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Fixed and Equilibrium Endpoint Problems 
in Uneven-Aged Stand Management 

ABSTRACT. Studies in uneven-aged management have concentrated on the determina- 
tion of optimal steady-state diameter distribution harvest policies for single and mixed 
species stands. To find optimal transition harvests for irregular stands, either fixed end- 
point or equilibrium endpoint constraints can be imposed after finite transition periods. 
Penalty function and gradient methods are presented to solve these problems. The 
methods are demonstrated with a stage-structured model for projecting stands that con- 
tain mixtures of California white fir (Abies concolor [Gord. & Glend.] Lindl. (Iowiana 
[Gord.])) and red fir (Abies magnfica A. Mum.). With present value as the efficiency 
criterion, optimal transition strategies are computed for three kinds of target steady 
states: the extremal steady state associated with an infinite time horizon dynamic opti- 
mization problem, an investment-efficient steady state, and a maximum sustainable rent 
steady state. Harvest regimes that convert to investment-efficient or maximum sustain- 
able rent steady states are dominated by red fir and are suboptimal compared to transi- 
tion regimes that convert to the extremal steady state, which includes only white fir. The 
fixed endpoint regimes are compared with transition strategies that are obtained with 
equilibrium endpoint constraints that do not require a particular steady-state stand 
structure. Transition regimes that convert to the extremal steady state are suboptimal 
compared to regimes that solve the more general equilibrium endpoint problem, and the 
present values of these two kinds of regimes converge as the transition period lengthens. 
The species composition and structure of the steady states found by solving the equilib- 
rium endpoint problem depend on the transition period length. FOR. SCI. 33(4):908-931. 
ADDITIONAL KEY WORDS. Forest economics, optimal harvesting, nonlinear program- 
ming, white fir, Abies concolor, red fir, Abies magnifica. 

MODELS FOR UNEVEN-AGED MANAGEMENT have been developed that allow 
the determination of the diameter class harvesting rates that maximize the 
present value of an existing stand over an extended planning horizon (see 
Haight et al. 1985 and Haight 1985). Optimal management regimes often 
involved large variations in harvest levels over time, and steady states were 
achieved only after long transition periods. Stand management objectives 
that include steady-state harvesting in addition to the maximization of 
present value can be incorporated into a dynamic optimization model by 
constraining the harvest level to be in a steady state after a finite number of 
transition harvests. This paper focuses on issues associated with dynamic 
harvesting problems that have either fixed endpoint or equilibrium endpoint 
constraints. 

Fixed endpoint problems involve the determination of a target steady 
state and a transition regime that reaches the target after a finite transition 
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period. Many studies have investigated optimal steady-state harvesting in- 
dependently of transition regimes. Optimal volume harvest levels and cut- 
ting cycle lengths have been determined using whole-stand diameter-free 
models for stand growth (Chang 1981, Hall 1983). Optimal steady-state di- 
ameter distributions and harvest rates have been found using whole-stand 
diameter-class simulators (Adams 1976, Buongiorno and Michie 1980, 
Martin 1982). The steady states were optimal in the sense that they satisfied 
an economic stocking criterion that equated the marginal value growth per- 
cent of the stand to the discount rate. Since this criterion is equivalent to the 
land expectation value criterion for determining the rotation ages of even- 
aged stands (see Chang 1981 and Hall 1983), optimal steady states are called 
investment-efficient. In contrast to the marginal value growth percent crite- 
rion, Rideout (1985) proposed a "managed forest value" criterion, which 
seeks the steady state that maximizes the present value of an infinite series 
of harvested volumes. Steady states that satisfy this criterion are called 
maximum sustainable rent solutions, and they are independent of the dis- 
count rate (see Getz 1986). One study has focused on steady-states that are 
found in the context of a dynamic harvesting problem that seeks the diam- 
eter class harvesting rates that maximize the present value of an existing 
stand over an infinite time horizon. A steady-state solution to an infinite 
time horizon optimization problem is called an extremal steady state. The 
extremal steady state differs, in general, from an investment-efficient steady 
state (Haight 1985), and it is equivalent to a maximum sustainable rent 
steady state only in the special case where the discount rate is zero (Getz 
1986). Using a maximum present value objective, Adams and Ek (1974) for- 
mulated and solved a three-period fixed endpoint problem. Computational 
limitations prevented the authors from examining the present value impacts 
of longer transition periods, and they did not examine the present value 
impacts of converting to steady states that were determined with alternative 
criteria. 

Equilibrium endpoint problems involve the determination of transition 
and steady-state harvest levels with equilibrium endpoint constraints that do 
not require the achievement of a specific target stand structure. Michie 
(1985) formulated and solved an equilibrium endpoint problem using a fixed 
parameter matrix model for stand growth and linear programming methods. 
The resulting steady states depended on the initial stand structure and the 
conversion period length, and they approached an investment-efficient 
stand structure as the conversion period lengthened. Computational limita- 
tions prevented the author from solving problems with three or more transi- 
tion harvests. In addition, linear programming methods cannot be used 
when stand growth is projected with density dependent nonlinear models. 

The purpose of this paper is to formulate and solve finite time horizon 
problems that have either equilibrium endpoint constraints (e.g., Michie 
1985) or fixed endpoint constraints (e.g., Adams and Ek 1974). Numerical 
solution procedures that involve penalty functions and gradients are pre- 
sented and demonstrated in the context of a stage-structured model for 
stands that contain mixtures of California white fir and red fir. The stage- 
structured model includes relations for regeneration and growth that are 
density dependent and nonlinear. Numerical solutions to the equilibrium 
endpoint problem are used to determine the impact of transition period 
length on the optimal steady-state stand structure and species composition. 
Solutions to the fixed endpoint problem are used to determine the impacts 
of converting to extremal, investment-efficient, and maximum sustainable 
rent steady states on the present value of conversion and steady-state har- 
vesting. 



FINITE TIME HORIZON HARVESTING 

In this section an infinite time horizon resource management problem is 
formulated, and in the following two sections, the general problem is 
converted to finite time horizon problems using equilibrium endpoint and 
fixed endpoint constraints. Consider a population represented by x(t) 
= (xl( t) ,  . . . , xn(t))', where xi@) is the number of individuals in the ith 
growth stage at the beginning of time period t .  For biological realism con- 
strain x(t) to lie in R+", the nonnegative quadrant of Rn. Assuming that the 
population under consideration is a resource system in which individuals 
can be harvested from each growth stage, define a control vector u(t) = 
(u,(t),  . . . , un(t))',  where u,(t) is the number of individuals harvested from 
the ith growth stage at the end of time period t .  Since u(t) represents the 
levels at which the resource is exploited, u(t) belongs to a suitably defined 
set U E Rn, where 

U = {u(t) E Rn ( 0 G ui(t) s i i ( t ) ,  i = 1 ,  . . . , n) ,  ( 1 )  

and i i ( t )  is an upper bound equal to the number of individuals in stage i at 
the end of time period t before harvest. There is usually a practical unit of 
time associated with the resource system. For tree populations we assume 
that the unit of time is 5 years, and thus t increases in 5-year intervals. For 
generality we allow an immediate harvest u(0) from a population with initial 
stage x(0) = xo before the dynamics begin. The population dynamics are 
defined with the general system of nonlinear difference equations 

The specific structure of the growth vector q is described in a later section. 
The problem of exploiting a general renewable resource can be formalized 

as follows. Define R(x(t),u(t)) as the revenue obtained at the end of time 
period t, where the resource is in state x(t) at the beginning of this time 
period and the harvest control u(t) takes place at the end of the time period. 
Let 6 denote a discount factor related to the real discount (interest) rate r by 
6 = lI(1 + r). The infinite time horizon management problem can now be 
defined as: 

m 

max J(x,,) = 2 GrR(x(t),u(t)) 
{u(O),u(l),u(2), ... } 

(3) 
r = o  

subject to the growth Equation (2) and initial state %. Suppose this problem 
has a solution denoted by C(t), t = 0 ,  1 ,  . . . , with corresponding state iu(t), 
t = 1 ,  2, . . . , and present value J*(x,,). 

Since it is impossible to numerically solve an infinite time horizon optimal 
control problem, for computational purposes a related finite time horizon 
problem must be formulated. The infinite time horizon problem can be ap- 
proximated by a finite time horizon problem that includes a transition period 
with length T and a terminal state x(T). If the terminal state is free and no 
cost is attached to leaving the resource in any particular state, the resource 
system is often heavily exploited in the time intervals leading up to and 
including T. Noting that the free terminal condition did not affect the o p  
timal solution to the initial period harvest level ii(0) for large T ,  Haight 
(1985) avoided this problem with a sequential solution algorithm that repeat- 
edly solved for and implemented the first period harvest control. 

An alternative finite time horizon problem formulation involves con- 



straining the resource system to be in equilibrium at the beginning of time 
period T; that is, x(t + 1 )  = x(t) = x, say, for t = T,  T + 1 ,  . . . . This 
formulation is appealing when external considerations require the achieve- 
ment and maintenance of a steady-state flow of products from the renewable 
resource in addition to the primary objective of maximizing the present 
value of the resource system. Two methods for achieving a terminal equilib- 
rium state at time T are presented in the following subsections. The first 
formulation imposes a general equilibrium endpoint constraint. The second 
formulation imposes a fixed endpoint constraint where the fixed endpoint is 
a specified steady-state stand structure. 

From growth Equation (2 )  and the equilibrium constraint, it follows that 

Let xu denote a solution to Equation (4 )  for a given u E Ue defined by 

Ue = { u  E U I (x,,u) is a biologically feasible solution to (4)) .  (5 )  

The equilibrium endpoint problem is defined as 
T -  1 GT 

max Jdx,,) = GfR(x(t),u(t)) + - R(x,,u) 
{u( t ) , t=O, l ,  ..., T-1) r = O  1 - 6  

(6)  

where xu = x(T) and u E Ue. Note that the second term on the right side 
corresponds to Z;="=, GfR(x,,u). The idea here is to maximize Jdx , )  for 
initial stand condition x,, subject to the growth dynamics (2 )  holding for t 
= 0 ,  1 ,  . . . , T - 1 and the pair (x,,u) satisfying equilibrium Equation (4 ) .  If 
Jg(xo) is the value corresponding to the optimal solution to the T-horizon 
equilibrium endpoint problem, then J;(xo) approximates J*(x,,), the value of 
the infinite time horizon problem, and converges to it as T -, m. The differ- 
ence between Jg(xo) and J*(x,,) can be regarded as the cost associated with 
the constraint that the system must be in equilibrium for t s T. It is worth 
noting that the optimal equilibrium pair (x,,u) depends on x,, T, and 6 .  The 
structure of problem (6)  is equivalent to the linear programming formulation 
given by Michie (1985) except that the growth dynamics (2 )  may contain 
density-dependent nonlinear functions. 

The infinite time horizon problem (3 )  can also be approximated by a finite 
time horizon problem in which the terminal endpoint is constrained to be a 
fixed equilibrium endpoint. One choice for the fixed endpoint is the ex- 
tremal steady state associated with the infinite time horizon problem (3 ) .  
Conditions for the extremal steady state can be constructed using Pon- 
tryagin's Maximum Principle and the associated current value Hamiltonian. 
Specifically, Pontryagin's Maximum Principle (as modified to include dis- 
counting-see Haurie 1982) states that a solution pair (ir(t),C(t)) is an ex- 
tremal for the above infinite time horizon problem only if there exists a 
current value costate variable A(t) and current value Hamiltonian (note that 
' is used to denote the transpose of a vector) 

such that for t = 0 ,  1 ,  2 ,  . . . , 



and 

Note that Equations (8)  and (9)  only hold for ii(t) lying in the interior of the 
feasible set U defined in ( 1 ) .  If ii(t) lies on the boundary of U,  then the more 
general condition 

holds. 
If a stable extremal steady state exists, it is the solution to Equations (8)  

and (9)  and steady-state condition (4) .  The extremal steady state depends 
solely on 6 and is denoted ( x , , ~ , ) .  Note that, letting AE, be the corresponding 
equilibrium value for the current value costate variable, Equations (8 )  and 
(9)  at equilibrium reduce to 

and 

Equations ( 1  1 )  and (12) are equivalent to the steady-state conditions for infi- 
nite time horizon resource management problems derived by Knapp (1983) 
and Horwood and Whittle (1986) using dynamic programming. 

With an extremal steady state target, the fixed endpoint problem is 

V 

max Id%) = GfR(x(t),u(t)) + - 
{u(r),t=0,1, ..., T - 1 1  1 - 6  

R(x,,us) (13) 
t = o  

subject to the growth dynamics (2) holding for t = 0 ,  1 ,  . . . , T - 1 and the 
endpoint constraint x(T) = x,. If I;(%) is the value corresponding to the 
optimal solution to the T-horizon fixed endpoint problem, then I;(%) ap- 
proximates J*(x,), the value of the infinite time horizon problem, and ap- 
proaches it as T + 03. The additional constraints on x(T) mean that I;(%) is 
less than or equal to J;(%) for any finite T. Associated with the fixed end- 
point problem is the question of reachability of the target set, that is, do any 
controls exist that drive the system to the specified endpoint x(T) in the 
allocated time interval T. 

A second choice for the fixed endpoint is an investment-efficient steady 
state, which has been advocated by a generation of forest economists 
(Duerr and Bond 1952, Adams and Ek 1974, Adams 1976, Buongiorno and 
Michie 1980, Chang 1980, Martin 1982, Hall 1983). Investment-efficient 
steady states satisfy an economic stocking criterion that equates the mar- 
ginal value growth percent of the stand to the discount rate. Investment 
efficient steady states are determined independently of the transition regime 
by solving a maximization problem involving the present value of the steady 
state pair (xu,$ (that is, the term & ? ( x u , x ) ) )  and a term R(x,,x,) repre- 



senting the opportunity cost of the residual growing stock. The opportunity 
cost is the revenue that could be obtained by clearcutting the residual 
growing stock xu (that is, u = xu). The maximization problem is 

6 
max 1- R(xu,u) - R(xu,xu) . 

{u€UC) 1 - 8 1 
This formulation has appealed to forest economists because if the growing 
stock x is viewed as a capital investment, then problem (14) is equivalent to 
maximizing land expectation value as defined by the Faustmann formula 
(Chang 1980, Hall 1983). Denote (ir,ii) as the optimal solution to problem 
(14). It turns out that a solution (ir,ii) satisfies conditions (1 1) and (12) for the 
extremal steady state only in the special case where the revenue function R 
is a linear combination of the harvest level and ii > 0 (see Haight 1985 for 
details). Thus, for sufficiently large T, a solution to the fixed endpoint 
problem (13) that is constrained to achieve an investment-efficient steady 
state has, in most cases, a lower present value relative to the present value 
of the solution to the fixed endpoint problem that is constrained to achieve 
the extremal steady state. 

A third choice for the fixed endpoint is the steady state that maximizes 
managed forest value. Managed forest value measures the present value of 
an infinite series of steady-state harvests (see Rideout 1985). In the context 
of problem (6) managed forest value is &$(xu,u), the present value at time 
T of the steady state pair (xu,u). If (ir,ii) is the steady-state solution to the 
problem of maximizing managed forest value, 

then (ir,ii) is a maximum sustainable rent solution that is independent of the 
discount factor. Maximum sustainable rent solutions are the same as the 
extremal steady state to the infinite time horizon problem only in the special 
case where 6 = 1. To see this, note that conditions (11) and (12) for the 
extremal steady state provide a set of necessary conditions for (x,u) to max- 
imize R(x,u) subject to the constraint x = Gq(x,u); that is, as 6 -, 1, the 
extremal steady state (x,,u,) approaches the maximum sustainable rent so- 
lution (ir,ii) to problem (15). Thus, for 6 < l and sufficiently large T,  a solu- 
tion to the fixed endpoint problem (13) that is constrained to achieve a max- 
imum sustainable rent steady state has a lower present value relative to the 
present value of the solution to the fixed endpoint problem that is con- 
strained to reach the extremal steady state. 

The formulation for determining investment-efficient steady states may in- 
clude different definitions of the opportunity cost of the residual growing 
stock. In expression (14) the opportunity cost is calculated as though the 
residual stand xu is clearcut, and this is consistent with the literature on 
determining investment-efficient steady states. The reviewers pointed out 
good arguments for different ways to evaluate opportunity cost. One defini- 
tion evaluates only the merchantable trees since it is not prudent to liquidate 
the unmerchantable trees (at a cost) when undertaking the alternative in- 
vestment. The second definition attaches a positive value to unmerchant- 
able trees since they have a positive value in the future as they become 



merchantable. Regardless of how the opportunity cost is calculated, invest- 
ment-efficient steady states are not the same as extremal steady states to 
the infinite time horizon dynamic problem (3). As a result, solutions to the 
fixed endpoint problem with any investment-efficient steady state as a target 
are suboptimal compared to solutions that are constrained to reach the ex- 
tremal steady state. 

The fixed and equilibrium endpoint problems are analogous to the forest- 
level harvest scheduling problems formulated and solved by Nautiyal and 
Pearse (1967). These authors used linear programming to address the 
problems of converting a set of even-aged stands with an irregular area 
versus age distribution to a normal forest, which has a distribution of age 
classes that provides a steady-state harvest level. The fixed endpoint 
problem is analogous to the problem of determining the optimal pattern of 
harvests from an irregular forest during its conversion to normality where 
the length of the conversion period and the terminal area versus age distri- 
bution are given. The equilibrium endpoint problem is analogous to the 
problem of determining the area versus age distribution of the normal forest 
that maximizes the present value of the conversion and steady-state har- 
vests for a given conversion period. 

While the fixed and equilibrium endpoint problems are analogous to con- 
strained forest-level harvesting problems, the steady-state behavior of the 
unconstrained uneven-aged management model differs from the steady-state 
behavior of the unconstrained forest-level model. Under certain conditions 
(for example, convexity of the revenue and growth functions) there exist 
stable, single-period steady states for the infinite time horizon uneven-aged 
management problem (3) (see Horwood and Whittle 1986). In contrast, the 
linear forest-level harvesting problem does not converge to a single-period 
steady state characterized by a normal forest. The optimal harvest pattern is 
to clearcut each age class at the Faustmann-optimal rotation age (see Jo- 
hannson and Lofgren 1985). 

PENALTY FUNCTION METHODS 
A STAGE-STRUCTURED HARVESTING MODEL 

The numerical methods for solving the fixed and equilibrium endpoint man- 
agement problems are discussed in the context of a stage-structured model 
for projecting growth and yield. In this model, the right hand side of 
Equation (2) is characterized as a transformation of the state vector x(t) 
= (xl(t), . . . , xn(t))' using an n-dimensional matrix model. Each element of 
the state vector represents the number of trees in a specified growth stage at 
the beginning of time period t. Growth stages include height classes for sap- 
lings less than 6.0 ft in height and diameter (at breast height) classes for 
trees taller than 6.0 ft. For management analysis trees in each diameter class 
are also assigned an average height, crown attributes, and stem volume. 

The elements of the transition and survival matrices and the regeneration 
vector are nonlinear functions that depend on k aggregations of the elements 
of the state vector x(t). Each aggregate variable represents a measure of 
stand density that is defined as a weighted sum of the number of trees in 
each stage. The aggregate density variables are denoted by the vector y(t) 
= (y,(t), . . . , yk(t))' and are defined by the transformation 

y(t> = Ax(t) (16) 

where A is a k x n matrix with elements aij,  i = 1, . . . , k, j = 1, . . . , n. 



The elements of the survival and transition matrices are composed of the 
scalar functions si(y(t)) and pi(y(t)), taking values on the interval [0,1], and 
denoting the proportion of trees in stage i at time t that respectively survive 
the time period (t, t + I], and move into the next stage at time t + 1. Note 
that the number of trees in stage i at time t that remain in stage i at time t 
+ 1 is then given by (1 - p,(y(t))). Define n x n matrices S(y(t)) and P(y(t)) 
as follows (note (S)u denotes the ijth element of S; etc.) 

(S)ii(~(t)) = si(y(t>) i =  I , .  . . , n ;  

(S)ij(~(t)) = 0 i + j , i , j  = I , .  . . , n ,  (17) 

and 

(P)ii(~(t)> = (1 - P;(Y(~))) i =  1, . . . ,  n; 

(PI,+ li(y(t)) = P;(Y(~>) i =  I ,  . . . ,  n -  I ;  (18) 

(P>ij(~(t>) = 0 j + i , i +  l , i , j =  I , .  . . , n .  

Define an input vector f(y(t)) = (f,(y(t)), . . . , f,(y(t)))', where f,(y(t)) 
is a scalar function representing the number of trees entering the smallest 
stage through natural regeneration during time interval t, and J;: = 0, i 
= 2, 3, . . . , n. The element u,(t) of the control vector u(t) in expression (2) 
represents the number of trees harvested from the ith stage at the end of 
time period t, and the dimension of u(t) is equal to n. The survival and 
transition matrices, the regeneration vector, and the state and control 
vectors are combined into the following difference equations for a stand 
with an initial state x(0) = x,: 

x(1) = x(0) - u(0) 

x(t + 1) = P(y(t))S(y(t))x(t) + f(y(t)) - ~ ( t )  t = 1, 2, . . . (19) 

The structure of this matrix model is an extension of age-structured Leslie 
matrix models where age classes are replaced by growth stages and where 
the transition from one stage to the next in each time period is incomplete; 
that is, subdiagonal elements appear in the transition matrix. Note that the 
model incorporates measures of stand density and density-dependent func- 
tions for predicting regeneration, growth, and survival. Stand growth 
models that can be represented by Equation (19) include density-dependent 
matrix models (e.g., Adams and Ek 1974) and fixed parameter matrix 
models with density-dependent regeneration (e.g., Michie and McCandless 
1986). The growth matrix P in expression (18) can be expanded to grow 
trees more than one stage during the projection interval by adding additional 
off-diagonal elements (e.g., Michie and McCandless 1986). The growth ma- 
trix P can also be expanded to project stands with multiple species, as dis- 
cussed in a later section (see also Solomon et al. 1986). 

The numerical solution method involves converting the equilibrium end- 
point problem (6), which has a terminal steady-state constraint, into an 
equivalent unconstrained problem with a free terminal point. This is accom- 
plished by adding a penalty to the objective function for any violation of the 
equilibrium constraint. In the context of problem (6), an optimal sequence 
of harvests ii(t), t = 0, 1, . . . , T - 1, is sought subject to the growth 
dynamics (19) and the terminal stand structure xu satisfying the equilibrium 



condition (4 ) .  From equilibrium constraint (4 )  and growth dynamics (19) it 
follows that the steady-state harvest vector u = h(xu) satisfies 

and h(xu) 2 0. To ensure that the latter constraint is satisfied, let g(x,) be the 
penalty vector containing elements g,,  i = 1 ,  2 ,  . . . , n, that are scalar 
functions defined by 

Thus, when the steady-state harvest level in stage i is nonnegative, the pen- 
alty function gi is zero, and when the harvest level is negative, the penalty 
function equals the square of the harvest level. Note that gi is a continuous, 
nonnegative function of the terminal state xu. The penalty vector is added to 
the objective function (6)  by selecting a suitable vector p E Rn of positive 
constants; that is, the augmented objective function for the equilibrium end- 
point problem becomes 

T -  l RT 
u 

max JT = x StR(x(t),u(t)) + - R(xu,h(xu)) - pg(xU). 
{ u ( t ) , t = o , ~ ,  ..., T7 I }  r=n  1 - 6  

Note that the terminal state xu must also satisfy 

Thus, augmented problem (22) is solved for a given penalty function pa- 
rameter p ,  subject to growth dynamics (19) holding for t = 0, l ,  . . . , T - l ,  
and with the terminal state xu free. 

Fixed endpoint problems are solved by defining a penalty vector that pe- 
nalizes the objective function whenever the desired terminal state is not 
reached. In the context of problem (13) an optimal sequence of harvests 
i i ( t) ,  t = 0, 1, . . . , T - 1 ,  is sought subject to the growth dynamics (19) and 
the constraint that the terminal state x(T) = x,, the extremal steady state. Of 
course, any steady state can be used as a target in this formulation. To en- 
sure that this constraint is satisfied, let g(x(T)) be the penalty vector con- 
taining elements g,,  i = 1 ,  2 ,  . . . , n, that are scalar functions defined by 

Note that whenever the terminal state xi(T) does not equal the desired state 
xi, the penalty function gi is positive. The penalty vector is added to the 
objective function (13) by selecting a suitable vector p E Rn of positive 
constants, that is, the augmented objective function becomes 

T -  l ST 
max IT = x GtR(x(t),u(t)) + - 

{u( t ) , t=O,l ,  ..., T - I }  1 - 6  
R(x(T),u(T)) - pg(x(T)). 

t=o 
(25) 

Since x(T) is a function of the state and control in period T - 1 [see Equa- 
tion (23)1, augmented problem (25) is solved for a given penalty function pa- 
rameter p ,  subject to growth dynamics (19) holding for t = 0, l ,  . . . , T - l ,  



and with the terminal state x(T) free. Since each g, is minimized when 
x(T) = x, [see Equation (24)] by subtracting p,g(x(T)) as in Equation (25), the 
maximum solution should yield x(T) = x, provided x, is feasible (that is, the 
system can be driven from x,, to x, over [O,u using controls u E U). 

For a given penalty function parameter p, the augmented problems (22) and 
(25) can be solved using gradient techniques (see Haight et al. 1985). A gra- 
dient algorithm starts with an initial guess for the control variables u(t), t 
= 0, 1, . . . , T - 1, and seeks to improve the objective function value by 
making successive approximations of the optimal control variable values. 
Each approximation is obtained by moving in the direction of the gradient of 
the control variables, and the algorithm terminates when improvements in 
the objective function value are less than a set tolerance. The solution ob- 
tained when the algorithm terminates approximates a stationary point that 
satisfies Kuhn-Tucker optimality conditions. 

In practice, it is possible to get arbitrarily close to the optimal solution to 
the original constrained problem by computing the solution to the augmented 
problem for sufficiently large p,. However, for very large values for p,, more 
emphasis is placed on feasibility and the gradient solution method moves 
rapidly toward a feasible point. Typically a solution is reached that is far 
from optimal, but movement away from the point is difficult because of the 
size of the penalty function, and as a result, premature termination of the 
solution algorithm takes place. This problem is avoided by solving a se- 
quence of problems for increasing penalty function parameters. With each 
new value for p, the gradient method is employed starting with the optimal 
solution corresponding to the previous parameter problem. The solution to 
each problem is generally infeasible, but as p, is made large, the solutions 
approach the optimal solution to the original constrained problem. 

The sequential solution method is summarized as follows (see Bazaraa 
and Shetty 1979, p. 341). To initialize the algorithm, choose a termination 
scalar E > 0, initial guesses for control variables uO(t), t = 0, 1, . . . , T - 1, 
initial vector of penalty function parameters p0 > 0, and a scalar P > 1. 
Set the counter k = 0. 

1. Solve the augmented problem starting with uk(t), t = 0, 1, . . . , T - 1 and P'. 
Let the solution be (xk+l(t), uk+l(t)), t = 0, 1 ,  . . . , T - 1 and xk+'(T). 

2. If ~'g(x~+l(T)) < E, stop. Otherwise, let pk+l = Ppk, replace k by k + 1 and go to 
step one. 

A STAGE-STRUCTURED MODEL FOR TRUE FIR 

To demonstrate the solution method, we have constructed a stage-struc- 
tured model for projecting growth and yield in mixed white fir and red fir 
stands. The model is constructed using equations obtained from the Cali- 
fornia Conifer Timber Output Simulator (CACTOS), a single-tree simulator 
for mixed conifer stands in Northern California (Wensel and Koehler 1985). 
CACTOS includes equations that predict five-year changes in the diameter, 
height, and height to crown base of each tree in a list that describes the 
stand. Each tree record also includes an expansion factor for the number of 
trees that the record represents. The growth equations depend on measures 
of stand crown cover that are obtained by summing the products of tree 



crown covers and tree factors over all trees in the list. Tree volume is com- 
puted by summing the volumes of 16.5 ft logs that can be cut from the tree, 
and total stand volume is obtained by summing the products of total tree 
volumes and tree factors. 

The stage-structured model is constructed by first defining growth stages 
for each species. The state vector x in growth Equation (19) is divided into 
two sets (x,, . . . , x,,) and (x,,, . . . , x,,) representing the numbers of trees 
in white fir and red fir growth stages, respectively. For management anal- 
ysis, trees are separated into sapling, pole, and sawtimber stages. The sap- 
ling stages, (x,, x,, x,) for white fir and (x,,, x,,, x,,) for red fir, represent the 
numbers of trees in two-ft height classes that range between 0 and 6 ft. The 
pole and sawtimber stages, (x,, . . . , x,,) for white fir and (x,,, . . . , x,,) for 
red fir, represent the numbers of trees in 2-in. diameter (at breast height) 
classes. Trees in the ith stage are assigned the midpoint diameter di where 
(d, = 1, d, = 3, . . . , dl, =. 29) for white fir and (d,, = 1, d2, = 3, . . . , d,, 
= 29) for red fir. Two-in.-diameter classes were chosen because the poten- 
tial diameter growth of white fir and red fir trees growing in stands with 
moderate site quality is less than two inches in five years (Wensel and 
Koehler 1985). The maximum tree size is limited by the data used to con- 
struct the white fir and red fir growth equations in CACTOS (see Biging 
1984). 

Tree diameter is a convenient attribute for defining growth stages because 
it can be related to tree height, volume, and crown attributes. The average 
tree height was computed for each stage using equations described by Van 
Deusen and Biging (1985). Average tree volume was computed with the as- 
sumption that trees in each stage are sectioned into 16.5 ft logs starting at a 
1.0 ft stump height. The top diameter and volume of each log were com- 
puted with equations given by Biging (1984). Logs that have top diameters 
less than 6.0 in. were assumed to be unmerchantable. Trees less than 7.0 in. 
in diameter (at breast height) were assumed to be less than 17.5 ft tall and, 
thus, did not contain any logs. Average tree volumes were computed by 
summing log volumes. The average volume of trees in each red fir growth 
stage differed by less than 10% from the average volume of trees in the 
corresponding white fir stage. 

The models for diameter growth and regeneration depend on measures of 
the cross-sectional crown area of the stand. The ith element of the stand 
density vector y is defined as the cross-sectional crown area of the stand 
measured at 66% of the height of trees in stage i. Thus, A in Equation (16) is 
a 36 x 36 matrix, and the ijth element of A represents the cross-sectional 
area of trees in stage j measured at 66% of the height of trees in stage i. The 
elements of the jth column of A represent a profile of the cross-sectional 
crown areas of a tree in stage j. These elements were calculated using equa- 
tions for crown volume, height to crown base, and crown area given by 
Wensel and Koehler (1985). Compared to the crown profile of a white fir 
tree in a given diameter class, the crown areas of a red fir tree in the same 
diameter class are smaller at the base of the crown and larger near the top of 
the crown. 

In the stage-structured model constructed here, CACTOS diameter growth equations are 
applied to trees between 1 and 5 in. in diameter. The minimum tree size in data set used to 
construct the diameter growth equations was 6 in. (Biging 1984). Thus, the projections of pole- 
size trees should be viewed with caution. 



The structure of the growth matrix P in expression (12) is modified to 
project the two-species state vector x (see Appendix). The elements of P 
include upgrowth functions (p,, . . . , pI8) and (p,,, . . . , p,,) for the white 
fir and red fir growth stages. Trees are projected to grow between pole and 
sawtimber stages using diameter growth models given by Wensel and 
Koehler (1985). Diameter class transition rates are the products: 

where +i is the maximum proportion of trees in stage i that move up one 
diameter class under no competition, and oi(y) is the percentage of the max- 
imum growth percent that can be achieved with a given level of competition. 
The potential diameter class transition rates are time invariant and depend 
on the productive capability of the site. In the simulations that follow, the 
potential growth rates are the same for each species and are computed using 
a site index of 60 (height in feet at age 50) (see Wensel and Koehler 1985). 

The impact of density-dependent competition on potential white fir and 
red fir diameter class transition rates is: 

( - 2.544(&)0-"50 i f i  = 4 . .  . . .18 
w~(Y) = [ - l o , ~ ~ ( ~ ~ ) O ~ w ~ c i - r a  

e i f i  = 22,. . . , 3 6  

where y, is the stand crown cover measured at 66% of the height of trees in 
stage i, and ci is the average crown volume for trees in stage i. The competi- 
tion functions for white fir depend on stand density while the functions for 
red fir depend on crown volume in addition to stand density. Red fir crown 
volumes were computed using equations from Wensel and Koehler (1985). 
All levels of crown cover produce greater reductions in the growth rates of 
red fir with diameters less than 7 in. compared to the impacts of crown 
cover on white fir diameter growth (Figure 1). Conversely, crown covers 
greater than 40% produce smaller reductions in the growth rates of red fir 
greater than 15 in. in diameter than do the same levels of crown cover on 
white fir diameter growth. These differences in the shapes of the competi- 
tion functions have a profound impact on the species composition of optimal 
uneven-aged management regimes. Note that even small levels of crown 
cover cause immediate reductions in diameter growth. A reviewer pointed 
out that intertree competition may take place only after a significant amount 
of crown cover is present; perhaps as much as 30%. In this case, the com- 
petition models would be sigmoid and asymptotic to the upper axis. Be- 
cause of the apparent uncertainty in the form of the competition model and 
because of the sensitivity of the optimal solutions to the form of the model, 
the stand structures and species compositions of optimal management re- 
gimes should be viewed with caution. Finally, trees in each species are not 
allowed to grow beyond the 29-in. growth stage so that pI8 = 0.0 and p,, 
= 0.0. 

The survival matrix S in expression (17) includes survival functions si for 
the proportion of trees in stage i that survive during a five-year projection 
interval. Survival equations based on observations of white fir and red fir 
survival rates were not available. Instead, the survival rates for poles and 
sawtimber were projected with the following equation, 



CROWN COVER RATIO 
FIGURE 1. The competition factors for white fir (H) and red fir with dbh equal to 29 in. (O), 15 

in. (A), and 7 in. (0) are plotted against the crown cover ratio, which is the proportion of the 
ground area covered by the crowns of trees in the stand. The competition factor is the per- 
centage of the potential diameter growth that can be achieved with a given level of competi- 
tion as measured by the crown cover ratio [see Equations (26) and (27)l. 

which was adapted from a survival equation for Douglas-fir in the North 
Coast region of California given by Wensel and Koehler (1985). In this for- 
mulation of the stage-structured model, mortality is not captured in periodic 
harvests. The model could be formulated to include the projected mortality 
in each five-year harvest, which would result in positive harvests in all mer- 
chantable diameter classes. 

SAPLING HEIGHT GROWTH, SURVIVAL AND REGENERATION 

Observations of the height growth of saplings growing in openings that were 
created by cutting overstory trees indicated that white fir and red fir can 
grow to 6 ft in less than 15 years (Gordon 1973). Thus, in the stage-struc- 
tured model, we assume that saplings of both species grow into the next 
stage independently of stand density; that is, pi = 1.0, i = 1,2 ,3 ,  19,20,21. 
In the same study, Gordon (1973) observed that about 30% of the white fir 
and red fir saplings died during a five-year interval. Thus, in the stage-struc- 
tured model, we assume that si = 0.7, i = 1, 2, 3, 19, 20, 21. The sapling 
growth and survival observations were made in openings greater than 8 ac in 
size. In uneven-aged stands, openings are usually less than 1 ac, and as a 
result, competition from neighboring trees is likely to affect growth. Thus, 
the density-independent models defined here may overestimate the sapling 
growth and survival rates found in uneven-aged stands. 

The regeneration vector f in growth Equation (19) contains the functions 



fi(y) and f,,(y) representing the numbers of trees added to the smallest white 
fir and red fir stages, respectively. These functions were constructed based 
on observations of natural regeneration in mixed white fir and red fir stands 
in California (Gordon 1970, Gordon 1979). Each regeneration function is the 
product of the seedling establishment rate and the total number of seeds 
produced: 

~~(y)Zjil8~ ujxj if i = 1 
~~(y)Ejj36 19 ujxj if i = 19 f. = { 
0 otherwise 

where T, and rI9 are the seedling establishment rates for white fir and red fir, 
respectively, and uj is the number of seeds produced by a tree in stage j. The 
seedling establishment rates for white fir and red fir depend on y,, the cross- 
sectional crown area of the stand measured at ground level: 

The white fir establishment rate peaks at 25% crown cover, and the red fir 
establishment rate peaks at 18% crown cover, thereby modeling the obser- 
vation that red fir is slightly less tolerant of shade than white fir. Seed pro- 
duction per tree depends on tree size, and trees less than 15 in. in diameter 
do not produce seed: 

= {41.32(dj - 13.0)2ifj = 1 1 , .  . , 18,29. .  . . . 36  
0 otherwise. (3 1) 

The transition and survival matrices P and S, and the regeneration vector f 
are embedded in the growth dynamics equation (19) to update stand struc- 
tures during five-year projection intervals. 

While the stage-structured model presented above is constructed for the 
purpose of developing and comparing solutions to the fixed and equilibrium 
endpoint management problems, it also demonstrates a method for simpli- 
fying a single-tree simulator. Single-tree simulators such as CACTOS are 
not suited for iterative optimization algorithms because projecting the at- 
tributes of a large number of tree records requires too much execution time 
and computer storage. In contrast to a single-tree simulator, a stage-struc- 
tured model contains fewer state variables and growth equations, and exact 
expressions for model derivatives can be written and embedded in gradient- 
based optimization algorithms. As a result, optimal solutions to uneven- 
aged management problems can be obtained with less execution time. 

While a stage-structured model may be more tractable for optimization, 
there are differences in its structure relative to a single-tree simulator that 
may cause differences in stand projections. In the stage-structured model 
constructed here, trees are classified into diameter and species classes, and 
each class represents a growth stage that is further described by average 
tree height, volume, and crown attributes. These class attributes are fixed 
for the course of the projection. Trees are assumed to be uniformly distrib- 



uted across each diameter class, and a proportion of the trees in each stage 
are projected to grow into the next stage using a density-dependent diameter 
growth model. In contrast to the stage-structured model, CACTOS includes 
density-dependent models for projecting the diameter, height, and crown 
dimensions of each tree record. These additional models and the fact that 
they can be applied to a very large number of tree records should allow 
CACTOS to make more accurate projections of stand diameter distributions 
and volumes over time. 

The gain in accuracy with CACTOS compared to the stage-structured 
model is not known. We did compare the volume projections from the two 
simulators for a wide range of management prescriptions that were applied 
to hypothetical white fir and red fir stands of moderate site quality (see 
Haight and Getz, in press). The differences in projections of total volume 
yields (as a percent of the CACTOS projections) ranged between 0% and 
10%. The stage-structured model also projected the same trends in volume 
yields by product class. These results suggest that the accuracy of the 
stage-structured model projections of stand volume and product yields will 
be similar to the accuracy of CACTOS projections. Firm conclusions 
cannot be reached, however, without comparing simulator projections to 
real stand growth and yield observations. 

OPTIMAL MANAGEMENT REGIMES 

In the context of the stage-structured model given in Equation (19), the con- 
trol vector u(t) contains elements ui(t), i = 1, . . . , 36, representing the 
numbers of trees harvested from the ith stage at the end of time period t. 
The solution method determines the best number of trees to harvest from 
each merchantable and unmerchantable white fir and red fir growth stage in 
each time period. The revenue function R in expression (3) is computed by 
assigning prices to trees harvested in each stage: 

where bi is the price per tree in stage i. Saplings and poles are assumed to be 
unmerchantable and cost $0.25 per tree to cut. The California State Board of 
Equalization, which reports average stumpage prices for use in yield tax 
calculations, priced true fir at $25 per mbf for the fust half of 1986. White fir 
and red fir sawtimber was assigned this price, and the prices were assumed 
to be constant over the planning horizons. Values for bi are the product of 
stumpage price and tree volume (Table 1). The real discount rate is 4.0%. 

To demonstrate the penalty function methods, we solved the equilibrium 
endpoint formulation that maximizes criterion (6) and determined the costs 
of satisfying equilibrium harvest constraints that were imposed after transi- 
tion periods that varied between 0 and 60 years in length. The problems 
were solved for the mixed white fir and red fir stand given in Table 1, and the 
cutting cycle was five years. 

The present values of optimal transition and steady-state regimes improve 
with increasing transition period length and level off at $440 per ac, the 
present value of the 60-year transition regime (Figure 2). The present values 



TABLE 1. The tree prices and initial diameter distributions listed here were used in 
the fixed and equilibrium endpoint problems. 

Price Diameter distribution 
Diameter 

class White fir Red fir White fir Red fir 
midpoint 

(in.) ($/tree) (treeslac) 

a The 0-in. diameter class includes trees in three sapling stages: 0 to 2, 2 to 4, and 4 to 6 ft in 
height, respectively. 

Total undiscounted value of growing stock. 

of the 0- and 10-year transition regimes are $50 per ac (11%) and $46 per ac 
(10%) less than the present value of the 60-year regime. The costs of 
achieving steady states in years 20 to 50 are less than $25 per ac, which is 
6% of the present value of the 60-year regime. 

The steady-states associated with the 0- and 60-year transition regimes 
have different species compositions (Table 2). The steady state obtained in 
year 60 includes only white fir. During transition harvesting, red fir is cut 
when it becomes merchantable, and the remaining unmerchantable red fir is 
cut in year 60, prior to the establishment of the steady state. The steady 
state obtained in year 0 includes both species. In this case, red fir is not 
completely liquidated because of the cost of cutting the unmerchantable 
trees, and merchantable red fir trees are kept in the stand to satisfy the 
steady-state requirement. The steady state obtained in year 10 includes 
white fir in higher proportions, and the steady-states obtained in years 20 to 
50 include only white fir. As the transition period increases, the value of the 
steady-state yield decreases from $46.90 per ac (T = 0) to $45.40 per ac (T 
= 60). 

The equilibrium endpoint problems were relatively difficult to solve be- 
cause the penalty vector included functions for the stage-class growth dy- 
namics [note Equations (20) to (22)l. The penalty function algorithm in- 
volved solving a sequence of unconstrained optimization problems with in- 
creasing penalty function parameters. We terminated the algorithm when 
either CI,~(X,) < .O1 or CI, > 10,000. In the former case, a feasible solution had 
been reached, while in the latter case, the algorithm had converged to an 



TRANSITION PERIOD (YEARS) 

FIGURE 2. The present values of transition and steady state management regimes that solve 
the equilibrium endpoint formulation in expression (6) (B) and the fixed endpoint formulation 
in expression (13) (0) are plotted against transition period length. The fixed endpoint is the 
extremal steady state given in Table 3, and the initial stand is the mixed white fir and red fir 
stand described in Table 1 .  The cutting cycle is five years. 

infeasible solution. The solutions obtained at termination were most sensi- 
tive to the initial guesses given to control variables, uO(t), t = 0, . . . , T - 1 
and the initial size of p, the penalty function parameter. Random initial 
guesses for the control variables caused infeasible termination; however, 
many of the solutions were nearly feasible. Using a near-feasible solution as 
the initial guess for the control variables usually resulted in a feasible termi- 
nation. For any near-feasible initial guess, feasible solutions were obtained 
with p0 = 0.1. Starting with penalty parameters substantially less than 0.1 
resulted in infeasible termination because the penalty function did not affect 
the determination of the control variable values. Starting with penalty pa- 
rameters substantially greater than 0. l resulted in suboptimal solutions be- 
cause the penalty function dominated the selection of the optimal control 
variable values. Several near-feasible or feasible initial guesses for the con- 
trol variables were explored before we were confident that an optimal solu- 
tion had been obtained. 

The fixed endpoint problem given by expression (13) involves the determi- 
nation of the optimal harvest policy for a finite transition period that termi- 
nates in a predefined steady-state policy. Three kinds of target steady states 
were computed (Table 3): the extremal steady state (ESS), the investment- 
efficient steady state (IESS), and the maximum sustainable rent (MSR) 
steady state. Which criterion is chosen has a big effect on the present value 
and species composition of transition and steady-state management. 



TABLE 2 .  The optimal steady-state diameter distributions listed here were ob- 
tained with equilibrium endpoint constraints imposed after 0 and 60 years of transi- 
tion harvesting in a mixed white fir and redfir stand. The cutting cycle is 5 years. 

Year 0 Year 60 
Diameter 

class White fir Red fir White fir Red fir 
midpoint 

(in .) Stocka Yield Stock Yield Stock Yield Stock Yield 

... treeslac .......................... 
0.0 185.0 0.0 

.O 90.0 .O 

.O 42.7 .O 

.O 27.6 .O 

.O 20.9 .O 

.O 16.0 .O 

.O 13.2 .O 

.o 1 1 . 1  .o 

.O 9.8 .O 

.O 9.0 .O 

.o 7.4 3.7 

.O 2.8 2.8 

.o .o .o 

.2 .o .o 

.3 .o .o 

. 1  .o .o 

a Stock denotes the before-harvest stand structure. 
The 0-in. diameter class includes trees in three sapling stages: 0 to 2, 2 to 4, and 4 to 6 ft in 

height, respectively. 
Total undiscounted values of before-harvest growing stock and steady-state yield. 

The extremal steady state represents the harvesting regime that would be 
attained after a sufficient number of unconstrained harvests in any stand 
assuming that biological and economic parameters are constant over time. 
The ESS for the bionomic model discussed above was found by solving the 
equilibrium endpoint problem for the two-species stand in Table 1 with tran- 
sition period lengths that did not affect the resulting steady-state stand 
structure. The ESS includes white fir trees up to 21 in. in diameter, and 
harvests take place in the 19- and 21-in. diameter classes (Table 3). The 
value of the steady-state yield is $40.60 per ac. 

The investment-efficient steady state solves the static optimization 
problem (14). This problem was solved using the penalty function method 
described above on the following augmented objective function that includes 
the steady-state harvest level h(xu) and the penalty vector g(xu) [see Equa- 
tions (20) and (21)l: 

The IESS includes red fir trees up to 29 in. in diameter, and harvests take 
place in the 7- and 29-in. diameter classes (Table 3). The value of the steady- 
state yield is $50.10 per ac. 



TABLE 3.  The steady states listed here were used as fixed endpoints to achieve 
after afinite number of transition harvests in a mixed whitefir and redfir stand. The 
extremal steady state (ESS) contains only white fir while the investment-efficient 
steady state (ZESS) and the maximum sustainable rent steady state (MSR) contain 
only redfir .  The cutting cycle is 5 years. 

ESS IESS MSR 
Diameter 

class White fir Red fir Red fir 
midpoint 

(in.) Stocka Yield Stock Yield Stock Yield 

a Stock denotes the before-harvest stand structure. 
b The 0-in. diameter class includes trees in three sapling stages: 0 to 2, 2 to 4, and 4 to 6 ft in 

height, respectively. 
Total undiscounted values of before-harvest growing stock and steady-state yield. 

The maximum sustainable rent steady state maximizes the value of 
steady-state harvesting and is independent of the discount rate [see criterion 
(15)l. The MSR steady state was found by solving the following augmented 
objective function that includes the steady-state harvest level h(xu) and the 
penalty vector g(xu) [see Equations (20) and (21)l: 

6 
max [- R(xu,h(xu)) - CL~(X,) - 

{XJ 1 - 6 1 
The MSR steady state includes red fir trees up to 29 in., and all trees 
growing into the 29-in. diameter class are cut (Table 3). The value of the 
steady-state yield is $93.40 per ac. 

The fixed endpoint problem [expression (13)l was solved for the mixed 
species stand in Table 1 using the ESS as the target stand structure after 
transition periods that varied between 0 and 60 years in length. Due to the 
more restrictive endpoint constraints, the present value of the transition and 
steady-state management regime is less than the present value of the equi- 
librium endpoint solution for each transition period (Figure 2). Converting 
to the ESS in year 0 results in a $75 per ac (19%) reduction in present value 



relative to the equilibrium endpoint solution because of the costs associated 
with harvesting unmerchantable red fir trees in the first cut. By year 60 the 
management regime that converts to the ESS nearly matches the equilib- 
rium endpoint regime. 

Feasible solutions to the fixed endpoint problems for the mixed species 
stand in Table 1 using the IESS and the MSR steady state as targets required 
more than 200 years of transition harvesting. In each case, merchantable 
white fir was liquidated and red fir was harvested from the largest diameter 
class during the transition period. In each case, the present value of the 
fixed endpoint regime was $264 per ac (60%) less than the present value of 
converting to the extremal steady state in 60 years. 

Solutions to the fixed endpoint problems were obtained with much less 
work than were solutions to the equilibrium endpoint problems. The fixed 
endpoint problems were solved with a penalty function parameter p,O = 0.1. 
Feasible solutions were obtained with random starting values given to the 
control variables, and optimal solutions did not depend on the initial control 
variable values. 

The differences in the diameter growth model parameters for white fir and 
red fir [see equation (27)] interact with the criteria for steady-state har- 
vesting to cause profound differences in optimal species composition and 
stand structure. White fir dominates the ESS because any level of stand 
density competition produces smaller reductions in the growth rates of 
white fir between 1 and 7 in. in diameter than do the same levels of competi- 
tion on red fir pole growth rates (see Figure 1). As a result, when maximum 
present value is the investment criterion, optimal transition harvesting in- 
volves liquidating merchantable red fir and building up the white fir growing 
stock to the extremal steady state. 

The investment-efficient criterion seeks the steady state that maximizes 
the difference between the present value of an infinite series of harvests and 
the value of the steady-state growing stock. Since trees less than 7 in. in 
diameter have negative value, steady states with more unmerchantable trees 
have higher objective function values. Two differences in red fir and white 
fir diameter growth equations cause the IESS to be dominated by red fir. 
First, red fir poles less than 7 in. in diameter grow at slower rates than do 
white fir poles at any level of competition (see Figure 1). As a result, the 
IESS includes over 2400 unmerchantable saplings and poles that increase 
the value of the investment-efficient objective function. Second, red fir 
sawtimber greater than 15 in. in diameter grows faster than does white fir 
sawtimber for crown covers greater than 40% (see Figure 1). Since red fir 
crown areas are smaller than white fir crown areas, more large, high valued 
trees can be produced by growing red fir at high densities compared to 
growing white fir at the same densities. 

The maximum sustainable rent criterion seeks the steady state that pro- 
vides the highest value harvest and, in contrast to the investment-efficient 
criterion, does not assess interest costs on the steady-state growing stock. 
Red fir dominates the MSR steady state because of its superior growth rates 
in sawtimber diameter classes, and because red fir have smaller crown areas 
than white fir. As a result, more large, high valued trees can be produced by 
growing red fir. 

Changing the discount rate affected the structure and species composition 
of the extremal steady state. Discount rates between 1 and 2% resulted in 



steady states that included both white fir and red fir, and as the discount rate 
approached zero, the extremal steady state approached the maximum sus- 
tainable rent steady state (see Table 3) which includes only red fir. Discount 
rates greater than 6% resulted in optimal transition regimes in which all 
trees were harvested before they reached seed-producing size. Optimal har- 
vesting eventually exhausted the growing stock, and as a result, supple- 
mental planting would be required to maintain the stand. Exhausting the 
growing stock at higher discount rates was optimal in these cases because of 
the relatively slow growth rates of white fir and red fir on sites with mod- 
erate growth potential. 

Precommercial thinning was not optimal in any of the solutions presented 
above, and this result was unaffected by changing the relative costs of cut- 
ting submerchantable trees of different sizes. It is likely that density-depen- 
dent sapling growth rates would cause precommercial thinning to enter the 
optimal policy. 

CONCLUDING REMARKS 
In summary, when the objectives of timber harvesting include the maximi- 
zation of present value and the achievement of a steady-state harvest policy, 
the management problem can be formulated as a dynamic harvesting model 
with fixed or equilibrium endpoint constraints. This paper has focused on 
issues associated with these constrained problems. 

For a given transition period length, the solution to the equilibrium end- 
point problem has a higher present value than the solution to any fixed end- 
point problem, since the equilibrium endpoint formulation places fewer con- 
straints on the terminal steady state. The equilibrium endpoint policy de- 
pends on the initial stand structure and transition period length, and it may 
differ in terms of species composition and sustainable harvest value from 
ESS, IESS, and MSR structures. As the transition period lengthens, the 
equilibrium endpoint policy approaches the ESS, and the cost of the ter- 
minal steady-state constraint approaches zero. Numerical solutions showed 
that the cost of the terminal steady-state constraint can be large (greater 
than 10% of the present value of the unconstrained solution) for short tran- 
sition periods, but the impact decreases rapidly as the transition period 
lengthens. 

The cost of a fixed steady-state constraint depends on the criterion used 
to determine the target steady state and the transition period length. With an 
ESS target, the solution to the fixed endpoint problem approaches the solu- 
tion to the equilibrium endpoint problem as the transition period lengthens, 
and the cost of the steady-state constraint approaches zero. Numerical re- 
sults showed that the cost of the ESS target in short transition periods can 
be large (greater than 25% of the present value of the unconstrained solu- 
tion). The costs of achieving the IESS or the MSR policies can be severe 
(greater than 60% of the present value of the unconstrained solution) regard- 
less of the transition period length. As the discount rate approaches zero, 
the ESS policy approaches the MSR policy, and the cost of achieving the 
MSR policy approaches zero. 

The value of the steady-state yield depends on the criterion used to deter- 
mine the steady-state target. The MSR policy always provides the highest 
value yield, and those interested in maximizing the productivity of the 
steady state would want to convert to the MSR policy. In previous studies, 
the objective associated with the achievement of an IESS structure is the 
maximization of the present value of harvested yields during the transition 



to a steady state. It turns out that the IESS structure has the highest invest- 
ment value (i.e., present value of steady-state yields net investment cost), 
but this criterion is not consistent with the objective of maximizing present 
value. In fact, this objective can be achieved more efficiently by solving the 
equilibrium endpoint problem. The ESS policy may produce a relatively low 
sustainable yield, but this is offset by the low cost associated with achieving 
the ESS. The ESS has the property that, once achieved, there exists no 
transition policy away from the ESS that improves the present value of har- 
vesting. 

Achieving steady-state harvesting has always been a desirable goal in un- 
even-aged management; however, as shown above, there may exist large 
financial costs associated -with steadv state constraints. These costs occur 
because optimal unconstrained harvesting may approach a steady state 
asymptotically or not at all. More efficient solutions could be obtained by 
constructing an unconstrained problem that includes the costs of yield fluc- 
tuations. For example, the uneven-aged management problem could include 
capital stock as a state variable with increasing marginal capital adjustment 
costs. In this case, optimal management would rapidly approach a steady 
state without explicit constraints. 

The methods used here to solve the fixed and equilibrium endpoint 
problems can be applied to any stage-structured model that includes den- 
sity-dependent growth functions (e.g., Adams and Ek 1974) or fixed growth 
parameters (e.g., Michie and McCandless 1986). Whether the optimization 
methods can be successfully applied to uneven-aged stands that are pro- 
jected with single-tree simulators is an open question. Results from even- 
aged stand optimization (Roise 1986) suggest that derivative-free nonlinear 
programming methods may solve these problems. Nevertheless, as demon- 
strated here, it is possible to construct a stage-structured model using the 
relations that are contained in a single-tree simulator. Results from opti- 
mizing the stage-structured model can then be used to guide the develop- 
ment of prescriptions with the single-tree simulator. 

Much of the modeling work in uneven-aged management has relied on 
average acre descriptions of stand structure. Diameter distribution descrip- 
tions ignore the spatial distribution of trees, and in clumpy stands, they 
provide very little guidance on the stocking levels to maintan within even- 
aged tree groups. A model that characterizes an uneven-aged stand by an 
area versus age distribution and by the average stocking level in groups of 
each age class may be more realistic. 
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APPENDIX 
The purpose of the appendix is to describe the growth matrix used in the 
stage-structured model for white fir and red fir. Recall that the first 18 ele- 
ments of the state vector x represent the numbers of trees in white fir 



growth stages, and the second 18 elements are the numbers of red fir trees. 
Associated with the state vector is the growth matrix P, which is used in the 
growth dynamics Equation (19) to compute the movement of trees between 
size classes: 

where pi represents the proportion of the trees in stage i that grow into stage 
i + 1 during the five-year projection period. 


