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SPATIALLY EXPLICIT AND STOCHASTIC SIMULATION OF FOREST-
LANDSCAPE FIRE DISTURBANCE AND SUCCESSION
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Abstract. Understanding disturbance and recovery of forest landscapes is a challenge

because of complex interactions over a range of temporal and spatial scales. Landscape _ O _,
simulation models offer an approach to studying such systems at broad scales. Fire can be _ _ _ I:_
simulated spatially using mechanistic or stochastic approaches. We describe the fire module f0 to ;-,-
in a spatially explicit, stochastic model of forest hmdscape dynamics (LANDIS) that in- 0_ el" O

6'1 l'a-_corporates fire, windthrow, and harvest disturbance with species-level succession. A sto- _. _ cl-
chastlc approach is suited to forest landscape models that are designed to simulate patterns _
over large spatial and time domains and are not used deterministically to predict individual !:_m_

events, _ _

We used the model to examine how disturbance regimes and species dynamics interact _.ft_ _ _
across a large (500000 ha), heterogeneous landscape in northern Wisconsin, USA, with

six land types having different species environments, and fire disturbance return intervals _ _. _"
varying from 200 to 1000 yr. The model shows that there are feedbacks over time between
species, disturbance, and environment, resulting in the re-emergence of patterns that char- ' _ _"
acterized the landscape before extensive alteration. Landscape equilibrium of species corn- _ _, _" °

position and age-class structure develops at three scales from the initial,disturbed landscape. ._ t.o

Over 10fl-150 yr, fine-grained successional processes cause gradual disaggregation of the " _'
initial pattern of relatively homogenous composition and age classes, Species such as eastern ""
hemlock (Tsuga canadensis), largely removed from the landscape by past human activities, I I
only slowly re-invade. Next, patterns on the various land types diverge, driven by different
disturbance regimes and dominant species, Finally, aging of the landscape causes the prob-
abilities of larger and more severe fires to increase, and a coarse-grained pattern develops
from the disturbance patches. Influence of adjacent land types is shown as fires spread
across land type boundaries, although modified in spread and severity. As found by others,
altered landscapes are likely to retain their modified pattern for centuries, suggesting that
nonequilibrium conditions between tree species and climate will persist under predicted
rates of climate change.

The results suggest that this modeling approach can be useful in examining species-
level, broad-scale responses of heterogeneous landscapes to changes in landscape distur-
bance, such as modified management or land-use scenarios, or effects of global change.

Key words: fire distributions;fire d smrbance heterogeneity" ignition and spread; LANDIS; land-
scape ecology," landscape equilibrium; landscape model; spatially explicit and stochastic; species

resilience; succession; verification and calibration.

INTRODUCTION interactions involved and the corresponding long time

Significant theoretical and empirical advances have domains (Turner et al. 1993, Baker 1995, Foster et al.
been made in the past two decades in understanding 1997). This is particularly true where information on
the nonequilibrium nature of forest communities and species-level successional change is required. In many

ecosystems (Pickett et at. 1994), and the importance of cases, ecological questions involving large-scale pro-
periodic disturbance in driving recovery, compositional cesses such as wind and fire disturbance, or regional
change, and feedbacks in ecosystem processes (e.g., assessments of forest harvesting or global change, can
Loucks 1970, Shugart 1984, Pastor and Post 1986). best be answered with simulation models (Mladenoff
Applying these advances to large, heterogeneous land- and Baker 1999). Here we describe a modeling ap-
scapes, with varying environments and disturbance re- proach to examine how fire disturbance and spatially
gimes, is particularly challenging because of the spatial driven, species-level recovery interact on a large, dis-

turbed, heterogeneous landscape (_500 000 ha), Land-

Manuscript received 31 March 1997; revised 29 January scape heterogeneity is caused by spatial variation in
1998: accepted 30 January 1998; final version received 23 environmental conditions and disturbance rates along
February 1998.
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using either mechanistic or stochastic approaches, of questions, these landscape models share several
These two approaches often differ significantly in the common features: longer temporal resolution or model
time scales simulated as well as other aspects, Mech- time step (usually 1-10 yr) than mechanistic fire-spread

artistic approaches typically focus on a single fire event models, ability to simulate large spatial extents with
over the length of an individual fire, while stochastic multiple fire events, and the use of stochastic algo-

approaches often focus on multiple fire events over rithms. Since the temporal resolutions used by sto-
long time periods. However, models based largely on chastic approaches are much coarser than those of
one approach often have some features of the other, mechanistic approaches, detailed fire processes such as
Mechanistic approaches are generally descendants of lightning-caused ignition or individual tree growth can-
the pioneering work of Rothermel (1972) and simulate not be precisely simulated over time. Therefore in land-
fire behaviors such as ignition and spread in great detail scape models, fine-scale processes are integrated across
with short time resolution (e,g., Finney 1999). Fire ig- temporal scales not by simulating them directly but
nition is affected by the physical and chemical features representing them as aggregated spatial and temporal
of fine fuels and their interactions with weather con- phenomena.

ditions and is a process that occurs on the order of The extent to which fine-scale mechanistic compo-
minutes (Rothermel 1972), Fire spread is measured at nents are integrated into landscape models varies de-

hourly time scales and incorporates great variation, pending on the model purpose and design limitations.
since fuel conditions, vegetation resilience, topogra- On the other hand, large-scale and longer term pro-

phy, and the weather factors including wind direction, cesses such as vegetation dynamics, and fuel accu-
may vary from site to site (Rothermel 1972). Meeha- mulation and decomposition, which are not addressed
nistic models use mathematical equations to link the in mechanistic models but can affect fire patterns

physical environment to the resulting phenomena de- (Romme and Despain 1989, Turner et al. 1993), need
terministically (Rothermel and Deeming 1980, Ander- to be integrated into landscape modeling. The over-
son 1982, Rothermel et al. 1986, Andrews 1986, Cohen whelnring informafion processing needs at landscape
1986, Vasconcelos and Guertin 1992, Finney 1994). scales often require significant simplifications in many
These mechanistic approaches have led to fundamental landscape models. This can limit model application to
understanding of fire behavior and reasonable success only a narrow set of conditions. For example, Green
in predicting local fire spread (Finney 1994, 1999, Co- (1989) developed a landscape model to simulate fire,
leman and Sullivan 1996). However, disparities in time seed dispersal, and forest spatial pattern. Stochastic
scales currently limit their application over large spatial algorithms were used to simulate fire. The mechanism
and temporal domains (Rothermel 199l, Finney 1999). employed to simulate fire spread resulted in elliptical

Stochastic simulation approaches use probability fire patterns that are theoretically valid but do not typ-
distributions in combination with random number gen- ically occur in heterogeneous, real landscapes. DIS-
erators to determine fire events, unlike the more de- PATCH, developed by Baker et al. (1991), integrates

terministic and mechanistic approaches. These ap- weather data with a random algorithm to simulate fire
proaches have evolved from studies of fire frequency ignition and size based on distributions. It simulates
and fire probability, a theory summarized by Johnson fire in greater detail at various time steps if the cor-
(1992). The pioneering work of Heinselman (1973) in responding weather information is provided. DIS-
dating historical fires to derive fire boundaries by PATCH assumes stand replacement by fire, in which
studying forest patch age distribution showed that as stand ages are represented by the time since last fire.
a landscape-scale phenomenon, fire can be successfully Therefore, variable fire severity and vegetation or spe-
described through study at large temporal scales (tens cies succession are not explicitly simulated. EMBYR,
to hundreds of years) with probability distributions of a probability-driven landscape model by Gardner et al.

fire size and frequency. By investigating heterogeneous (1996), simulates fire under different climate regimes.
landscapes at large time domains, research has shown Fire probability in each cell is a function of weather,
that disturbance is an important generator of hetero- fuel, and wind. A vegetation map is interpreted as fuel
geneity at all scales (e.g., White 1979, Hubbard 1980, types and updated each iteration via a Markov recovery
Romme 1982, Armesto and Pickett 1985, Clark 1989, model. Spatial vegetation dynamics are not directly

Turner et al. 1989, Baker 1989, Johnson et ah 1990, simulated. FIRE-BGC (Keane et al, 1996) represents a
Takle et ah 1994), significant effort in scaling ecological processes sim-

Landscape models have been developed that use sto- ulated at the individual tree level up to the landscape
cbastic approaches to examine the relationship between level. This approach has a hierarchical design (land-
fire regimes and landscape heterogeneity, as well as scape-site-stand-species-tree). FIRE-BGC uses FIRE-
fire-affected landscape changes through time (Green SUM, a gal: model (Keane et al. 1989). to simulate all
1989, Baker et al. 1991, Urban et al. 199l, 1999, Turner individual trees contained in simulated plots/Keane el
et al. 1994, Keane et al. 1996, Gardner et ah 1996, ah 1996).FIRE.BGCusesFARSITE, a mechanistic fire
1999, Mladenoff et al. 1996, Roberts 1996, Mladenoff behavior model (Fianey 1994) to simulate fires at sto-

and He, 1999). Although designed to address a variety chastic or fixed intervals. Methods used to scale up and
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down are not spatially explicit. FIRE-BGC has over a continuous distributions. Fires are not purely stochastic
thousand parameters that need to be quantified for a in terms of ignition, location, size, and shape. It has
successful simulation andis computationallyintensive, long been noted that some areas are more fire-prone

A 200-yr simulation of 100-120 stands containing two than others. The differences often are represented by
species takes >20 h on several workstations (Keaue et using mean fire-return intervals, i.e., the mean number
al. 1996) and at least eight replications are needed of years for fire to recur on a certain site (Pickett and
(Keane et al. 1989). Thompson 1978, Pickett and White 1985, Picket et al.

LANDIS (Mladenoff et aL 19961 is an effort to de- 1989, Johnson 1992, Johnson and Gutsell 19941. De-

sign a landscape model that balances the integration of pending on their extent, large landscapes can be strat-
ecological processes across different spatial and tern- ified into ecoregions or land types, relatively homo-
poral scales to be able to simulate large areas over long geneous subareas that are characterized by different
time spans, and within current computational capabil- soil moisture/nutrient regimes and ,fire disturbance re-
ity. The purpose of the model is to simulate species- gimes. This landscape stratification can be done at var-
level forest dynamics in combination with fire, wind- ious scales, depending on landscape structure, available
throw, and harvesting, with adequate mechanistic re- data, and the question being addressed with the model.
alism for a range of spatial scales. LANDIS is a spa- Similar to the approaches used in other studies (Baker
tially explicit, stochastic, raster-based model (Mlad- et al. 1991, Johnson 1992, Turner et al. 1993), in LAN-
enoff et al. 1996, Mladenoff and He 1999), based on DIS the mean fire-return interval is used to calculate

an object-oriented modeling approach (Rumbaugh et fire probability using the following equation, modified
al. 19911. Each cell is a spatial object tracking (11 the from Johnson (1992):

presence or absence of 10-yr age cohorts of individual P = B x If x M1-1_ �„�(1)
species, (2) fuel regimes based on their accumulation
and decomposition characteristics, (3) mean fire/wind where P is the fire probability of a ceil, MI is the mean
return interval, and (4) the time since last fire/wind fire-return interval of a given land type on which the
disturbance, and (5) species establishment ability in cell resides, B is the fire probability coefficient de-
particular environments. LANDIS is similar to LAND- signed for model calibration (B = MI by default), and
SIM, a polygon-based landscape model by Roberts If is the number of years since last fire on that cell.
(19961, in that successional dynamics are based on life With the above distribution, P varies among land types
history characteristics of species, Similarly, the model with MIs, and it can be further altered linearly by If
is currently based on a 10-yr time step. LANDIS differs recorded for each single cell. For example, if fire burns
from LANDSIM in including greater mechanistic detail a given cell in a given time step, If of the cell is reset
in spatial interactions, such as the realism of spatial to 0, and P for that cell is calculated as 0 during that
seed dispersal and the possibility of patch disaggre- time step. This eliminates the possibility of cells being
gation and formation due to the raster format. LANDIS burned twice in the same time step regardless of how

simulates dynamics of up to 30 tree species and is short MI is.
currently being applied to an area of 1.5 million ha in Fire size is also defined from the following equation
northern Wisconsin (He et al. 1999; Mladenoff and He integrating random factors and the mean fire size:

1999, H. S. He et al., unpublished manuscript). A 500- S = A(10.0)'MS (2)
yr simulation of a 500 x 800 cell map with 23 species
takes --1 h on an InteI Pentium 300-based computer where S is the fire size, MS is the mean fire size, A is
(He et al. 1996). In this paper, we will discuss the the fire disturbance size coefficient designed for model
design and stochastic behavior of the LANDIS fire calibration (A = 0.34 by default), and ris a normalized
module and the approach used for verification and rood- random number generated from Eq. 3 (modified from
el calibration. We then apply the model to a real land- Ross 19881:

scape to address the question of how disturbance and r = _,/-0.75 log a_sin(_rZa2) + C (3)
successional dynamics interact in changing forest pat-

terns on a large, heterogeneous landscape. Adequately where aa and a2 are two floating point random numbers
describing these large-scale and long-term natural dy- from a uniform random number generator (0.0 < a_ <

namics is a necessary precursor to understanding sub- 1.0. 0.0 < a2 < 1.0), and C is a constant that ensures
sequent human-caused effects, the statistical mean of r is 0.0 ,by default C = 0.13401.

Since r _ NJ0. o'21. S has the following lognormal

APPROACH AND METHODS distribution (Fig. 1):

Fire module design F(S _ ._:_= _ x e _2_,-dx (4)
Basic distributions. To simulate large-scale spatial

dynamics, LANDIS does not mechanistically simulate where z = ln(x)lln(lOa - MS/.
all processes incorporated in the model, and several By such a design, disturbance sizes are stochastic

processes are represented categorically rather than as and follow the above distribution (Eq. 4) with small
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disturbance sizes more likely to occur than large dis- _

turbances (Fig. 1), as is typically observed (Johnson ._ 1
1992). On real landscapes, disturbance size and fre- u_

quency distributions may be characterized by high vat- 20 40 60 80 100 120 140
iances. This design incorporates the ability to generate
rare, large fire sizes (Baker 1989, Romme and Despain "lqmesince last fire (yr)
1989). However, the statistical maximum fire size pos- FIG. 2. (a) Conceptual representation of forest fuel quan-
sible within a given time span is often not known, and tity (unitless)as a function of accumulation time. which varies
variance in size of these large fires is poorly under- by land type. (b) Categorical representation of fire severityclasses as a function of time since last fire, derived from (a).
stood. The most appropriate fire size probability den-
sity function is not known. In this fire module, maxi-
mum fire size, derived from limited historical data or eralized categorically as fire severity classes reflecting

empirically, is used to estimate a reasonable S (Eq. 2, the relationship of fuel accumulation and time since
S < maximum size}, last fire, assuming that fire removes all fuel if it occurs

Distributions of M1 and MS can be derived empir- (Fig. 2b). A longer accumulation time results in greater

ically or estimated from the literature (e.g,, for our fire severity when a fire eventually occurs. This design
region, Heinselman 1973, 1981, Canham and Loucks preserves the feasibility of incorporating more realistic
1984, Frelich and Lorimer 1991). These distributions data for various land types and/or including specific
are then sampled during the simulation and imple- vegetation fuels if they are available in the future. Cur-
merited stochastically on the landscape over time. To rently, severity classes are 1-5 with a class 5 fire the
place a given stochastic fire with size S on the land- most severe,
scape, several other relationships need to be defined. Species fire resilience.--Fire is a bottom-up distur-

Fuel andfire severity.--Substantiat studies on forest bance, and fires of increasing severity affect younger
fuels have been done by others developing mechanistic age classes first. Also, fire tolerance varies among spe-
fire models (e.g., Rothermel 1972, Deeming et al. 1974, cies. To implement these two characteristics, species
Anderson 1983, Andrews 1986, Brown and Simmer- fire tolerance classes, containing five categories from
man 1986). However, fuel accumulation through time, 1 to 5, are designed to reflect the differences of fire

a process occurring on the order of decades, is not well tolerance among species. Species fire-susceptibility
understood across large, heterogeneous landscapes, classes are designed to reflect differences related to age.
The amount of fuel on a site is a major factor affecting Species life-span proportions are calculated as specms
fire intensity (Rothermel 1983). In LANDIS, a simple age divided by longevity. Five life-span proportions
framework is designed to reflect the relationship be- (0-20. 21-50. 51-70, 71-85, and 85-100%) corm-
tween fuel quantity and years of accumulation on dif- spond to fire-susceptibility classes 1-5, respectively.
ferent land types. This relationship assumes that fuel Susceptibility class 1 is the youngest and most sus-
accumulation is a function of the number of years of ceptible to fire-caused mortality, and class 5 is the old-
forest production since last fire or cutting, and the rate est and the least susceptible, Speetes-specific fire-tel-
of decomposition, which varies by land type (Mlad- erance class combined with age-specific fire-suscepti-
enoffet al. 1996). Fine-scale differences due to species bility class determines whether a species cohort of a
differences are not simulated, certain age can survive a fire event of a given severity

On xeric land types with slow decomposition rates, class (Fig. 3a-e).
fuel accumulation eventually exceeds that on mesic For example, when a severit) class 1 fire occurs, it
land types (Fig. 2a). Although a more realistic curve kills all but the oldest age class (life-span >85% of
is not currently available, this relationship can be gen- species longevity) of a spectes in fire tolerance class

F
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FiG, 3. Fire severity classes vs. fire tolerance (species) classes and susceptibility (agel classes; (a)-(e) refer to fire severity
classes 1-5, respectively. Each individual bar represents the removal range of species of a given age class.

1, the two youngest cohorts (life-span <50%) of spe- of decreasing by one, IgN is reduced exponentially and
cies in fire tolerance class 2, and the youngest cohort stochastically with the following equation:

of species in fire-tolerance class 3 (Fig. 3a), When a IgN = IgN/e _'*"-" (5)
severity 5 fire occurs, it removes all cohorts (Fig. 3el.

Fire ignition. Fire ignition in LANDIS involves _- where a and az are two uniform random numbers, 0.0
lection of random locations and ignition checking. The < a < 1.0. 0.0 < a, < 1.0. With such a design, the
number of cells for ignition checking (IgN) is initially number of fires that occur at each lO-yr time step is
determined from the ignition coefficient (lgN = igni- not proportional to the initial lgN. The module is able
tion coefficient x total cell number), a required param- to mitiate muluple fires, but the chance of initiating
eter that sets the proportion of cells to be checked; this second or additional fires within the same iteration is
parameter can be adjusted to reflect the ignition fre- stochastically decreased.
quency characteristics of the study area, For each it- Once a cell is randomly located for ignition. P is
eration, the ignition algorithm randomly locates a cell computed for that cell (Eq. II. Pr, a random number
for ignition-checking, if not ignited, IgN decreases by (0.0 < Pr < 1,0) is generated using the uniform random
one, and checking continues until lgN = 0. If IgN number generator. Ignition is successful only if P >
decreases to 0 and no single, successful ignition is Pr. Therefore, ignition in LANDIS is a function of P
found, there will be no fire disturbance for the partic- affected by only MI and If (Eq. 1), Ignitions more likely
ular iteration. Once an ignition is successful, instead occur in the cells with shorter MI and/or If. For ex-
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ample, land types at high elevation and on south-facing a) r . . cumulative mean
slopes with high lightning-strike probabilities, may 2.4 ]., i ,,J

have shorter MIs, larger P values, and therefore greater _'i 'IF t 'chance of ignition. _. '
Fire spread.--Fire spread is a process that integrates -0.8

-1.6

the components discussed above to place an actual fire -2.4
on the heterogeneous landscape, where potentially each o o

cell has a different fire probability P. Fire spread is a _ 8 _ _ _ _ _ _
function of wind direction, fire size, fire probability, b) Number
the susceptibility of species, the fire-tolerance class of 2 × 10_

species, and spatial configuration. Once an ignition Io- t × t0s t_ t_ j_tl_, _lillllt

cation is determined, the coordinates of the four ad- _ 9:< 104v

jacent cells are entered into a priority queue (Carrano _ 6× 104
1995) in a random order. The first cell in the queue has
a higher priority of fire spread, and, therefore, the di- 3 × "i04 1 .,,t

rection from the ignition cell to the priority cell mimics c, o oo _ _ o _ _ _ g
wind direction. Once a fire spreads to agiven cell, the _ .*- ,o ,=o _ _ _ _,

cell may or may not be disturbed depending on whether c) Disturbance
P -->Pr (Eq. i). If P < Pr, fire cannot spread onto that 25 x "tO3

cell, anothersurroundingcellischosen, andtheprocess _ 20× 1030_t',ll,l,l_l,,,'''',llh,,, ,,jdl,l,l,1

repeats. Otherwise, If on the cell is checked and used E 15 x t0 _

to determine fire severity on the cell (Fig. 2b). The _ 10× 103
species or age cohorts killed are based on the existing 5 × t
species and their age and the interactions of fire tel- I

erance, species susceptibility, and fire severity (Fig. _ ._- _-- _ _ _ _ _ _ _ _ _ _ o
3a-e). Fire spreads until either S is reached, or the Replications
surrounding ceils cannot burn (P < Pr), or non-forest

FIG. 4. Distribution of (a) 2000 normalized random hum-
surrounds the cell. Fires are more likely to spread to bets r. from Eq. 3, (b) the corresponding 2000 disturbance
cells with high P and can spread across land-type sizes from Eq. 2. and (e) the 40 approximated LANDIS sire-
boundaries where P changes. As a result, _re shape is ulated mean disturbance sizes from (b). The results are based
not deterministic or fixed but rather is the result of on the assumption that fire occurs every iterazion, and total

interactions among species, fuel, S. P, and spatial pat- iterations are 50 (500 yr).
terns.

Successional dynamics.--Succession involves spa- the module design and the mechanism of the random
tial dispersal of seeds among cells on the landscape number generators used. The LANDIS fire module in-
and the differential capability for species establishment teracts with millions of random numbers when a 500-

and growth on different land types. Succession. is a yr simulation of alandscape with i0 _cells is conducted.
competitive process among species and is driven by Thus an essential step is to verify the random number
species replacement according to differential shade tel- series in relation to means and variances of the dis-

erance, disturbance susceptibility, vegetative repro- turbance process. This is essential to understanding
ductiou, sexual maturity and longevity of species, and model variance and limits and in model calibration for
other life history characteristics of species (Mladenoff a particular region. Detailed model sensitivity analyses
et aL 1996). Species' parameters are derived from var- appear elsewhere .Mladenoff and He 1999}.
ious literature sources (e.g., Loehle 1988, Burns and Variation of a single LANDIS run.--Individual dis-
Honkala 1990). Successional processes in the model turbance size is a function of r (Eq. 21 It is apparent
are described in fuller detail and tested elsewhere (He that r exhibits high variability, with mean = 0.0002
et ah 1996, Mladenoff et al. 1996, Mladenoff and He and sD = 0.59 from 2000 trials. The cumulative mean

1999). stabilizes at 0 after _100 random numbers (Fig. 4a).

Module design verification Since LANDIS uses a 10-yr time step. assuming a fire
occurs every iterauon suggests that for a single model

Across temporal scales, fire-return intervals have di- run, a stable MS (Eq. 2) can be achieved with a 1000-
rect impacts on landscape composition and structure, yr run. However, since many simulations are fewer than
A successful simulation of MIs on various land types 1000 yr, or over a limited landscape extent, higher vari-
across the landscape is necessary to adequately portray ation in simulated MS is expected and in fact does
these complex spatial dynamics. MS. another feature occur in real systems (Heinselman 19811 Assuming
of fire disturbance, also varies among regions. To what that the model iterates 50 times (500 yr'f and fire occurs
extent MI and MS, key fire characteristics of a land- once with each iteration 2000 disturbance size events

scape, can be adequately simulated is closely tied to (Fig. 4b) correspond to 40 replications of a 500-yr run.
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The mean of every 50 disturbances represents the sim-

ulated MS of each LANDIS run (Fig. 4c). As indicated, _
the simulated MS has high variance. In this example, twith designed MS = 10000 m-"at an 85% confidence

level, simulated MS of a single LANDIS run can vary 0 IS
from -50% (4715 m:) to +50% (15284 m2).

For many nonspatial simulation models or spatial
models that contain one dynamic element (e.g., fire
probability), model replications can be used to ensure
that correct means and variances are simulated (e.g., 2-
Botkin and Nisbet 1992). Methods exist to validate

spatial simulation results by aggregating attributes
summarized from mapped results (Turner et aL 1989).
However, for spatially explicit and stochastic landscape
models such as LANDIS, there is no valid algorithm
available to integrate spatial maps from replicate runs
into one that averages all factors. Of course, map sum-
maries from replicate simulations, such as means and

variability of species area, can be calculated to verify 11
model performance. But to examine spatial dynamics, _-D 1
verification of single model runs is necessary.

Verification of a single model run.--For a simulated

mean disturbance size MS' (MS prime), the degree to 10
which it approximates the known MS of the study area
can be described as a proportion (Guertin and Ramm
1996):

e = (MS'/MS- 1)100% (6)
FtG. 5. Study region, location, and land types within the

where, e is the difference in percentage, or percentage study area in northern Wisconsin.
error. From Eq. 2, MS' can be expressed as

[ ]/ typei. ThefireprobabilitycoefficientBaffectsPand
MS' = A x MS x _ (10,0)rJ n (7) therefore indirectly SDA, and can be adjusted to in-j-I

crease or decrease MI' accordingly. It is more difficult
where n is the total number of iterations. If MS' is to calibrate MI due to the nonlinear features of fire

correctly simulated, or MS' _ MS, then A = nl probability P vs. MI. Sensitivity analysis indicated that
[Y,_'_ (10.0)',1. It is obvious that A, the fire size coeffi- changes of MI do not result in an equal change in P
cient, affected only by r, can be increased or decreased (Mladenoff and He 1999). Therefore decreasing B has
to minimize e. greater impact on short MIs than on long Mls due to

MI is similar to the fire cycle (Johnson 1992), the the linear relationship of P vs. B (Eq. 1). This can be
time required to burn an area equal in size to the land improved with more interactive calibration runs, or us-
type. For example, on a land type with a 500-yr mean ing other distributions, such as the Weibull, that in-
fire-return interval, over a 500-yr LANDIS simulation, corporate a shape coefficient that can be altered to
the total burned area should equal the land type area. change the fire probability curve (Johnson 1992).
However, some ceils may never burn and some burn
more than once. Thus, the theoretical disturbance area Study area

for land type i can be calculated with To examine disturbance and successional dynamics

TDA, = LA, x N/MI, (8) on a heterogeneous landscape, we apply the model to
a landscape with six land types and 23 species m north-

where TDA, is the total theoretical disturbance area on ern Wisconsin. USA (44 ° N, 91 ° W: Fig. 51. The area

land type i, LA_ is the area of land type i, N is the comprises nearly 500000 ha and is located in the tran-
number of years simulated (N = n X 10), and MI_ is sitionat zone between boreal forest to the north and

the mean interval defined on land type i. temperate forests to the south ICurtis 1959. Pastor and
The difference of simulated MS' and MI can be mea- Mladenoff 1992L Land-type boundaries are derived

sured by the method used for MI': from an exisung quanntative ecosystem classification
(Host et al. 1996). This is a largely forested, glacial

e = (1 - TDA,/SDA_)I00% (9) region, with little topographic relief. Quaternary ge-
where SDA, is the simulated disturbance area on land ology and mesoclimatic gradients are the greatest de-

[T III'
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terminants of environmental variation in the region, dominant forest type to represent each celt when mul-
with dominant substrates of very well-drained sandy tiple species occur on a given cell. Since cohort data

soils in land types 5 and 9, moderate- to well-drained are presence/absence and not quantitative abundance
silt Ioams in land types 2 and 6, and loam to silty-loam in a ceil, species age in relation to longevity is weighted
soils in land types 10 and II (Host et al. 1996). Sum- in classifying dominants or forest types (He et al.
mers in the region are short and mild (July mean 18°C), 1996).
and winters are cold (January mean - 10°C) with snow
cover from November to April. Annual precipitation is REst:t.-rs
--80 cm. The region underwent extensive forest clear- Model calibration and verification
ing during the past 100 yr and is composed of young,
second-, and third-growth forests (Mladenoff and Pas- Model calibration and reproduction of land-type dis-
tot 1993). Dominant species in the area include sugar turbance regimes were done interactively through each
maple (Acer saccharum), northern red oak (Quercus individual run. Desired results may not be achieved
rubra), eastern hemlock (Tsuga canadensis), yellow with a single adjustment since the coefficients are used
birch (Betula alleghaniensis), paper birch (B, papyri- in combination with random-number-related algo-

fera), quaking aspen (Populus tremuloides), white pine ritbms. After calibration, MS' is 2800 ha. e = - 13,6%
(Pinus strobus), red pine (P. resinosa), and jack pine (Fig, 6a), The simulated Mls on land types with MI =
(p. banksiana). 1000, 800, 500, and 200 yr after calibration (Fig, 6b-

e), were 3172 (e = 217%), 719 (e = -10%), 529 (e
Input data and major parameters = 6%), and lg0 yr (_ = -10%), respectively. While

The model input map of current forest landscape Mls on most land types are closely simulated, MI' on
pattern represents spatial distributions of dominant land types with MI = 1000 yr has significantly higher
canopy species from a classification of multitemporal error. The short simulation period (500 yr) in relation
Landsat TM/MSS (thematic mapper/multi-spectral to the simulated M1 (1000 yr), and the relatively small
scanner) satellite imagery. Final classes were at species extent of this landscape and the particular land type

and genus levels for most forest types (Wolter et al. both contribute to this high error. Functionally, how-
1995). Secondary associated species and age class in- ever, this has little effect on simulation results of veg-
formation were derived by integrating the TM classi- etation dynamics compared to a longer, equilibrated
fication with forest inventory plot data (Hansen 1992), simulation of this MI. The difference in vegetation re-
stratified by land types (He et al., unpublished manu- sponse is minimal when MI is much longer than species
script). A total of 23 species and 134 unique site corn- longevity and the successional cycle (H. S_ He and D.
binations resulted on the input map. Individual species J. Mladenoff, unpublished data). In this simulation MI
establishment coefficients (0-1) were derived to reflect or MI' exceeds the life-span of all tree species by at
the relative growth capability of each tree species under least two times.
the environmental conditions of different land types With the stochastic approach, the precise location or
file et al. 1998). All life history attributes of species form of an individual fire is not replicable except using
were derived from the literature as reported elsewhere a fixed random-number seed (He et al. 1996). On land
tMladenoff et al. 1996, Mladenoff and He, b_ pres._), types where MS' and MI' are accurately simulated, we
Historical fire data (MS and MI) were interpreted from can assert that the realistic or desirable fire regimes are
empirical studies in the region (Heinselman 1973, correctly reproduced over the entire period of simu-
198I, Canham and Loucks 1984, Frelich and Lorimer lation, Although an individual fire event may vary with
1991). MS is set to 3200 ha, --3% of the total area. different random number seeds, the actual set of sim-
Maximum fire size is 16000 ha, _15% of the land- ulated fire sizes approximates the empirical distribution

scape. MIs vary among land types from 200 yr (land (Fig. 1) with small fires occurring more frequently than
types 5 and 9), to 500 yr (land types 3 and 11). to 800 large fires. The spatial pattern of a fire is not deter-
yr (land type 10), and 1000 yr (land types 2 and 6). ministic. Rather, it is controlled by the fire character-
The final landscape input map contained 121362 cells istics such as Mls and lfs involved in the event, in
(358 × 339) with a 200 × 200 m cell size, or 4854 combination with the stochastic algorithms. For ex-

km-'. ample, if a given set of sites on the landscape was
A 500-yr simulation was conducted without includ- burned during the last iteration, the new fire is unlikely

ing windtbrow or forest cutting to focus on fire effects, to spread on these sites. This produces the expected

Model output maps are produced at each iteration for fire patterns. Thus patterns observed on maps of an
disturbances, individual species, and age classes. In- individual simulation are discussed in the results not

dividual species maps can be aggregated to a higher as a mechanistic prediction, but as an example of a
level of forest classes with user-defined reclassification calibrated run with verified general behavior.
methods (Mtadenoff et al. 1996), This information can Examination offire events within a time-step._The

apply to either a specific land type or to the overall effects of simulating individual fire events can be an-
landscape. The reclassifcation algorithm calculates the alyzed spatially by examining the response of indiVid-
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ual species and their age cohe, rts (Fig. 6a-e). This is a and heterogeneity within single tire patches (Fig. 7a).
useful process for evaluating model performance and As discussed, fires can occur within One land type (up-
interpreting disturbance and species dynamics, but is per left fire, Fig. 7a, hereafter Called fire A), or cross
not a deterministic prediction of actual single events, land-type boundaries (middle right tire, Fig. 7a. here-
For example, multiple fires occurring at year 290 have after called fire B), Before year 290 fires, at year 280,
variable fire severity classes due to the different fuel most of land type 2 is dominated by sugar maple, a

conditionsineachcell, resultinginirregularfireshapes late successional species, with age classes averaging
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170 years (Fig. 7b). Fire is typically uncommon on this Environmental conditions that affect the ability of
mesic land type (MI' = 3172 yr. MI = 1000 yr). The species to establish also play important roles in deter-
age of sugar maple indicates that fuel has accumulated mining species abundance on different land types (He
in that area for at least 170 yr, assuming the charac- et al. 1998). For example, hemlock, starting at very
teristic decomposition that would occur on this mesic low abundance, increased much more rapidly on land
land type. Therefore, a relatively high severity fire is type 11 (Fig. 8c) than land type 2 (Fig. ga), Due to
expected once one occurs in that area. As observed, poor species establishment on sandy soil and short MI',
fire A, primarily a fire of severity class five, removed overall species abundance is low on land type 5 (Fig,
the 170-yr-old sugar maple, a very fire intolerant spe- 8d). However, red pine, jack pine, and red oak, the
cies (Fig. 7d). drought-tolerant species, are successful in the dry con-

The major portion of fire B was populated with 40- ditions on land type 5. In general, both long MI and
yr-old northern red oak at year 280 (Fig. 7c) indicating short MI result in lower species diversity, as observed
that a fire likely occurred in this area 40 yr ago (Fig, on land type 2 with MI' = 3172 yr (Fig. 8a) and land
6a). A low-severity fire was expected here due to the type 5 with MI' = 180 yr (Fig. gd). With less frequent
short time of fuel accumulation. Fire B, primarily a fires, highly shade-tolerant species such as sugar maple,
severity 2 fire, removed only the young oak cohorts hemlock, and balsam fir outcompete more intolerant
(Fig. 7e). Northern red oak regeneration on land types species to become dominant (Fig. ga-c).
3, 10, and 11, where fire B occurred, is noticeable with Species abundance over the 500-yr model run can
0-10 yr old red oak saplings occurring sparsely after be described quantitatively in terms of means and vari-
the fire (Fig. 7e). Quaking aspen, an early-successional ation by land type when the MIs have been simulated
species, established following fires A and B (Fig. 8f). within known and realistic ranges. While mean abun-

Fire impacts and individual species response by land dance suggests a species equilibrium level, the coef-
type. Fire impacts during the 500-yr simulation can ficient of variation (cv = sD/mean) describes vari-
be further analyzed by examining species trajectories ability in species abundance over the 500 yr. Where
by land type, The trajectories of the most abundant the coefficient of variation increases, species abun-
species on four land types, representing four different dance becomes less stable over time. In general, the
MIs, are shown with abundance calculated as the per- most common and shade-tolerant species have lower
centage of cells in a land type containing each species coefficients of variation compared to less common and
(Fig. 8a-d). Fluctuations in the species trajectories re- shade-intolerant species (Table 1). Sugar maple on land
suit from interactions among life history eharacteris- type 2 illustrates a species that is temporally more sta-
tics, dispersal, competition, succession, fire distur- ble than less abundant species such as jack pine on land
bance, and the establishment abilities of species on the type 2 (Table 1). However, the equilibrium state is also
landtypes. Dominantrolesofeach ofthesecomponents strongly affected by interaction of site characteristics
can be found in these trajectories at different temporal and the initial abundance level, due largely to past hu-
stages. For example, the decline of sugar maple on land man activities, For example, hemlock and sugar maple
type i0 from year 110 is due to the majority of them on land type 10 are both less stable than sugar maple
approaching their natural longevity (Fig. 8b). The high on land types 2 and 11 (Table 1).
abundance of sugar maple and low abundance of hem- Frequent fire is necessary to maintain the less corn-
lock at year 0 result from historical human impacts mort, shade-intolerant species on the landscape. The
(Mladenoff and Pastor 1993, Mladenoff and Stearns coefficients of variation for these species typically de-

1994). The increases of hemlock from year 0 to 240 crease when mean fire return intervals increase, such
and balsam fir from year 0 to 130 on land type 10 (Fig. as with jack pine on land type 5 (MI = 200) vs. other
8b), and both of them from year 0 to 70 on Iand type land types, and big-toothed aspen on land type 10 (MI
11 (Fig. 8c), are gradual recoveries from current con- = 800) and 11 (MI = 500) vs. land type 2 (MI = 1000)

ditions, and approaching pre-European abundances of (Table 1). Some mid-level shade-tolerant species on
these species (Finley i976), land types with MI in the middle range for the land-

Large fires cause the most abrupt changes in species scape, such as red oak on land type 11 and yellow birch
trajectories. The year-80 fire (Fig. 6a), primarily on on land type 10. have low coefficients of vanauon
land type 11 (Fig. 6d), caused the significant decrease (Table 1).

of sugar maple as well as abrupt declines of white pine. Major forest types on the overall landscape. Eight
hemlock, and balsam fir (Fig. 8c). The year-340 fire aggregate forest types were calculated based on species
(Fig. 6a, c) removed substantial amounts of hemlock dominants in cells, with forest-type classes of aspen.

and balsam fir on land type 10 (Fig. 8b). In most cases, birch, maple, oak. hemlock, pine, mixed-deciduous for-
early-successional species benefit from the open space ests, and mixed conifers (Fig. 91. Mixed-deciduous for-
created by fire, such as in the response of aspen to the ests are forests dominated by deciduous species other
year-80 and year-340 fires (Fig. 8b, c). Other large fires than those above, including basswood, white ash, hick-
such as the one at year 240 occurred on the other land ory, and cherry. Mixed-conifer forests include species
types not included in our examples, not listed above such as balsam fir and white spruce.
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The results indicate that maple forest (primarily sug- 5.7% of the landscape. Hemlock _mean = 12.0%1,

ar maple) is the dominant type on this landscape over mixed-deciduous (mean = 13.4%_. and conifer forests

the 500-yr simulation. Maple covers nearly one-third (5.1%) account for the remaming portion of the land-

of the landscape over the 500-yr run (mean = 30.2%, scape.

Fig. 9). Oak (mean = l 1.0%) and birch (mean = 8.8%) The proportions of the landscape dominated by dif-

forests make up _20% of the landscape, and aspen ferent forest types vary over time (Fig. 9). High co-
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TABLE I. Species means and coefficiems of variation (cv) by land Iypes.

Land type

2 3 5 9 10 II

Species % CV % cv % cv % cv % cv % cv

tlemlock 9.2 0,5 37.9 0.2 0,1 0,9 2.8 0.6 53,7 0.4 44.5 0.3
White pine 15.2 0.4 1.3 0.2 2.3 0,9 1.2 0.8 17.e 0,6 21.9 0,5
Red pine 4.6 0,9 80.1 0.2 38.2 0,4 21.7 0.2 0.3 1.5 0.7 0.4
Jack pine 0.3 4.0 6.5 0.4 I1,8 0,2 0,7 1.3 0.0 3,7 0,0 4.1
Balsam fir 78.8 0.1 23.4 0.3 3.2 2.2 2,7 0,7 47.4 0,3 57,5 0.3
Sugar maple 90.7 0.1 12.0 1.3 2.4 2.2 1,7 1.8 46.5 0.5 82A e.2
Red maple 4.0 1.8 15,3 0.8 2.0 1.4 1.5 2.3 9,7 1,2 6.6 0.6
Red oak 8,6 0.4 l 1.6 0.6 3.6 1.5 1,5 1,2 21.8 0.3 35.0 0,2

Quaking aspen 5.6 1.9 0.I 4,0 8.1 1.3 0.2 2.5 15,3 0.8 8..1 0.8
Big-toothed aspen 3.2 1,2 45.9 0.3 3.2 2,0 2.1 0.5 16.7 0,8 16.8 0.7
Yellow birch 16.8 0.4 14.0 0.9 0.1 1.3 0.9 1.5 39.3 0.2 15.1 0.3

Paper birch 8.5 I,I 72.6 0,2 4.3 1.4 18.0 0.2 9.5 0.6 17A 0.4

efficients of variation for the early-successional forest (Fig. 7). The initial (current) landscape is fragmented

types such as aspen (cv = 0.60) reflect the high vari- with a fine-grained patch structure (Fig. 10a), and

ation of these shade-intolerant forest types, Dominant largely contains young forests, typically in 30-90 yr

shade-tolerant types such as maple have corresponding age classes (Fig. 10b). Young maple, aspen, and mixed-

low variation (cv = 0.13). At the landscape scale, a deciduous forest are most common in tile landscape,

large, gradual increase in hen'dock-dominated forest with pine being fairly abundant. Red pine and jack pine

1 from its original low level follows the decrease in abun- are primarily located on land types 5 and 9. and hem-

dance of the m.ixed-deciduous forest (Fig. 9). Hemlock lock is very uncommon (Fig. lOa). At year 100. as the

is the most shade tolerant of the species on this land- landscape ages (largely 90-150 yr age classes), sue-

scape and approaches a stable proportion. However. cessional changes begin to develop a coarser patch

because it recovered from very tow levels, hemlock structure, in both composition and age classes, A few

forest has an overall high coefficient of variation over new fire patches are evident, showing aspen and young

time (cv = 0.70. the highest among all types). Re- age classes (Fig. 10c, d). By year 200. the pattern of

suiting high coefficients of variation are also expected large-scale maple dominance appears on land type 2

for the mixed-conifer and deciduous forests since these (Fig. 10e) and much of the maple forest is _180-240

less common classes incorporate a variety of species yr (Fig. 10f). Hemlock-dominated forests begin to ap-

without clear dominants (Fig. 9). pear more conlmonly on land types 10 and I I. but still

Long-term spatial trends in overall landscape in a dispersed, fine-grained pattern (Fig. 10e). As some

changes can be examined in sequential composition and aspen and other intolerant, mixed-deciduons forests

age output maps from the simulation (Fig. 10). Spatial age. they are succeeded in dominance by an increase

output of a given year is highly stochastic, while se- in yellow birch (Fig. lOe). By year 300. sugar maple

quential output reveals the landscape trend over a Ion- continues to replace pine and other less tolerant species

get time-span. This output provides insight not appar- as dominant on land type 2. A few more aspen forests

ent from the aggregated data in graphs (Figs. 6. 8, 9) are created by fires (Fig. 10g). Larger patches of hem-

or from examining short-term, detailed changes lock forest coalesce especially on land type 10 (Fig,
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10g), While most forest reaches ages of 180-270 yr, nated by a relatively homogeneous age-class structure
the contrast of young forest patches from fire becomes and mixed, early-successional forests that are fairly
more apparent (Fig. 10h). By year 400, the landscape similar across land types. At the finest scale, this initial
pattern continues to develop a coarser grain in both age relatively homogeneous, young age-class structure
class and composition (Fig. 10i, j), Hemlock dominates gradually disaggregates, occurring slowly at first while
on land types 10 and l I. maple domi_lates on land types the forests age. After 100-150 yr, the effects of fine-

2 and 3, and primarily red pine and jack pine dominate grained successional processes begin to become ap-
on land types 5 and 9 (Fig. 10i, j). Early and mid- parent. Formerly dominant, tolerant species that were
successional forest types occur in large fire patches largely removed during the last century and have low
embedded within the more general trend to dominance dispersal capability, such as hemlock, only gradually
by more shade-tolerant species. At the 500-yr point, recover across the landscape, Secondly, landscape re-
the rate of overall landscape change is decreasing as eovery manifests itself at larger scales as land types
some species approach an equilibrium abundance, also difl_rentiate compositionally, based on characteristic
reflected in little change in age class abundance (Figs. successional trajectories, Finally. changes are observ-
8, 9, and 10k. 1). able at a middle scale. As the landscape ages and the

probability of large, severe fires increases, coarser
DISCUSSION grained heterogeneity develops as fire patches eolo-

Simulation results attd implications nized with young, early-successional species punctuate
the larger and smaller scale patterns.

The results suggest several intplications for under- The results also illustrate, specifically, the interac-

, standing ecological dynamics on forest landscapes that tion of lire and species response across land types with
would not be entirely intuitive if studied as aggregate differing environments and disturbance regimes. Mesic
phenomena or examined on simpler, homogeneous land types with long fire-return intervals can have se-
landscapes, or on artifickd landscapes, Simulating a vere disturbances, although infrequent, that produce
real landscape from current conditions illustrates the greater alterations to the landscape than the more fre-
prolonged effect of human impacts of the past 100 yr quent fires on xeric kind types. Fires on mesic land-
and their constraints on forest landscape recovery. Sire- scapes, when they occur, will eliminate dominant

ulation studies have looked at changes in patch-mosaic shade-tolerant species such as sugar maple. "]['hiswill
patterns from timber harvesting in the Pacific North- result in invasion by early-successional species such
west (Wallin et al. 1996) and patch-age patterns from as aspen, producing long-term alterations in landscape
fire and fire suppression in northern Minnesota (Baker composition. But these are infrequent events, and vari-
1989, 1992). This work has shown that direct and in- ation in landscape composition over time tends toward
direct human impact may produce long-term alterations equilibrium dominated by the shade-tolerant species.
to forest landscape patch structure that persist for de- On xeric land types, an equilibrium condition also de-
cades to centuries. Our results illustrate a similar pat- velops but at a different scale from that on mesic land
tern and add the detail of species-level successional types, Frequent fires tend to keep the landscape in pine-
dynamics in response to landscape disturbance. Our and oak-dominated forests, but with a more patchy and
simulation suggests that even by restoring pre-Euro- variable landscape composition over time, Mid-tolerant
penn disturbance regimes, formerly dominant species species are maintained most consistently, with lowest
in our region, such as hemlock, yellow birch, oak, and variability, on land types with intermediate disturbance
pine, require 100-500 yr to recover their former pro- regimes. These land types also tend to have highest
portions. Human alteration of these landscapes to a species diversity (Fig. gb, c), consismnt with patterns
degree that limits seed sources, along with altered dis- found for intermediate disturbance frequencies al
turbance regimes, contributes to slow species recovery, smaller scales in forests Auclair and Goff 1971 Grubb
Although patch age-class equilibrium may be restored 1977. Denslow 1980- Landscape equilibrium ,Baker
somewhat sooner, a landscape with largely young age 1989. Turner et al 1993 _ is dependent on landscape
classes initially has lower probabilities of large and heterogeneity, landscape extent, and time scales, In this
severe fires. This further implies that. as others have heterogeneous system, equilibrium in landscape struc-
suggested on real landscapes (Davis 1986), long-term ture and composition is approached on the larger land
nonequilibrium between tree species and climate will types dominated by shade-tolerant species but not on
continue to prevail, given projected rates of climate land types with shorter fire-return intervals, at the
change over the next 1-2 centuries, scales simulated,

Simulating disturbance and fine-scale species re- These large-scale, spatialsimulanons also show how
sponse on a heterogeneous, disturbed landscape illus- disturbances flow and are modified across real land-
trates effects of past human alteration on the rate of scapes. Xeric land types have frequent |ires. and there

J landscape recovery, and the development of patterns are boundary effects where fires can move onto more
at three scales in both tree-species composition and mesic land types, The more frequent, lower intensity
age-class structure. Initially, this landscape is domi- fires on the xeric land types are generally met with
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lower fire probabilities and reduced likelihood of The categorical nature of several model parameters
spread on the mesic land type, depending on the con- in LANDIS and the semiquantitative model output (tree
trast of environments between the two adjacent land species presence/absence in a cell) has several advan-
types, But occas_.onally, if susceptibility is high on the rages. The model produces generally robust results and

adjacent ceils of the mesic land type, the fire can change reduces any false precision that could result from pro-
to a greater severity class than originated on the xeric dticing more detailed, tree-density or biomass outputs
land type. The effect of these dynamics across land- from simple inputs, This model structure also allows

type borders is to soften land-type differences in spe- relatively easy incorporation of more detailed param-
ties composition at their boundaries. The effect is also eter information as it becomes available or adaptation
partly dependent on boundary contrast between adja- of the model in different regions. While improved pa-
cent land types, in terms of species environment and rameter information and empirical data are always de-
disturbance regime. These landscape boundaries can sirable, they often do not exist at large scales, and
be areas where species diversity may be highest. For conservation and management decisions continue to be
conservation purposes, these results provide further made on a far less reliable, ad hoc basis.
emphasis for the need to manage landscape complexes,

where discrete management boundaries are minimized, CONCLUSION
so that natural dynamics can operate across environ-
mental gradients. We have described a stochastic modeling approach

and applied the model to examine spatial dynamics of
Modeling approach implications fire disturbance and species-level recovery on a large,

Application of the spatial and stochastic approach heterogeneous landscape that has experienced exten-
described here to model a forest landscape illustrates sive alteration by human land use. The modelillustrates
use of the LANDIS model and provides insight into the feasibility of simulating individual species through
the dynamics of disturbances and species responses on time at a resolution that provides adequate mechanistic
a large, heterogeneous landscape, LANDIS uses a sto- detail, but is computationally efficient enough to sim-
chastic/ire simulation approach and is not designed to ulate large, heterogeneous landscapes over centuries,
predict individual events that may occur in the future The results illustrate the complex dynamics that occur

at particular locations. Rather the modeling approach between disturbances and species-level change at large
serves as an usefultool for examining long-term spatial scales, both spatially and over a long time period.
dynamics and the consequences of various disturbance Studying such dynamics on landscapes that incorporate
changes and management effects, spatial heterogeneity in environments appears to be im-

The model uses either empirical or assumed mean portant in understanding what patterns these dynamics
fire-return intervals and size-frequency distributions, will produce and how long it will take. In our results,
Model calibration and verification are important to en- even in those land types that recover from past human

sure that model assumptions are correctly simulated, activities to approach a landscape compositional equi-
However, some verification and validation for a sto- librium, the time required is several centuries. Feed-
chastic, spatial model cannot be done using methods backs in the model among species, disturbance, and

such as Monte Carlo techniques, Conducting multiple, land types produce emergent patterns on the landscape
replicate simulations is often not feasible, and there are at several scales over time.

no acceptable algorithms for averaging a series of spa- Our approach may be useful in examining the effects
fial maps with multiple attributes. Model validation in

of disturbance regimes that are modified by global
the traditional sense may not be meaningful or feasible

change, or the impacts of various land use and man*
for large.scale, stocfias_ic models (Rykiel 1996). Thus

verification and calibration of a single run are important agement practices over time, and their interaction with
for stochastic models such as LANDIS. The model cal- landscape structure in influencing the pattern and rate

ibration techniques we used allow verification and cal- of forest landscape change. Ultimately, stochastic mod-
els should be used as tools with defined purposes and

ibration through an iterative process, by comparing sin-
gle-model runs with an adjusted set of parameters. Se- limitations, and results interpreted accordingly. In our

lected output from single-model runs can then be eval- applications, emphasis is placed on the general nature
uated against assumptions, with model errors evaluated of patterns and dynamics produced at large scales, rath-
as percentage deviation from designed values. Results er than predictive ability for specific local events,

indicate that high variance can be expected when rep- ACKNOWLEDGMENTS
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