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ABSTRACT: The precision of annual forest inventary 
estimates may be negatively affected by uncertainty from 
a variety of sources including: (1) sampling error; (2) 
procedures for updating plots not measured in the current 
year; and (3) measurement errors. The impact of these 
sources of uncertainty on final inventory estimates is 
investigated using Monte Carlo simulation techniques. 

mRODUCTION 
Forest Inventory and Analysis (FIA) is a continuing 
endeavor of the USDA Forest Service as mandated by the 
Renewable Resources Act of 1978 and previously by the 
McS weeney-McNary Forest Research Act of 1928. The 
objective of FIA has been to periodically inventory the 
forest land of the United States to determine its extent 
a3d condition and the volume of standing timber, timber 
growth, and timber depletions. USDA Forest Service 
regional research stations are responsible for conducting 
these inventories and publishing summary reports for 
individual states. Periodic, statewide inventories have 
been conducted since the 1930s at recent intervals of 11- 
17 years. The precision of periodic inventory estimates 
is degraded by the effects of conducting inventories over 
multiple years. and it further deereases over time due to 
factors such as changes in land use and tree growth. 
mortality, and removals between inventories. 

With passage of the 1998 Farm Bill, formally known 
as the Agricultural Research Ex tension and mucation 
Reform Act of 1998, the US Congress has required the 
USDA Forest Service to conduct annual forest 
inventories throughout the nation with 20% of plots to be 
measured every year and resource reports to be published 
every 5 years. However. the 20% annual sample 
requirement may be relaxed, particularly in the western 
states. 

ANNUAL SAMPLE 
Forest inventories are described as annual on the bass of 
the measurement of an annual sample of plots and the 
capability of annually producing population estimates: 
the basis is not a complete annual inventory of all plots. 
FIA precision standards require that standard errors of 
estimates not exceed 5% per billion cubic feet of growing 
stock or 3% per million acres of forest land area (USDA, 
Forest Service 1970). These standards have been found 
to require a sampling intensity of one plot for 

appoximately every 6,000 acres. To satisfy this 
requirement, a grid of non-overlapping hexagons, each 
approximately 5,900 acres in area, was constructed by 
dividing the similar, but larger, hexagons established for 
the Forest Heath Monitoring (ETIhQ program @agar et 
ai 199 1, White et a1 1992). 

In each 5,900-acre hexagon, the existing H A  plot 
nearest the center was selected, or if no FIA plot existed 
in the hexagon, a new plot was established at the 
hexagon center. This network of plots is designated as 
the federal base sample and its measurement is funded by 
USDA Forest Service. The federal base sample is 
considered an equal probability sample of the total 
surface area of a state with the basis for inference 
residing in the sample design. This assumption of equal 
probability sampling is based on the random orientation 
of the system of the FHh4 hexagons and the lack of 
relationship between the locations of the hexagons and 
the locations of permanent FIA field plots. Thus, when 
the distribution of the variables in the population is 
essentially random, simply random sampling theory can 
be used in conjunction with a systematic sample design. 

INVENTORY ESTfM ATlON 
The federal base sample was systematically divided into 
five non-overlapping, interpenetrating panels to 
accommodate the 1998 Farm Bill requirement for a 20% 
annuai sampie. h c h  year the piots in a single panei are 
selected for measurement with paneis selected on a 5 -  
year, rotating basis. For estimation purposes. the 
measurement of each panel of plots is considered an 
independent sample of all lands in a state, and the 
cumulative measurement of ;tll plots over the 5-year cycle 
is considered a single equal probability sample. 

Annual forest inventories feature measurement of 
one panel of plots each year. Therefore, the simplest 
approach to calculating annual FIA estimates is to use 
only the data from the panel of plots measured in the 
current year. While these estimates reflect current 
conditions and are based entirely on measured plots. their 
precision may be unacceptable for some variables due to 
the smail annual sample size. An alternative is to base 
the annual estimates on the most recent information for 
all plots. The advantage of this alternative is that 
precision is increased because all plots are used for 
estimation: the disadvantage is that the estimates do not 
reflect current conditions but rather a moving average of 
conditions over the past 5 years. In particular. the 
moving average will be biased for monotonic trends, will 



lag behind emerging trends. but will dampen the effects 
of temporary or sporadic changes. Another alternative is 
to first update to the current year infomation for all plots 
measured in previous years and then base the estimates 
on all plots. If the updates are unbiased and sufficiently 
pmise, this alternative increases the precision of the 
estimates withwt the adverse effects of using out-of-date 
infmation. 

MODEL UPDATING 
For more than a decade the North Central Research 
Station (NCRS) of the USDA Forest Service has used 
diameter growth, m d i t y ,  and harvest removals models 
to update plots not measured in the current inventory 
cycle. Recent diameter growth modeling research at 
NCRS has focused on development of new individual 
tree, diameter growth models that address four factors: 
(1) calibration on FIA plot data: (2) negligible bias: (3) 
predictions of known precision; and (4) avoidance, where 
possible, of predictor variables that are sample estimates 
or are difficult to precisely measure. 

Data. The data used to calibrate and validate the DBH 
growth models were taken from measurements of 
forested Minnesota FIA plots for the 1977 and 1990 
inventories (Holdaway 1999). Only those trees alive and 
measured in both inventories were used. For each tree. 
average annual growth in diameter at breast height 
(DBH) is calculated as the ratio of the difference in DBH 
measurements for the two inventories and the number of 
years between measurements. Due to nonlinearity in the 
relationship between DBH and DBH growth, expected 
annual DBH growth between inventories may not be 
considered constant and is therefore imprecisely 
represented by average annual DBH growth between 
inventories (McRoberts 1998). However, because 
preliminary investigations indicated that the effects of the 
nonlinearity were small for this application, average 
annual DBH growth over the measurement interval was 
used as a surrogate for annual DBH growth. 

Predictors of annual DBH growth were selected from 
a variety of tree and plot variables that included DBH, 
crown ratio (CR), crown class (CC), average plot 
diameter (AD), plot basal area (BA), plot basal area in 
trees larger than the subject tree (BAL), site index (SI), 
number of trees per acre (NT), plot physiographic class 
(PC), and relative diameter calculated as the ratio of 
DBH and AD (REL). Of these potential predictor 
variables, oniy DBH, CR, and CC correspond to the 
measuement of a single physical entity; AD, SI, and PC 
are sample-based estimates of site attributes with PC 
being related to soil and moisture conditions: and BA, 
BAL, and NT are smple-based per acre estimates. 

Although DBH may be quite precisely m m e d ,  both 
€33 and CC are obtained by ocular estimation and are 
known to be subject to imprecision (Nicholas et at 1991, 
McRoberts et at 1994). Values of the remaining 
variables are all sample estimates and are therefore 
subject to sampling variability. Measuement error and 
sampling variability in predictor variables propagate 
through models and have an adverse effect on the 
precision of predictions. 'I'hus, where possible, predictar 
variables with large uncertainti= were avoided in model 
development, and where impossible, the effects of 
uncertainty in these variables on the precision of model 
predictions were quantified. 

Model form. The DBH growth model consists of the 
product of two components, an average component 
corresponding to regional average DBH growth and a 
modifier component that adjusts DBH growth predictions 
in accordance with local plot or tree conditions. The 
average component is based on a 2-parameter gamma 
model with a constant multiplier and uses DBH as the 
predictor variable, while the modifier component consists 
of the product of exponentials, each of which 
incorporates a single predictor variable. Several farms 
were considered for the average component including the 
Chapman-Richards model, the Weibull model, and the 
gamma model. The gamma model was selected on the 
basis of superior quality of fit and more consistent 
convergence with the nonlinear model parameter 
estimation routine. E-ich factor in the modifier product 
expresses a multiplicative effect on growth in terms of 
departures from regional or ecosystem means for a single 
predictor variable. Thus, the form of the DBH growth 
model is 

E(ADBH) = AW@BH)*MOD(X,, ... X5) [la] 

where the f3s are parameters to be estimated, E(.) is 
statistical expectation. ADBH is annual DBH growth; 

AE(DBH) = exp(-f3, DBH) DBH p3,  [ lbl 
and 

5 

with the X$ and the fS& identified in Table 1. 

Table 1. Predictor variables and functions for f 1~7. 
i f(xJ 
I CR. 6 4  ((3-4) 
2 BAL ps (BAL-SO) 
3 BA B,(BA-100) 

4 CC &(eCCn-2.178) 
5 PC &(p~-n+&(~c-n~ 



Parameter estimation. Model [I] was fit to the data for 
each species separately. ctor variables in the MOD 
component of the model, as expressed by [lc] and Table 
1, were selected for inclusion in the model using a 
comparison cr i terion described by Lin hart and Zucchini 
(1986) that assesses improvement in quality of fit in 
terms of both changes in residual sums of squares and 
number of model parameters. If a predictat variable was 
not selected for inclusion in the model. the corresponding 
parameter estimate in Table 1 is simply set to zero. 

Due to heterogeneity of variance, iterative 
reweighted nonlinear regressions were used to obtain 
parameter estimates. The relationship between residual 
standard deviations, a,, and predictions of annual 
diameter growth, D B H ,  was found to be adequately 
described by 

where E(.) is statistical expectation, in(.) is the natural 
logarithm Eunction, and the as are coefficients estimated 
from the data. Thus, weights for each subsequent 
weighted nonlinear regression were obtained by inverting 
the squared predictions of a, obtained fiom (21 for the 
previous regression. 

COMPARING ESTIMATION ALTERNATIVES 
As previously noted, three estimation alternatives are 
available for the analyses of annual forest inventory data: 
(1) calculate inventory estimates using data from the 
most current panei only; (2) calcuiate a moving average 
over the past 5 years of panei data: and (3) calculate 
annuai estimates using the current panei of data and past 
panels of data that have been updated to the current year 
uslng growth, mortality, and harvest removals models. 
The bias and precision of basal area per acre estimates 
using these three alternatives were compared using a 
Monte Carlo simulation procedure based on a subset of 
data for FIA plots in Minnesota Inventory Units 1 and 2. 
The subset consisted of data for the 313 plots whose 
species composition included only the fifteen most 
frquen tly occurring species in Minnesota. 

Precision of model predictions. To accurately estimate 
precision of basal area per acre estimates using the model 
updating alternative, the precision of the model growth 
predictions must be furst estimated, Due to the extreme 
complexity of this task using analytical methods. Monte 
Carlo simulations processes were used to simulate 
uncertainty from three sources: residual variability 
around an estimated regression line: covariances of 
model pararneter estimates: and uncertainty in the form 
of measurement error and sampiing variability in the 
values of predictor variables. Distributions of the 

residuals were obtained as by-products of calihating the 
models and are assumed to be N(O,a,) where a,, is 
obtained from (21. 

For this application, uncertainty in the values of the 
predictor variables is manifested twice: first, it increases 
model parameter covariance estimates because of 
uncertainty in predictor variables in the calibration data 
set, and second, it increases uncertainty in model 
predictions because of the uncertainty in the conditions 
of the trees and plots to which the model is applied. 
?'bus, uncertainty in the predictor variables must be 
addressed before estimates of the model covariances can 
be obtained. Distributions representing the uncertainty 
in DBH, CR, and CC were obtained from the literature. 
McRoberts et a1 (1994) provided a mathematical model 
for estimating DBH measurement error as a function of 
diameter. Note that uncertainty in DBH generates 
additional uncertainty in variables derived from DBH 
such as BA and BAL. In addition. when sampling is 
conducted for variable radius plots. DBH measurement 
error affects tree expansion factors. McRoberts et a1 
( 1994) also reported that observations of CR for the same 
tree by separate field crews ranged f 0.3 from the 
median. Finally, Nicholas et a1 (1991) reported that the 
repeatability of CC observations by field crews in the 
same-year is approximately 80% with the other 20% 
allocated uniformly to the two adjacent classes. 
Uncertainty for PC was not included in the simulations 
due to lack of infomation on sampiing variability for this 
predictor variable. 

Because parameter covariance estimates for 
noniinear models obtained using analytical methods are 
known to be unreliable. distributions of parameter 
estimates that more accurately represent the covariance 
relationships were generated using a 5-step Monte Car10 
process: 

1, Simulated values of the predictor variables were 
obtained by adding their observed values and 
randomly generated uncertainty based on the 
measurement error and sampling variability 
distributions obtained from the literature: 

2. Parameter estimates obtained from cafibrating 
the models to the original data were used to 
calculate predictions using the simulated values 
of the prdctor variables obtained in Step 1; 

3. Randomly generated residual variation, with 
standard deviation calculated using [2], was 
added to these predictions to obtain simulated 
observations: 

4. New parameter estimates were obtained by 



calibrating the models to the simulated data 
generated in Steps 1-3: 

5. Steps 1-4 were repeated a large number of times 
to generate a disttibution of parameter 
estimates. 

Precision of basai area per acre estimates. A Monte 
Car10 process for estimating the uncertainty in model 
predictions and the effects of that uncertainty on 
inventory estimates was designed to mimic the NCRS 
annual inventory procedure. The simulation procedure 
featured measurement of a rotating 20% sample of plots 
each year, annual updating of the non-measured plots 
using the models, and calculation of mean basal area per 
acre each year using each of the three estimation 
dternatives. The simulation procedure included no 
effects of regeneration, mortality, harvest. other removals 
or conversion of forest land to other cover types. 

The simulation procedure was in two phases, with 
Phase 1 simulating observed annual data and Phase 2 
simulating the FIA sampling, model updating, and 
estimation processes: 

Phase 1: 
1. For Year 0, mimic uncertainty in initial tree and 

plot conditions by adding randomly generated 
measurement error to the observed initial tree 
conditions expressed by the predictor variables. 
DBH, CR, CC, BA, and BAL: record the year 
and the mean and variance of basai area per 
acre across ail plots: 

2. Use the models with the parameter estimates 
obtained from the original calibration data set to 
predict annual DBH growth for each tree: 
mimic residual uncertainty in the predictions 
with randomly generated variation; add DBH at 
the beginning of the year, predicted annual 
DBH growth, and residual variation to obtain 
DBH for the beginning of the subsequent year; 

3. Update plot-level variables BA and BAL using 
new DBH vaiues: record the year and mean and 
variance of basal area per acre across ail plots: 

4, Repeat Steps 2-3 for 20 years. 

Phase 2: 
1. Randomly select without replacement a set of 

parameter estimates for the models from among 
those generated with the previously described 5- 
step Monte Car10 process. 

2, For Year 0, mimic uncertainty in initial tree and 
plot conditions by adding randomly generated 
measurement error to the observed initial tree 
conditions expressed by the predictor variables, 
DBZI, CR, CC, BA, and BAL; caiculate the 
mean and variance of basal area per acre across 
ail plots: 

3. For years subsequent to Year 0, and farthe 20% 
of plots to be measured in the current year, 
replace the previous year's DBH for each tree 
with the Phase 1 values: add randomly 
generated uncertainty to mimic measurement 
error; update BA and BAL for these plots for 
the current year; record the year, tree DBWs, 
and plot basal area per acres estimates; 

4. For years subsequent to Year 0 and for the 80% 
of plots not measured in the current year, use 
the models with parameter estimates selected in 
Phase 2, Step 1 to predict annuai DBH growth 
for each tree: mimic residual uncertainty in the 
predictions with randomly generated variation: 
add DBH at the beginning of the year, prdcted 
annual DBH growth, and residual variation to 

- obtain DBH for the beginning of the subsequent 
update BA and BAL for these plots for the 

current year; record the year, tree DBWs. and 
plot basai area per acres estimates; 

5. Use plot-level estimates from Phase 2. Steps 4 
and 5 ,  and calculate the mean and variance of 
basal area per acre across ail plots: record the 
year, mean. and variance of the basal area per 
acre estimates: 

6. Repeat Phase 1,  Steps 1-6 until Year 20 has 
been reached: 

7. Repeat Phase 1 and 2 a large number of times. 

For each year, "true" (Phase 1) means and 95% 
confidence intervafs and Phase 2 means and 95% 
confidence intervals were calculated for basal area per 
acre for each estimation alternative to obtain 
comparisons of bias and precision and to assess the 
effects of imprecision in the model diameter growth 
predictions on the imprecision of the basal area per acre 
estimates. In addition, estimates of precision for each 
tree and plot can be obtained fkom the distributions of 
DBH and basal area per acre estimates. respectively, 
obtained from Phase 2. 

The results are summarized in graphs of the 
distributions of coefficients of variation after 5 years for 



predicted tree DBH (Figure 1). predicted plot basai area 
per acre Figure 2). and means and 95% confidence 

area pa acre estimates across 
all plots for each estimation alternative compared to the 
"true" estimates mgures 3,4,5)* 

figure 1. cbefficients of for 5-year indiviM tree 

DBH @ctim. 

Figure 2. Coefficients of variation for 5-year plot basal area 
predictions. 
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RESULTS AND CONCLUSIONS 
Neither individual tree DBH growth nor plot basal area 
growth per acre was well-estimated. Coefficients of 
variation for 5-year DBH growth m c t i o n s  ranged from 
0.2 to 1.2, while coefficients of vatiation for basal area 
growth per acre ranged from 0.1 to 0.6. The smaller 
values for basil area growth are attributed to the effects 
of aggregating tree DBH predictions over plots. 

Nevertheless, 5 -year predictions of tree DBH and 
plot basai area were well-estimated with coefficients of 
variation for both below 0.1 with most below 0.03 
(Figures 1.2). These results are attributed to the 

Egure 3. areapermestimatesand95% 
intervals for "true" data and 20% 

Egure 4. Mean basai area per acre estimates and 95% 
confidence intervals for "true" data and 5-year 
moving average. 
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Figure 5. Mean basal area per acre estimates and 95% 
confidence intervals for "true" data and model 
updates. 
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observation that the previous 5-year growth typically 
makes only a small contribution to size for all but the 
smallest trees. Thus, despite considerable uncertainty in 
the growth predictions. knowledge of size at the 
beginning of the 5-year interval permits quite precise 



estimation of size at the end of the period. 
The mmmnic inmeasing fbrm of the "me" means 

from Phase 1 is an anifact of the simulation procedure 
which made no provision for regeneration, mortality, 
removals, or land use change in either the population or 
the modeling. A complete analysis requires unbiased 
models for these components also. Nevertheless. the 
relatively large standard error of the mean basal area per 
acre estimates reflects the great variability that exists 
naturally among plots. This uncertainty is accentuated 
for the annual 20% samples (Figure 3) whose annual 
means sometimes fall outside the 95% confidence 
interval for the "true" means. 

The observed lag of the 5-year moving averages 
from the "'true" means is at least partially an artifact of 
the simulation procedure which permits only a 
monotonically increasing trend in basal area . However, 
any multi-year moving average should be expected to be 
offset from "true" mean due to the nature of the estimate. 
This offset is the primary detractor for the moving 
average approach, because the precision estimates for 
this approach are quite accurate (Figure 4). 

The virtual coincidence of the "true" means and 
model-updated means is also at least partially dependent 
on the use of the simulated "true" data to mimic 
observed growth. The important finding for this 
approach is that the uncertainty associated with the 
growth model predictions contributes very little to the 
total uncertainty of the basal area per acre means (Figure 
5). This result is attributed to two previously noted 
effects: frrst, the excellent precision of the plot basal area 
per acre estimates. and second, the relatively large 
natural variation among plots. 

The overall conclusion of the study is that despite the 
relatively large uncertainty in the growth predictions. the 
model updating approach produces mean basal area per 
acre means that are nearly as precise as the "true'' means 
but without the lag or offset effect of the moving average 
approach, 
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