
ual elements of a landscape. Connectivity is generated 
either because habitat is physically adjacent or because 
the dispersal abilities of the organism effectively con- 
nect elements across the landscape (Gardner et al. 1987, 
OYNeill et al. 1988, With and Crist 1995). 

Generally, connectivity can be described by the na- 
ture of the interactions among the biotic and/or abiotic 
units. One description is based on the quantification of 
interactions among system components based on infor- 
mation theory (Manson 2001). Our results show that 
algorithmic complexity is a valid measure for quantify- 
ing landscape complexity since our simulated and ob- 
served landscape have similar values and differ from a 
random landscape. 

Another way of characterizing connectivity across 
landscapes is based on measurements of physical inter- 
action distances of individual cells on the landscape. In 
our example, small neighborhood sizes of r = 1 (repre- 
senting strongly reduced connectivity as small areas are 
considered) over-organize, indicating that only small 
fractions of the overall landscape-pattern diversity can 
be accounted for within small areas. Thus, low connec- 
tivity results in small-scale interactions that lead to 
over-organization since adjacent cells are likely to ex- 

hibit identical features such as pattern properties. Large 
neighborhood sizes of r = 10 (representing high connec- 
tivity as large areas are covered), on the other hand, do 
not organize at all. Thus, within highly connected land- 
scapes, the likelihood of cells meeting cells with similar 
properties are low within large areas, leading to low 
organization levels. However, intermediate sizes of 
neighborhoods (r = 3), representing intermediate levels 
of connection across the landscape with proportionally 
more interactions from relatively distant cells than from 
cells nearby, give rise to self-organization to the value 
of the observed landscape (32.3%). Since the intermedi- 
ate neighborhood of r = 3 represents a measure of 
potential connections among cells of the landscapes but 
also provokes the landscape to self-organize to the 
critical state, we propose that self-organized criticality 
can be used to describe the intermediate connectivity of 
a landscape. 

For the historical landscape of southern Wisconsin, 
for example, fire disturbance is the likely driver for such 
intermediate connectivity. If a landscape exhibits low 
connectivity from the onset (e.g. landscape patterned 
into prairies, savannas, and closed forests), fire will 
have an impact on some of the patterns, however not 
on the entire landscape. If a landscape exhibits high 
connectivity such as in a homogeneously closed forest, 
the effect of fire results in a reduction of the overall 
connectivity (i.e., break the symmetry of the landscape 
into patterns). The reduction of the connectivity usually 
results in some intermediate levels of connectivity such 
that fire will spread to some extent, but not bum down 
the entire landscape. Thus, the self-organized critical 
state representing intermediate levels of connectivity 
between the landscape elements and related measures of 
connectivity such as (a) the percolation threshold (With 
et al. 1997), or (b) evidence of systems that are interme- 
diately connected between completely ordered and ran- 
dom ("small world" concept) (Watts and Strogatz 
1998, Montoya and Solt 2002), may express similar 
landscape properties. 

Advantages of the approach of self-organization en- 
compass the fact that it is a truly interdisciplinary and 
universal phenomenon. However, limitations with re- 
gard to the power laws include that the lower boundary 
in our study is potentially limited by the finite size of 
individual trees, whereas the upper boundary may be 
limited by environmental gradients, The question re- 
mains whether environmental gradients are strong 
enough to overwhelm any self-organizing dynamics. 
Shortcomings include that only few ecological systems 
are entirely driven by internal interactions, and that 
energy throughputs in the system cannot be quantified 
(Milne 1998). This reveals that the approach is most 
usefully applied a posteriori and is unable to mechanis- 
tically simulate fluxes such as e.g. carbon dioxide 
through ecosystems. 



Challenges in ecological research include approaches 
that relate the understanding of individual plant or 
animal species to higher-level phenomena that can be 
approximated by general frameworks. Since self-organi- 
zation is a very universal phenomenon that occurs 
across a broad range of disciplines, it may serve as a 
tool to address the understanding of ecosystem com- 
plexity and function in a more general framework. The 
phenomenon of self-organization is a powerful interdis- 
ciplinary approach (a) to complete some of the current 
theoretical frameworks (e.g. metapopulation theory) by 
investigating how internal interactions (e.g. competi- 
tion) act together and (b) to improve the understanding 
of how and why biotic units occur together at their 
current locations across ecosystems and (c) to assess the 
relative roles of external (e.g. climate) versus internal 
drivers (self-organization) in determining the observed 
system complexity. 

Models using simple parameters have been success- 
fully applied to a broad variety of physical systems and 
evidence increases that models using simple parameters 
can account for the general behavior of system com- 
plexity. Although one might not expect such models to 
be applicable to ecological systems, whose complexity is 
often described using details such as environmental 
drivers (e.g. climate) in their spatio-temporal context, 
self-organization and critical phenomena are fields 
where large amounts of system detail are not needed to 
explain the observed complexity (Gisiger 2001). Evi- 
dence has been given that models using simple parame- 
terization have been successful to address theoretical as 
well as applied questions in e.g. biological evolution 
(Sol6 et al. 1999) or habitat conservation (Hansen and 
Urban 1992, With and Crist 1995). 
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