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A simple cellular automaton replicates the fractal pattern of a natural forest landscape and predicts its evolution. Spatial ,.+ G:: a:: ...- 

distributions and temporal fluctuations in global quantities show power-law spectra, implying scale-invariance, characteristic ti; ' 
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of self-organized criticality. The evolution toward the SOC state and the robustness of that state to perturbations are described. .sa ;.J 
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The idea that natural systems self-organize into a that replicates the spatial structure in the long-time 
critical state far fi-om equilibrium that exhibits spatial 
and temporal scale-invariance with power-law spectra 
is an important paradigm for understanding the be- 
havior of complex systems [1], especially biological 
systems [2]. Self-organized criticality (SOC) has been 
observed in many such systems including earthquakes 
[3], quasar luminosities [4], sand-piles 151, chemical 
reactions [6], and biological evolution [7], as well 
as simple computational models of such processes. 
We present here evidence that a natural forest land- 
scape exhibits similar spatial scale-invariance. We 
develop a simple mo-dimensional cellular automa- 

limit, independent of the initial condition. The model 
exhibits realistic temporal fluctuations that are also 
scale-invariant over a wide range of time scales. More 
complicated forest models with similar behavior have 
been previously studied [8,9], especially involving for- 
est fires [l&l2]. 

The U.S. General Land Office Surveys are widely 
recognized to provide a reliable basis for large-scale 
quantitative and qualitative information on landscapes 
prior to major Euro-American influence. Carried out 
in the 19th century from Ohio to the west coast of 
the United States, the surveys divide the land into 

ton (CA) model with a single adjustable parameter a regular 1-square-mile grid. Along the grid, survey 
posts were set, and one to four trees near the posts 
were blazed (witness trees). Information such as the 
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Fig. 1. Landscape of Southern Wisconsin in the early to mid 1800's. 

Data Model r = 3 
These surveys have been widely used to address a 

broad range of scientific questions such as reconstruct- 
ing and restoring historical landscapes [ 13- 171, land- - 

scape classification schemes [I 8-2 11, investigation of 
historical landscape-scale disturbances such as wind 
[22-251 and fire [20,26], analysis of the historic land- 
scape pattern and change [15,23,27-291, and research - 

on the anthropogenic role of land-use change [14] and 
0 loglo & 3 0 

early socio-economic trends [30]. 
The U.S. GfXleral ]Land Ofice Surveys for southern Fig. 2. Correlation sum for landscape data and model showing 

Wisconsin are shown in Fig. 1. The surveys consist spatial scale-invariance with a fractal dimension of about 1.6. 

of 27,886 measurements of landscape types on a 
one-mile (1.6 km) grid. For our purpose, each grid 
point is characterized by a discrete landscape type 
corresponding to a range of tree densities [13]. These 
types include prairie ( t0 .5  treeslha), savanna (0.5- 
46 treesha), open woodland (46-99 treeslha), and 
closed forest (>99 treesiha) (1 ha = 1 x lo4 m2). 
Additionally, we distinguish swamps, as well as a 
separate category for missing data. The results are not 
sensitive to the details of the categorization. 

Spatial scale-invariance was tested using a form of 
the Grassberger-Procaccia algorithm [3 11. The corre- 
lation sum C(E) is defined as the probability that two 
randomly chosen points (1 and 2) of the same inte- 
ger value (0-5) are within a distance E of one another, 
where E is taken as the maximum norm 1x1 - x2l + 

lyl - y2 I rather than the usual Euclidean norm. If the 
plot of log C(E)  versus log E is a straight line, the ob- 
ject is spatially scale-invariant (a fractal), and the slope 
of the line is the fractal dimension. Fig. 2 shows such 
a plot for the data in Fig. 1, indicating spatial scale- 
invariance from the smallest scale (the cell size) up to 
a scale approaching the size of the image, with a frac- 
tal dimension of about 1.6. Similar fractal structure has 
been observed in tropical rainforests [8,9]. 

In addition to the fractal dimension, another point 
of comparison between the data and the model to be 
described is the probability that an arbitrary point in 
the array is part of a cluster of identical points, here 
defined as its four nearest neighbors (a von Neumann 
neighborhood). A highly disorganized array will have 
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a small cluster probability, and a highly organized 
array will have a large cluster probability. The cluster 
probability for the data in Fig. 1 is 32.3%. 

The CA model consists of a rectangular array 
of 253 x 202 cells to match the resolution of the 
observed data with periodic boundary conditions (a 
toms), although the results are not sensitive to the 
boundary conditions or array size. Each cell has one 
of six values chosen with the same probability as the 
data. For comparison, only those cells in the array 
that overlap the region of observation are considered, 
although all cells in the rectangular array are evolved. 

The rule is extremely simple. At each time step, a 
randomly chosen cell in the array is replaced by a cell 
chosen randomly from its circular neighborhood of 
radius r (measured in units of the cell size). The radius 
r is the only parameter in the model. After 5 1,106 
such steps, each cell in the array has been replaced 
once on average, and this time is called a generation. 
It corresponds roughly to the average life of a tree, on 
the order of 100 years. Note that this method differs 
fiom the usual CA in which all cells are updated 
simultaneously. Thz difference is of little consequence 
as evidenced by tests in which the cells chosen 
for replacement are highly correlated with previous 
replacements as might occur for disease or fire. The 
chosen procedure is computationally convenient and 
models a forest in which trees die somewhat randomly. 

For calculations longer than a few thousand gen- 
erations, there is a tendency for the minority cate- 
gories to become extinct. To prevent that from hap- 
pening, a very small feedback is added that occasion- 
ally suppresses replacements whenever such replace- 
ments would cause the number in that category to ex- 
ceed the desired value. This embellishent is not crit- 
ical to the results, but it allows very long simulations, 
corresponding to millions of years. 

The correlation sum for the model with r = 3 and 
random initial conditions is shown in Fig. 2 after lo4 
generations. The plot is nearly a straight line with a 
fractal dimension of about 1.65, which is similar to 
the observed data. The fractal dimension is not the best 
metric for testing the model, however, since it is less 
sensitive than other measures. 

The final state is insensitive to the initial conditions. 
Two extreme cases are random initial conditions 
having a very low cluster probability (about 4%) and 
a highly ordered one with a high cluster probability 

100 Random initid conditions i 

0 4 
0 loplo(number of generations) 4 

10 

0 s , 
0 loglo (number of generations) 4 

Fig. 3. Evolution of the cluster probability shows that r = 3 
self-organizes to a value close to the observed data for two extreme 
initial conditions. 

(about 96%). Fig. 3 shows how the cluster probability 
evolves for these initial conditions for three values 
of r. Each plot is an average of five runs with 
different sequences of random numbers, showing f 
one standard deviation in gray. The case with r = 
3 converges to a value close to the observed data 
after about a thousand generations, independent of 
initial conditions. Smaller values of r over-organize, 
and larger values of r under-organize. There does 
not appear to be a sharp threshold as with a phase 
transition. 

Resampling the observed data at digerent resolu- 
tions gives the same fractal dimension and cluster 
probability as expected with spatial scale invariance. 
Although the model best fits the observation for r = 3, 
there is nothing special about a distance of 3 miles 
(-5 h). Rather, the critical parameter for r = 3 ap- 
pears to be the 9n -- 28 cells from which replacements 
are chosen. 

After the CA self-organizes, there are temporal 
fluctuations in global quantities such as the cluster 
probability. The power spectrum of these fluctuations 
sampled once per generation was calculated using 
the maximum entropy method [32], and the results 
for r = 3 and r = 10 are shown in Fig. 4. The 
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conditions has a size of 8 136 bytes, which with r = 
3 evolves after many generations to a size of 6782 
bytes, with small temporal fluctuations. Although the 
significance of such a measure is subject to debate 
1351, it nonetheless provides a point of comparison 
between a model and the data, 

The robustness of the SOC state was studied by 
randomly exchanging some cells after a self-organized 
state was reached to maintain the same probability 

lo-5' \ I  
Frequency 1 

of categories. The perturbed and unperturbed cases 
lo-* 
1 

then evolved using the same rules with the same 
sequence of random numbers, and the number of 

n 
cells that differ in the two cases was calculated at 

!I each generation. Perturbations with sizes up to about 

E half the total number of cells eventually die, and 

s the two cases become identical. The reason is that 
ta - the site from which a replacement is chosen is more 
h, 

g likely to be the same than different in the perturbed 
PI 

and unperturbed cases if less than half the sites 

Fig. 4. Power spectra for fluctuations of the cluster probability show 
temporal scale-invariance at small r with a scaling exponent of 
about 1.5 8. 

firequency is measured in units of the inverse time for 
one generation (about 100 years), and the power is in 
arbitrary units. A frequency of 1 o - ~  thus corresponds 
to about lo5 years. The case with r = 1 (not shown) is 
indistinguishable from the case with r = 3. The self- 
organized state exhibits a power-law spectrum with a 
spectral exponent of about 1.58, indicating temporal 
scale-invariance at least over the range of a few 
hundred years to about 10' years. The case with r = 
10 does not self-organize and does not have a power- 
law spectrum, implying that there are characteristic 
time scales and the resulting state is not SOC. 

Another measure of the degree of organization 
is the algorithmic complexity, which is the size of 
the smallest computer program that will replicate 
the pattern [33,34]. A simple way to estimate this 
quantity uses the fact that GIF graphics files are 
nearly optimally compressed. Thus one only needs to 
determine the size of the GIF file of the image after 
subtracting the fixed size of the file header. The image 
representing the observed data in Fig. 1 compresses 
to 6205 bytes. The CA model with random initial 

are exchanged. The average number of generations 
required for the perturbation to die completely is 
the order of the number of sites perturbed. In this 
sense, the model is stochastic but not chaotic, and the 
resulting state is strongly resistant to perturbations- 
an optimistic result from the ecological perspective. 

Note also that the model does not invoke any 
particular biological mechanism for the death of the 
cells and replacement by neighboring cells. Trees 
can die from age, disease, fire, or human. activity 
without altering the results. It is only necessary that 
the replacements come from the near neighborhood. 
To the extent that the model captures the dynamics, the 
SOC state is reached by whatever mechanisms nature 
provides, although the fitted value of r = 3 may have 
some biological significance, yet to be determined. 
The same model with an appropriate choice of r would 
probably suffice to explain other similar systems such 
as the migration of human populations and the spread 
of disease thoughout a plant or animal population. 
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