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Historical data have increasingly become appreci- 
ated for insight into the past conditions of ecosys- 
tems, Uses of such data include assessing the extent 
of ecosystem change; deriving ecological baselines 
for management, restoration, and modeling; and 
assessing the importance of past conditions on the 
composition and function of current systems. One 
historical data set of this type is the Public Land 
Survey (PLS) of the United States General Land 
Office, which contains data on multiple tree species, 
sizes, and distances recorded at each survey point, 
located at half-mile (0.8-km) intervals on a 1-mi 
(1.6 km), grid. This survey method was begun in the 
1790s on US federal lands extending westward 
from Ohio. Thus, the data have the potential of 
providing a view of much of the US landscape from 
the mid-1800~~ and they have been used exten- 
sively for this purpose. However, historical data 
sources, such as those describing the species com- 
position of forests, can often be limited in the detail 
recorded and the reliability of the data, since the 
information was often not originally recorded for 
ecological purposes. Forest trees are sometimes re- 
corded ambiguously, using generic or obscure com- 
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mon names. For the PLS data of northern Wiscon- 
sin, USA, we developed a method to classify 
ambiguously identified tree species using logistic 
regression analysis, using data on trees that were 
clearly identified to species and a set of independent 
predictor variables to build the models. The models 
were first created on partial data sets for each spe- 
cies and then tested for fit against the remaining 
data. Validations were conducted using repeated, 
random subsets of the data. Model prediction accu- 
racy ranged from 81% to 96% in differentiating 
congeneric species among oak, pine, ash, maple, 
birch, and elm. Major predictor variables were tree 
size, associated species, landscape classes indicative of 
soil type, and spatial location within the study region. 
Results help to clarify mbiguities formerly present in 
maps of historic ecosystems for the region and can be 
applied to PLS datasets elsewhere, as well as other 
sources of ambiguous historical data. Mapping the 
newly classified data with ecological land units pro- 
vides additional  orm mat ion on the distribution, 
abundance, and associations of tree species, as well as 
their relationships to environmental gradients before 
the industrial period, and clarifies the identities of 
species formerly mapped only to genus. We offer 
some caveats on the appropriate use of data derived in 
this way, as well as describing their potential. 
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Understanding North American ecosystem patterns 
and vegetation distribution from the pre-European 
settlement period is Fmportant to help assess the 
distribution and natural variability of ecosystems, a 
prerequisite for setting appropriate management 
strategies (Parsons and others 1999; Schulte and 
Madenoff 200 1). Such reconstructions can contrib- 
u te to understanding biotic-abiotic relationships 
(Kline and Cottam 1979; Whitney 1986; Grirnrn 
1984), disturbance patterns (Heinselman 1973), 
prior vegetation composition and structure (Davis 
1981; Foster and others 1996; Radeloff and others 
1999), and variability in landscape patterns (Mlad- 
enoff and Pastor 1993). 

Pre-European settlement conditions have served 
as starting points for land-cover change analyses 
(White and Mladenoff 1994), as well as landscape 
simulations that examine hypotheses of dynamics 
and change for target ecosystems (He and Mlad- 
enoff 1999). For management, the information may 
be valuable for ecosystem and habitat restoration 
(Covington and others 1994; Baker 1994, 1995; 
Radeloff and others 2000; Moore and others 1999) 
and for sustainable management of ecosystems 
used for commodity production, particularly at 
broad landscape scales (Radeloff and others 2000; 
Cissel and others 1999). 

Infomation may come from fossil data, such as 
pollen; direct sources, such as dendrochronology; or 
indirect sources, such as cultural archives or rem- 
nant ecosystems (Swetnarn and others 1999). De- 
pending on data source, evidence can be derived for 
past time periods spanning decades to rnillenia 
(Biirgi and others 2000; Foster and others 1990; 
Fonnan and Russell 1983). Historical data are most 
useful where several sources contribute to a com- 
mon conclusion (Biirgi and others 2000; Swetnarn 
and others 1999; Foster and others 1990). 

One relevant question is whether such pre-Euro- 
pean or preindustrial period vegetation reconstruc- 
tions represent a relatively short time frame-that 
is, one of a century or less-or a much longer 
portion of the Holocene. In some regions, these 
presettlement reconstructions may represent the 
protohistoric period of great influence on the land 
by Native American populations. Other areas may 
reflect a period of reduced Indian influence due to 
postcontact depopulation. Still other regions, where 
native populations were typically low, would reflect 

a stronger influence of nonhuman effects (Vale 
1998; Landres and others 1999). These issues con- 
cern the proper interpretation and use of such data 
in a given locale or region and should not be con- 
fused with their intrinsic value (Schulte and Mlad- 
enoff 2001). Other issues concern the source and 
reliability of historical data, which need to be as- 
sessed in using such infomation. 

In the forested northern portion of the US Lake 
States, the Public Land Survey (PLS) data of the 
mid-late 1800s (largely 1830s-60s) are believed to 
represent a reasonable baseline for a period extend- 
ing back 1000-3000 years before that time. This 
must be seen in a regional and relative sense. Vari- 
ation of forest composition did occur at more local 
scales and at shorter time scales, and environmental 
gradients shifted with climate variability. Vegeta- 
tion was affected locally due to Native American 
activities. But on a regional scale, anthropogenic 
impacts have been most severe during the past 150 
years, with vegetation changes during the historical 
period exceeding that of the previous 1000 years by 
severalfold (Cole and others 1998). All tree species 
were present in the region by 3000 years before the 
present (Davis 198 1). Recent archaeological evi- 
dence (Cleland 1992) and modern studies of fossil 
pollen and charcoal (Davis and others 1998, 1994; 
Cole and others 1998; Clark and Royal1 1996) show 
that, with local exceptions, this region had a rela- 
tively stable fire disturbance regime over the 1000 
years before the PLS. Major change in the abun- 
dance and distribution of forest types did not occur 
until after the PLS and the beginning of extensive 
Euro-American settlement and the industrial pe- 
riod. This reflects lower original Native American 
populations before contact and lower impact activ- 
ities (that is, a more subsistence-based culture ver- 
sus agriculture) than were prevalent in the prairie 
and savanna regions of southern Wisconsin (Cle- 
land 1992). Northern Wisconsin is also more cli- 
matically limiting to fire, either of lightning or Na- 
tive American origin, though both have occurred. 

Knowledge of conditions that prevailed before 
the broad-scale and dramatic alterations of the 
landscape over the last 150 years of the industrial 
period is often particularly valuable. A primary 
source for the research and applications described 
above is the PLS data of the US General Land Office 
(GLO) (Stewart 1935). These data are contained in 
the field notebooks of the original US government 
survey, which was carried out largely by contract 
surveyors. The rectangular survey was in place 
from I785 to 191 0 and used from Ohio westward 
during the survey of the public domain, including 
Florida to Louisiana in the southern United States 
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(Stewart 1935). Detailed descriptions and evalua- 
tions of the data have been done many times 
(Bourdo 1956; Whitney 1994; Delcourt and Del- 
court 1996; Manies and Mladenoff 2000). Potential 
problems concern (a) the consistency, expertise, 
-and care of the surveyors who recorded the data; 
(b) the fact that data collection was not primarily 
for ecological purposes; and (c) occasional instances 
of outright fraud (Stewart 1935;; Bourdo 1956). In- 
stances of fraud were usually quickly identified and 
the surveys were redone. Surveyor variability and 
possible bias in the survey data exist, due to the 
methods used by the various individuals who car- 
.ried out the data collection (Manies and others 
2001). These factors can and should be assessed 
(Schulte and Mladenoff 2001), but they are often of 
reduced importance in large regional applications 
(Manies and Madenoff 2000). 

The PLS surveyors placed posts or other markers 
at section comers, dividing the land into a grid of 
1 X 1 m (1.6 X 1.6 km) sections and townships 
containing 36 mi2. Posts were also set at quarter 
section comers (0.5-mi [O.8-krnf points on each 
section line) and meander points (locations where 
lines intersected navigable water bodies or lakes 
that were circumnavigated) (Stewart 1935). 
Changes occurred periodically in the instructions to 
surveyors, and these changes should be assessed in 
any application of the data. They can include in- 
structions on the number, size, and selection crite- 
ria of trees, and the frequency of trees recorded 
along survey lines between corner points. Surveys 
in our study region were done from 1835 to 1891; 
most of the region was done from 1851 to 1863. 
Changes in the instructions that affected the data 
we use here were minor and do not affect our use 
(Onsrud 1979; Navves 1882). The main data col- 
lected by the surveys of ecological use were the 
records of two to four trees, one in each quadrant of 
the compass surrounding each survey point. The 
species and diameter of each tree and its distance 
and compass bearing from the survey post were 
recorded. Varying amounts of descriptive notes 
were also recorded at each 1 -mi point, which varied 
with changes in instructions as well as implernen- 
tation by various surveyors. Typically, at each 1 -mi 
point, the forest overstory and understory tree and 
shrub species were very briefly described. Natural 
disturbances, such as fire and windthrow, along 
with roads, trails, villages, or other cultural fea- 
tures, were noted at these locations, as well as 
when encountered along the survey line. 

The quantitative PLS data can be used to con- 
struct regional tree species maps of regions or fur- 
ther aggregated and classified according to users 

needs (He and others 2000). The tree distance and 
bearing data may be used across an aggregation of 
points to calculate mean distance between trees, 
yieldhg mean area per tree, and converted to ap- 
proximate density. Technically, because the survey 
instructions constrained the selection of trees, the 
data are not a truly random sample and may devi- 
ate from such a sample of the tree species density 
and diameters. Therefore, we recornmend the use 
of relative measures derived from the data (Schulte 
and Miadenoff 2001). This method is identical to 
the distance sampling methods used for vegetation 
(Cottam and Curtis 1956). Various assumptions for 
statistical use of the data, and of any methods ap- 
plied, should be tested and assessed by the user. 

One significant problem that has typically arisen 
in such uses of the data has been the incidence of 
ambiguously identified tree species on the part of 
surveyors. For example, in the northcentral United 
States, and specifically in our northern Wisconsin 
study region (Figure l) ,  congeners such as white or 
yellow bich (Betula papyrifera or B. alleghaniensis), 
red or 'sugar maple (Acer rubrum or A. scacchamm), 
and other such groups may be identified with am- 
biguous common names or only to genus (Table 1). 
In the case of birch in our region, B. papyerifera may 
be called "white birch", "paper birch", or "birch"; B. 
alleghaniensis may be called "yellow birch" or 
"birch". With this species pair, only the designation 
"birch" is ambiguous. However, the typical ap- 
proach with such species has been to group them 
conservatively at the most general level (here 
"birch") for any analysis and mapping (for example, 
Finley 1976), unless the being area analyzed is 
small enough that it may be assumed, based on 
other factors, that all "birch" are white or yellow 
birch (White and madenoff 1994). 

A similar problem occurs among the oak group in 
this region (Table 1). Oak trees were often described 
by surveyors as generic "oak", or more frequently 
as "black oak." There are four species of oak occur- 
ring in northern Wisconsin at varying abundances. 
Two are in the white oak group (Lepidbalanus): 
white oak proper (Quercus alba) and bur oak (Q. 
mauocarpa). These are of relatively minor occur- 
rence in northern Wisconsin. There are also two in 
the black or red oak group (Erythrobalanzls); red oak 
(Querms rubra) and northern pin oak (Q. ell@soida- 
16). Based on historical and current known tree 
ranges (Hansen 1992), we determined that black 
oak proper (Q. velutina) occurs only in southern and 
central Wisconsin. Species in the study region so 
designated must therefore be either red or northern 
pin oak, all of which are superficially similar in leaf 
type though they differ substantially in acorn f o m  
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Figure 1. Map of study region in northern Wisconsin, 
USA. Area outlined is Province 212, the Laurentian 
Mixed Forest, based on USDA Forest Service hierarchical 
land classification (Keys and others 1995; WiDNR 1999). 
Province 212 is described as a region of transition be- 
tween the northern boreal zone and the more southern 
broadleaf deciduous zone; it constitutes the northern for- 
ested region of the state. Subsection descriptions are in 
Table 3. 

and other characters. The tree species of the sub- 
stantial number of trees designated "oak" or "black 
oak" by the surveyors in northern Wisconsin are 
therefore unclear. 

Clearly, ecological information is lost when am- 
biguity requires generalizing the species data to ge- 
nus, such as "birch" or "oak", particularly where 
aggregated congeners differ ecologically and where 
a relatively high proportion of individual trees are 
undifferentiated. This is illustrated by separate maps 
of the distribution of tree species identified to the 
species (Figure 2a) or genus levels (Figure 2b) in the 
study region. There are abundant occurrences of 
major genera with two or more species occurring in 
the region (particularly birch, maple, and pine). Of 
the 194,629 trees in the database for our study, by 
major genera 10.4% of pine, 32.4% of maple, 
80.4% of birch, 37.2% of oak, and 41.1% of ash 
were identified ambiguously. To create a map of the 

be mapped (Figure 3 ) .  Because the congenerics dif- 
fer significandy in their ecological characteristics, a 
great deal of information is lost concerning past 
biogeography and range distribution, as well as in- 
formation on more fine-grained patterns of species 
co-occurrence and abundance, and environmental 
and disturbance relationships. This generic mapping 
has typically been done, and it approximates the 
generic level available through most pollen data. At 
times, subjective interpretation and mapping has 
been performed by attempting to infer the species 
level by combining generic level data with maps of 
soils and other data (Finley 1976; Veatch 1928). 
This approach cannot usually be replicated consis- 
tently and often results in mapped classes that are 
inconsistent in their hierarchical level within a clas- 
sification and of unknown accuracy. 

Our purpose in this paper is to improve the use 
and utility of historical data and maximize informa- 
tion gain from pre-European vegetation mapping. 
To do so, we develop logistic regression models that 
use the tree information in the PLS and data from 
other sources to probabilistically classify these am- 
biguously identified trees to the species level. We 
then apply the reclassified data in paired maps to 
illustrate the ecological information gained in using 
this approach to map species distribution and abun- 
dance. We will particularly refer to details from the 
classification of the two birch species to illustrate 
the procedure and results. 

Study Region 
The study region is northern Wisconsin, USA, 
which is contained within Province 212 (Figure 1) 
of the US Forest S e ~ c e  hierarchical land classifica- 
tion system (Keys and others 1995; WiDNR 1999). 
Climate is continental with cool, short s u m e r s  
(July mean temperature, 20°C) and moisture dis- 
tributed throughout the year (annual precipitation, 
760-870 mm/y), and long, cold, and snowy win- 
ters (January mean temperature, - 12°C). The area 
encompasses most of the northern forested region 
of the state, a glacially formed landscape of outwash 
plains, moraines, and till plains. Soils are sandy on 
outwash and loamy on the till landforms, with con- 
siderable heterogeneity tvithin these subareas. Gla- 
cially derived wetlands and lakes are common and 
locally abundant on outvvash. Fire was historically 
most important on the drier, sandy soils (Curtis 
1959), as was windthrow in the deciduous and 
former hemlock-hardwood forests of till and mo- 
raines (Frelich and Lorimer 199 1; Canharn and 
Loucks 1984). 

Currently pine (Pinus) and oak (Quercus) are corn- 
complete data as they exist, only overall genera can mon on the sandier soils, with aspen (Populus) and 
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Table 1. Ambiguously Identified Species in the US General Land Office's Public Land Survey Notes for 
the Northern Forested Region of Wisconsin 

Tree Genus Common Species Names used by Surveyors 
Assumed Generic 
Species C o m o n  Name 

Red maple, R maple 
Sugar, Sugar maple, Hrd maple, Rock maple 
Maple 

Yellow birch, Y birch 
White birch, W birch, Wht birch, Paper birch 
Birch 

White ash, Wht ash 
Black ash, Blk ash, B ash, Brown ash * -. 

Ash 

Red pine, R pine, Norway pine, N pine, Y pine, Sugar 
pine 

White pine, W pine, ~ h t  pine 
Jack pine, J pine, Jk pine, Pitch pine, Black pine 
Pine 

Red oak, R oak 
White oak, W oak, Wht oak 
Black oak, B oak, Blk oak 
Jack oak, J oak, Jk oak, Pin oak, Spanish oak, Yellow oak 
Bur oak, Br oak, Burr oak 
Oak 

White elm, W elm 
Red elm, Slippery elm. 
Elm 

paper birch (see Table 1 for a complete list). Decid- 
uous species such as sugar maple now dominate on 
heavier soils, where eastern hemlock and yellow 
birch were also a major dominant before wide- 
spread logging in the past. From about the 1850s to 
the early 1900s' pine and hemlock were largely 
eliminated despite their former dominant roles. As- 
pen and birch also are cornmon now on better soils 
in former disturbance areas. The region was entirely 
logged before and during the Euro-American set- 
tlement period, from the mid-1800s to the early 
1900s. Although some areas remain. in agriculture, 
most of the region is reforested, Public forest lands, 
private industrial forests, and individual ownership 
are all c o m o n  (madenoff and Pastor 1993). 

Our source of the PLS data was microfiche copies 
of the original surveyor notebooks, obtained from 
the State of Wisconsin Office of Public Lands. Data 
were entered into computer files, following a pro- 
tocol developed to standardize data entry and pro- 

Maple 
A. rubrum 
A. sacchamm 
ambiguous 

Birch 
B. alleghaniensis 
B. p a ~ r i f e r a  
ambiguous 

Ash 
F. americana 
F. nigra 
ambiguous 

P. resinosa 

P. strobus 
P. banksiana 
ambiguous 

Pine 

Oak 
Q. rubra 
Q. alba 
ambiguous 
Q. ellipsoidalis 
Q. mauocarpa 
ambiguous 

Elm 
U. americana 
U. rubra 
ambiguous 

vide for quality control and error checking (Manies 
and others 2001). 

Model Formulation 

Logistic regression has often been used to describe 
the relationship between a dichotomous dependent 
variable and multiple independent variables, both 
continuous and categorical (Ek and Monserud 
1979; Teck and Hilt 1990; Hamilton and Edwards 
1976; Dahir 1994; Madenoff and others 1995). It 
has the advantages of restricting the response vari- 
able to the range of O to 1 and of being biologically 
interpretable. Logistic modeling is also relatively 
robust, performing equally well with multivariate 
normal or categorical independent variables (Press 
and Wilson 1978). The dichotomous dependent 
variable may describe the occurrence of an event 
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.ee Species 
Bfa& Ash 
White Ash 
YelW Bin% 
White Birch 
Red Maple 
S u p  Maple 
W t e  Oak 
Bur Oak 
Red Oak 
Nwtfiem Pb 0211( 
White P t e  
Red Pine 
Jack Pille 

O Birch 
O Maple, S, Maple 
e Oak, Btack Oak 
@ Pine, Bastard Pbie, Gray Pfna, Princess 

S. Pine, Squaw Pine, Swamp Pine 

Figure 2. Maps of PLS data recorded at survey points for 
genera with multiple species occurring within the study 
region. (a) Data points of trees identified unambiguously 
to species level. (b) Data points with trees described am- 
biguously and identifiable only to genus. Species scien- 
tific names are in Table 1. 

(1 = occurrence, 0 = nonoccurrence), such as in 
forecasting the probability of tree mortality (Ham- 
ilton and Edwards 1976; Ek and Monserud 1979; 
Buchman 1983; Dahir 1985; Teck and Hilt 1990). It 
may also describe membership in one of two groups 
(Mladenoff and others 1995). The model takes the 
following fom: 

T ( X )  = e(xl/(l + e(')) where x = a + P,x, 

where x = vector of predictor variables and coeffi- 
cients estimated by the model a and P, . . . P, = 
unknown parameters that are estimated from the 
data. 

The data set that is used to calibrate the logistic 
model consists of observations, each having a 
known outcome or membership, and several pre- 
dictive variables. Variables that are significant pre- 

Tree Species 
0 Ash spp. 
ar Birch spp. 
@ &ple spp. 
@ Oak spp. - -Pa 

Figure 3. PLS data points combining ambiguous and un- - 
ambiguous data (see Figure 2a and b) generalized to 
lowest common denominator (genus level). Although the 
resulting map is more complete spatially using all data, 
significant information is lost among congeners that differ 
ecologically. 

Table 2. List of Variables Used in the Logistic 
Regression Models 

Continuous Variables 

Diameter 

Distance from survey 
comer 

Comer mean density 

Comer mean tree diameter 
Geographic location (survey 

township/ range; 
transformed) 

Categorical Variables 

Associated tree species at 
corner 

USFSa subsection (glacial 
landform) 

USFS L T A ~  (general soil 
~YF) 

a United States Forest Service. 
Land type association. 

dictors of the outcome are selected, usually by for- 
ward stepwise regression. In this case, they are 
environmental variables and known tree species 
characteristics and associated species (Table 2). The 
model generated from this process is then used to 
categorize a second data set consisting of the same 
predictive variables but an unknown outcome or 
membership. The probability of membership or OC- 
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Table 3. Description of US Forest Service Subsections on Which yellow and White Birch Predominantly 
Occur 

Yo Yo 

Dominant Dominant Yellow White 
Subsection Name Soils Habitat Type Major Tree Species Birch Birch 

Lincoln formation till 
plain 

NW 6 central WI loess 
plains 

Perkinstown end 
moraine 

Northwest W sand 
plain 

Northern EIighlands 
pitted outwash 

Lake Superior clay 
plains 

Silty loarn, 
loam 

Silty soils over 
loamy till 

Sandy loams 

Excessively 
drained 
sands 

Sand, loamy 
sand 

Clays, loamy 
day 

Mesic, wet mesic Sugar maple, yellow 100 0 
birch, herdock 

Wet mesic, mmic Sugar maple, yellow 96 4 
birch, hemlock 

Mesic, dry mesic Sugar maple, yellow 93 7 
birch, hemlock 

Very dry to dry Scrub oak, jack Er 11 89 
red pine 

Very dry, dry to White Er red pine, 25 75 
dry mesic aspen 

Wet, wet mesic Spruce-fir, tamarack, 30 70 
aspen 

currence is calculated for each observation in the niJP 
unknown data set. This estimate is most often com- gi [JPI = Ti [RPI [*I (4) 
pared to a uniform random number between 0 and 
1. If the estimate equals or exceeds the random niWP niJP 
number, the event being modeled is assumed to Ti [RPI + Ti [RPI + Ti [RPI = 1 

have occurred, or the entity is considered to be a 
member of the predictor group. In our analysis, 
logistic regression was used to determine whether 
the species of trees that had been classified only to 
genus could be predicted. For example, we classi- 
fied generically identified "birch" to be either yel- 
low birch (B. alleghaniensis) or paper birch (23. pap-  
rifera) (Table 3). 

For some species, there are more than two pos- 
sible choices for species within a genus. For in- 
stance, in our region there are three dominant pine 
species, eastern white pine (Pinus strobus), red pine 
(P. resi~osa), and jack pine (P. banksiana). Separate 
logistic models were run for each pair: (a) white 
pine versus red pine, (b) red pine, versus jack pine, 
and (c) white pine versus jack pine. To maintain a 
consistent relationship between the species, the 
same variables must be accepted into each rnodel 
(that is, by setting the entry P value to 0.99). A 
combined estimate for each species could then be 
calculated from the relative likelihoods predicted by 
each pair of models, which must sum to one for any 
particular corner. For instance, the calculation of 
the probability that a given pine tree is a red pine 
(ni, [RP]) is as follows: 

n i  [WP] + ni [JP] + ni  [RP] = 1 ( 2 )  

niWP 
Ti [ W ~ I  = qi [RPI [-I ( 3 1  

niWP ([--I niRP + [=I + 1) 
niRP 

niJP 
where = the probability that tree i is a jack 

pine b&ed on the model of jack pine versus red 

pine for i = 1 . . . m, and = the probability 

that tree i is a white pin$ base; on the model of 
white pine versus red pine for i = 1 . . . n. 

variables Used 
The known data set consisted of trees that had been 
classified to species. Independent predictor vari- 
ables included tree and sample point characteristics 
(diameter, mean tree diameter, and forest density), 
geographic location (here to%mship and range), 
ecoregion (subsection and land type association) 
(Keys and others 1995; WiDNR 1999), as well as 
the species of neighboring trees and the target tree 
distance from the corner. The estimation of tree 
density at a point was based on the number and 
distance between all recorded trees at a corner (Ma- 
nies and Madenoff 2000; Anderson and Anderson 
1975), here based on units as recorded by the GLO 
surveyors (1 ft = 30.48 em; 1 link = 20.12 a): 
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Density = (1 /MA) (107600 ft2/ha) (7) 

where MA = mean area per tree in ft2, di = distance 
of tree i from corner in links for i = 1 . . . n, n = 
total number of trees at corner, and c = multiplier 
based on n: if n = 1, c = 0.50; if n = 2, c = 0.66; 
if n = 3, c = 0.81; if n = 4, c = 1.00. 

The occurrence of neighboring tree species at a 
comer was coded as a dichotomous variable-that 
is, as presence or absence, regardless of the number 
of trees of each species present at the comer. 

Geographic location is an important predictor for 
many tree species. Many have ranges that are re- 
stricted either to far northern or eastern parts of the 
state. Both township and range were entered in the 
regressions. Township, a continuous variable in- 
creasing from south to north (17N-53N), was en- 
tered without transformation, whereas range was 
converted to a continuous variable ranging from 
30E (coded as 1) to 20W (coded as 50). The product 
of township and range could then be considered a 
measure of northwesterly location within the state. 
Subsection and land type association (LTA) vari- 
ables were used as indicators both of geographic 
location and as site descriptors. 

Spatial dependence or autocorrelation is com- 
mon in spatial data; if present, it must be taken into 
account for the assumptions of classical regression 
analysis to be met. It is probable that spatial auto- 
correlation exists within the distribution of tree spe- 
cies in northern Wisconsin and in the historical 
data. We tested for autocorrelation using data from 
the unambiguously identified tree species. Omnidi- 
rectional and directional semivariograms (S-PLUS 
2000 for windows; MathSoft Corporation, Seattle, 
WA, USA) were run for the dominant tree species 
(that is, white pine, jack pine, eastern hemlock, 
yellow birch, white birch, and American beech) at 
both the province and subsection scales. Resulting 
semivariograms lacked a clearly definable sill or 
range; patterns included straight lines, humps, and 
waves. We interpreted these patterns as a lack of 
autocorrelation within the data at the scale of the 
surveyor samples (points 0.5 kTn apart). Obvious 
clumping of species does occur at other scales, such 
as with jack pine on sand plains. This was not a 
scale that affects our models at the survey point 
scale. On the basis of this screening, spatial depen- 
dence was not built into the species models. 

Model Assessment 

The performance of the final model for each species 
group was assessed by two methods: first, by com- 

paring observed and predicted values based on the 
entire data set; and second, by using randomly se- 
lected subsets of the data for model calibration and 
then assessing model fit on the remaining subset. 
Model fit was evaluated with the chi-square (2) 
statistic and by regression of predicted on observed 
values (Hamgton and Edwards 1976; Ott 1988). In 
this study, we classified the data by subsection, a 
grouping that is broad enough to minimize the 
occurrence of categories vvith too few observations 
yet specific enough to be a meaningful basis for 
comparison. The observed value for a category was 
then the number of corners of the modeled species 
x in that subsection. The estimated value was equal 
to the sum of all estimates for species x (based on 
the model fit) within the subsection. The interpre- 
tation of test results, however, is quite different 
from the traditional chi square. In this case, the 
lower the X2 statistic-that is, the higher the P 
value-the greater the evidence in support of the 
null hypothesis of equality between observed and 
estimated numbers of trees per subsection and the 
greater the predictive ability of the model. 

A statistic used by Buchrnan (1983) to evaluate 
logistic model results is based on a regression of the 
estimated number per class on the observed nurn- 
ber. We have regressed the total number of trees in 
each subsection for both the dominant and subor- 
dinate species, resulting in twice the number of 
degrees of freedom. Buchman reported only the 
slope, but we have also reported the coefficient of 
determination as an indication of the amount of 
variance of individual estimates about the regres- 
sion line. 

Model Validation 

A separate validation procedure was performed and 
repeated three times for each model. The purpose of 
this validation was to test the robustness of the final 
logistic model-that is, the model's predictive abil- 
ity-against data not used in calibration. For each 
trial, the original data set of known tree species was 
randomly divided into two subsets. The first subset 
consisted of two-thirds of the species occurrences 
and was used for the calibration of a separate logis- 
tic mode1 that was then used to classify the remain- 
ing smaller (one-third) data set. Because these were 
previously identified comers, the results of this es- 
tirnated classification could be compared to the ob- 
served values. Again, the chi-square statistic and 
regression of estimated on observed values were 
used to assess fit. All logistic regression analyses 
were carried out using the SAS software (SAS In- 
stitute Inc.). 
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Table 4. Description of Models and Qualifying Statisticsa 
- 

Maximum m egression^ 
No. of No. of -2 LL % Correct Chi-square 

Model Species Comers Trees (d.f.)" Prediction PVaIuec Slope R' 

Ash White 577 650 567 (29) 81.3 0.879 1.001 0.989 

Black 2216 2795 
Birch Yellow 342 3 4682 3436 (53) 85.6 1.000 0.999 1.000 

White 163 1 2209 
Elm American 78 83 28 (6) 81.9 0.955 1.012 0.973 

Red 22 22 
Maple Sugar 12903 17824 1212 (21) 96.4 1 .OOO 1.003 1.000 

Red 501 510 
Oak Red 618 717 324 (12) 93.6 1 .OOO 0.999 1.000 

Northern pin 210 272 
Pine White 201 60 28552 20278 (54) 80.8 0.980 0.998 0.997 

Red 10827 16327 
White 20160 28552 8746 (45) 93.3 1 .OOO 1.000 1.000 
Jack 7436 13508 
Red 10827 - ' 16327 10789 (27) 82.6 0.995 1.005 1.000 
Jack 7436 13508 

Mean 86.9 0.976 1.002 0.995 

"The -2 Log Likelihood (-2 LLf is commonly reported in logistic regression output as an  assessment ofgoodnm offit. The -2 LL increases with the number of observations 
as well as with the number of variables in the model and is therefore not cmparable between models based on different data sets. The statisticfoflavs a chi-square distribution 
with degrees of freedom equal to one less than the number of variables in the model plus the intercept. The maximum percent correct prediction is based on a comparison of 
the predicted value to successive probability levels. 
'P val~es  are all <0.0001. 
'There were 19 degrees of freedom for all models except elm, which had I f  degrees of fieedom. 
d~egression of predicted numbers per subsection on observed with 39 degrees of fieedom for all models except elm, which had 23 degrees of fi-eedom. 

+Botbspedes 4 Y b  birch -White bbch 

Figure 4. Classification values for white and yellow birch 
at various probability limits and both species combined. 

RESULTS AND DISCUSSION 
Model Assessment 

(Table 4). This value generally exceeds levels con- 
sidered acceptable and useful, for exmple, in the 
classification of forests using remote sensing imag- 
ery (Congalton 1991) and is within typical error 
rates in forest field inventory data (Hansen 1992). 
Results are illustrated by the birch model. At a 
probability level of 0.48, 85.6% of all birch corners 
are predicted correctly by the model (Figure 4). As 
the probability level increases, the percentage of the 
modeled species (here yellow birch) that is correctly 
predicted decreases and the percentage of the spe- 
cies not modeled (white birch) increases. This 
means that when all comers with an estimate equal 
to or greater than 0.48 are classified as yellow birch 
and all corners. with estimates less than 0.48 are 
classified as white birch, 85.6% of the total number 
of comers agree with the observed value (Figure 4). 

Highest predictions (93 %-96 % ) occurred for the 
maples, oaks, and whitelred pine models. Lowest 
predicrtions (8 1 %- 82 %) occurred for the ash, elm, 
and red/jack pine models. For oak, only the red 
oak-northern pin oak model and validation is 
shown, since the numbers of ambiguous "oak" 

The average correct prediction for all species models were too few in the study area (136) for validation 
is 86.9% using the full data set for each model across all possible oak outcomes. 
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Table 5. Results of Validation Procedure 

Regression of 
Estimated on 

-2 Log Maximum Observed 
Likelihood % Correct Chi-square 

Model Trial (d.f.)* Prediction P valuesb Slope IiZ 

Ash 1 392 (23) 81.5 0.992 0.945 0.986 
2 339 (18) 80.6 0.998 1.043 0.986 
3 421 (23) 80.9 1 .OOO 1.024 0.992 

Birch 1 2109 (40) 85.3 0.956 0.998 0.996 
2 2099 (41) '85.1 0.999 1.031 0.998 
3 2058 (40) 85.8 0.599 1.032 0.982 
1 31 (4) 87.1 Elm 

c 0.879 0.968 

2 56 (4) 90.3 c 0.964 0.510 

3 30 (4) 85.5 c 1.133 0.839 

Maple 1 782 (19) 96.4 1 .OOO 1.000 1 .OOO 
2 869 (21) 96.4 0.653 0.992 0.995 
3 840 (21) 96.5 1,000 0.999 1 .OOO 

Oak 1 -440 (10) 95.4 0.999 0.954 0.963 
2 423 (10) 94.3 1 .OOO 1.013 0.995 
3 485 (13) 94.9 1 .OOO 0.983 0.996 

Pine ' 

Red vs white 

White vs jack 

Red vs jack 

d.$, degrees of freedom 
'7P values all <0.0001 

- *NO more than five cells ~6th faver than f i e  observations included in each analysis 
"Fewer than fivP ceIls with more than four observations invalidating chi-square calculation 

The results of the chi-square test (Table 4) show 
that most P values were above 0.95 and half were 
equal to 1.000, indicating that there was no signif- 
icant difference between the observed and pre- 
dicted numbers for each subsection. Regressions of 
estimated on observed values for each subsection 
have an average slope of 1.002 and an average 
coefficient of determination of 0.995 for all models, 
again indicating a very good fit between observed 
and predicted values (Table 4). There are twice as 
many degrees of freedom as in the chi-square test 
because both species are included in the regression, 
whereas only the dominant species was analyzed in 
the chi square. 

Model Validation 

Validation results show that with the exception of 
elm, all slope values are within the range of 0.945 

and 1.043 and all R~ values are greater than 0.98 
(Table 5). The elm species were a very uncornrnon 
group in the original data set. For all other species, 
the three trials yielded results within 1%-2% of 
each other, showing the high stability of the mod- 
els. 

Tree Distribution Patterns 

The birch species, of moderate abundance and clas- 
sification accuracy (Table 4), illustrate the results of 
the overall procedure. White birch and yellow birch 
are differentiated by the model predominantly 
based on associated species and site factors. Yellow 
birch is most associated with long-lived mesic spe- 
cies such as hemlock and sugar maple, and subsec- 
tions with loamy as opposed to sandy soils. Con- 
versely, white birch is associated with other early 
sera1 species such as aspen, as well as the pines, and 
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e -White Birch 
o 50 100 Knmetc?ss *- YeJlow Birch 

% 'Birdhi 

I loo 1 

USFS Subsection 

'Birch' Classified Y e l h  Birch Classified White Birch 
Yeltw Birch' E%Bl White Birch' 

Figure 5. Locations of (a) 
known white and yellow 
birch corners in the study re- 
gion, (b) unclassified 
("birch") comers, (c) classified 
white and yellow birch cor- 
ners based on the logistic 
model, and (d) locations of 
combined known and classi- 
fied white and yellow birch 
comers (maps a, b). 

Figure 6.  Proportions of 
birch tree species arnbigu- 
ously identified by surveyors 
("birch"), identified to spe- 
cies level by surveyors ("yel- 
low birch," "white birch") 
and classified proportions 
based on the logistic regres- 
sion model for yellow and 
white birch. Values at top of 
columns indicate total- birch 
trees for each subsection. 

characteristic of sandy soils on outwash, or follow- 
ing fire on rnesic soils. Finer site breakdown within 
subsections by LTAs, indicative of finer soil differ- 
ences within the glacially defined landforms of the 
subsections, proved helpful in refining the model 
further. 

Maps of the birch species in the data set before 
and after classification (Figure 5) and the graphed 
summary by subsection (Figure 6) illustrate the 

decrease in ambiguity of the species distribution 
patterns and the increase in information available 
from the data. Based on the logistic model, the 
relationships of known white and yellow birch (Fig- 
ure 5a) drive the relationships used to classify the 
generic "birch" (Figure 5b) into yellow and white 
birch (Figure 5c), resulting in the final combined 
map (Figure 5d). White birch dominates in different 
portions of the region, such as in the northwest 
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Tree Species 
6, Black Ash Y 

iB White Ash 
8 Yeitow Birch 

White Birch 
@ Red Maple 
@ sugar Mapie 
b) White Oak 
4B BurOak 
ea W O a k  
@ Nwthern PinOak 
0 White Pine 
@ Red Pine 
9 Jack Pine 
0 Other 

Figure 7. New combined map of differentiated and clas- 
sified tree species. Species scientific names are in Table 1. 
For clarity, species that were not a subject of this analysis, 
such as eastern hemlock and American beech, are not 
shown on this map. However, hemlock was the leading 
dominant across northern Wisconsin on the mesic mo- 
raines and till plains that intervene among the sandy 
outwash plains. 

(beyond the main contiguous, continental range of 
yellow birch), in sandy outwash plains in the north 
central and northeast portions of the region, and 
along the southwest and southern fringes of the 
region (Figure 5d). These latter areas are beyond 
the contiguous range and greatest abundance of 
yellow birch, The initial proportions of the three 
birch classes by subsection (Figure 6) reflect the mix 
of surveyors that worked across each subsection. 
The final classified proportions reflect tree distribu- 
tional information gained through modeling, com- 
bined with knowledge of the ecological tolerances 
of the species. 

The identification of known, differentiated spe- 
cies occurrences, such as that of white and yellow 
birch (Figure 5 ) ,  is key to deriving the relationships 
that increase predictive accuracy in the logistic 
models. This is particularly true in subsections 
where both white and yellow birch occur and have 
been differentiated by a given surveyor (Figure 3a). 
Because surveyors would only rarely record any 

description of site, such as "swamp" or "barren", 
these classifications give a good, albeit general, in- 
dication of the soil, major forest cover, and glacial 
topography that could be expected at a specific 
corner. This is particularly valuable where species to 
be distinguished differ markedly in site preferences, 
as is the case with the two birch species (Table 3). 
For instance, yellow birch tends to grow best on 
well-drained fertile soils, silt loams, loams, and 
moderately well-drained sandy loarns, and is most 
often associated with shade-tolerant species such as 
hemlock, sugar maple, and beech. Of the 20 sub- 
sections in northern Wisconsin on which yellow 
birch was identified to species, almost 40% of cor- 
ners are found in two subsections in the central 
portion of the region, both dominated by rich silt- 
loam soils and northern hardwoods. 

White birch, on the other hand, has a bimodal 
distribution (Curtis 1959); it is often more abun- 
dant on either drier or wetter, nutrient-poor sites 
and is most often associated with species such as 
aspen, white pine, and red pine. Again, almost 40% 
of white birch identified to species occurred either 
in the clay plains along Lake Superior, with poorly 
drained soils and dominated by aspen, spruce-fir, 
and pines, or on the pitted outwash located in the 
northcentral and eastern portions of the region 
with excessively drained sandy soils and dominated 
by pines and aspen. White birch also dominates in a 
band along the southwestern and southern margins 
of the study region. These latter may represent oc- 
currences driven more by combined climatic and 
disturbance factors (that is, greater drought and 
fire) than in the north, where soil and substrate are 
better predictors. This distribution differs from that 
of the 20th century, where white birch and aspen 
increased dramatically across the north from 19th- 
century levels following widespread logging and 
fires. 

The combined new map of all the classified and 
originally differentiated species (Figure. 7 )  reveals a 
clearer pattern of the relative abundance of the 
other congeners and the overall distribution of the 
presettlement forest dominants. The probabilistic 
and multivariate nature of the classification segre- 
gates species considering gradients and variables at 
a range of scales, from the broadest subsection 
classes, to species patterns of co-occurrence at indi- 
vidual points. Therefore, the relative abundance 
and differences in the spatial distribution of the 
three pine species are clarified on the three large 
sandy outwash plains. The poorest and coarsest 
sands occur in the northwest, indicated on the map 
by the great abundance of jack pine. Somewhat 
finer sands and more fertile outwash occur on the 
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pine plain of the northeast, still dominated by jack 
pine, but with increasing numbers of red and white 
pine. The northcentral outwash plain has the finest 
sands and is the most fertile of the three. It is 
dominated by white and red pine, but jack pine is 
also present. This gradient of soil texture and fertil- 
ity on these three outwash plains also corresponds 
to a gradient of fire frequency, with highest fire 
occurrence where jack pine is most abundant (L. 
Schulte, Madenoff DJ, Nordheim EV. subm. ms.). 

The approach we have derived here has the poten- 
tial to enhance the usability of historical data where 
alternatives, such as additional data collection, do 

- .- not exist. The newly derived species distributions 
can be mapped individually, as shown for birch, as 
well as combined into an overall distribution map of 
the region. The resulting combined coverage can be 
rasterized and species dominance calculated at cell 
sizes that sample the region at varied scales, accord- 
ing to the required spatial resolution (He and others 
2000). Similarly, the data can then be classified 
using multivariate methods, producing a hierarchi- 
cal forest classification that can also be tailored to 
the classification resolution needed for research or 
management applications (L. Schulte, and other 
2002). The differentiation of congeneric tree species 
can add considerably in efforts aimed at distinguish- 
ing patterns of wildlife habitat on the landscape. 
Maps resulting from such species differentiation can 
help refine the distribution of tree species, and help 
to literally fill in gaps of historical distribution pat- 
terns. 

However, the contribution of the probabilistic dif- 
ferentiation must be understood and used at the 
proper scale, and it must be interpreted with species 
biology, as well as the nature of the data set, in 
mind. Due to their biology and response to envi- 
ronmental events, history, and current conditions, 
patterns of distribution vary among tree species. For 
example, in regions with long disturbance intervals, 
shade-intolerant, early successional species such as 
white birch may occur sparsely at broad scales, with 
local abundance in disturbance patches. Abundance 
on the landscape is greater on outwash plains 
where more frequent fire occurred. On the other 
hand, an important codominant like yellow birch, 
with greater shade tolerance, is more broadly dis- 
tributed on the presettlement landscape. The nature 
of the data set is also important, because the num- 
ber of known and ambiguous trees, their distribu- 
tion across environments, and percent of the total 
will all influence the accuracy of resulting models 

differentiating unknown individuals. In most data 
sets, these numbers of individuals and other factors 
will vary among species. Therefore, differing accu- 
racy levels will be contained within the final prod- 
uct. Additionally, because the method is probabilis- 
tic, any particular individual tree cannot be 
classified with certainty, even in a highly accurate 
model. We can have confidence in the derived 
identifications only in the aggregate and in the gen- 
eral pattern on the landscape. We have had success 
with logistic regression analysis, but other methods 
can be used in this type of analysis. Classification 
and regression tree analysis may be useful, espe- 
cially in areas that are more species rich. In these 
cases more undifferentiated classes need to be in- 
cluded in a single model, such as with multiple oak 
species that may occur in more southern regions. 
Furthermore, the most reliable data set will result 
from pairing analyses that classify arnbiguously 
identified tree species, as was done here with a 
quantitative and visual assessment of variability 
among surveyors within a given region (Manies 
and others 2001). 

Careful thought must also be given to the ulti- 
mate use of the species classified using these meth- 
ods. For example, if one wishes to examine the 
significance of species relationships with various 
environmental variables, the original portion of the 
data that are unambiguously identified must be 
used, to avoid circularity in the analysis; one cannot 
use environmental data to classify the species and 
then use the classified species to test for environ- 
mental relationships. This is another reason that 
argues for a conservative approach in an analysis to 
classlfy undifferentiated tree species. Using parsi- 
monious models will allow other relationships to be 
tested among environmental variables that have 
not been used in model building, if they are suitably 
independent and high colinearity with variables 
used to build the models is not present (L. Schulte 
and others 2002). In regions with stronger environ- 
mental gradients than our study region, finer spatial 
classification may be possible. Regions with fewer 
species than are contained in our region may en- 
hance the result using this process, or require dif- 
ferent methods, depending on the relative abun- 
dance of identified and unidentified species and 
environmental gradients (J. Bolliger, E. V. Nord- 
herm, and D. L. Mladenoff subm. ms.). It is unclear 
how these methods may apply to more species-rich 
regions. Based on our results, we speculate that our 
methods may be most successful under conditions 
where a statistically adequate number of individu- 
als of each species are identified, this providing an 
adequate training set for model development, and 
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when a species niche can be well defined by obtain- 
able variables, such as species associations, environ- 
mental preferences, or disturbance responses. 

With these considerations in mind, the approach 
we have described here has significant potential to 
increase the value of historical data sets that were 
not collected for ecological purposes and do not 
have consistent species identification. The PLS data 
set is one common example of such data, but other 
sirnilar information could also be used, such as co- 
lonial surveys (Foster and others 1998; Russell 
1997, 1981). The PLS data have the advantage of 
existing for much of the United States. Careful anal- 
ysis of the data can provide significant insight into 
,past species composition and tree species relation- 
ships with environment, disturbance, and other fac- 
tors. 
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