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Optimizing the Sequence of Diameter 
Distributions and Selection Harvests 
for Uneven-Aged Stand Management 

ABSTRACT. The determination of an optimal sequence of diameter distributions and selection 
harvests for uneven-aged stand management is formulated as a discrete-time optimal-control prob- 
lem with bounded control variables and free-terminal point. An efficient programming technique 
utilizing gradients provides solutions that are stable and interpretable on the basis of economic 
principles. Methods and results are demonstrated using a whole-standdiameter-class simulator 
developed for northern hardwoods stands in Wisconsin. Examples in which the objective is present 
net worth maximization over a 150-year planning horizon with a 5-year cutting cycle suggest two 
types of optimal equilibrium stand structures: a downward-sloping diameter distribution if large 
value premiums are assigned to the largest diameter classes and a truncated diameter distribution 
if premiums for larger trees are gradual or absent. Transition strategies vary in length and harvest 
pattern depending on the stumpage value function used. It is emphasized that equilibrium man- 
agement regimes developed with static analysis are not optimal when used as starting conditions 
in dynamic formulations. FOREST SCI. 3 1:45 1462 .  

ADDITIONAL KEY WORDS. Forest economics, optimal control theory, gradient projection method, 
nonlinear programming. 

THE INCORPORATION of even-aged stand growth and yield simulators into dynamic 
programming frameworks has improved the economic analysis of silvicultural 
investment decisions in stand-level even-aged management (Brodie and Kao 1979, 
Martin and Ek 198 1, Riitters and others 1982). Uneven-aged stand simulators 
cannot be readily incorporated into dynamic programming frameworks because 
the large number of decision variables involved would require long computation 
time and massive computer storage. We introduce a more efficient optimization 
technique based on optimal control theory and demonstrate its use in finding the 
optimal sequence of diameter distributions and selection harvests for an uneven- 
aged stand. 

The decision variables facing a forest manager interested in applying uneven- 
aged management at the stand level are (1) the cutting cycle length, and (2) the 
diameter distribution and species composition after each selection harvest during 
a given planning horizon. We use the optimization technique to solve the diameter 
distribution problem, and it can be expanded to analyze both cutting cycle length 
and species composition problems. 
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Hann and Bare (1979) have identified two separate but related issues in deter- 
mining the optimal sequence of diameter distributions: (1) equilibrium diameter 
distribution, and (2) conversion strategy and conversion period length. Research- 
ers have developed static-optimization techniques which focus on the first issue. 
Adams and Ek (1974) demonstrated a two-stage technique for determining the 
optimal equilibrium stand structure. In the first stage, they used a gradient pro- 
jection method to determine the residual diameter distribution that maximized 
stand value growth for a given cutting cycle. In the second stage, having solved 
this nonlinear program for several alternative residual basal area levels, they chose 
the stand structure that satisfied a marginal value growth percent criterion (Duerr 
and Bond 1952). Adams (1976) subsequently distinguished between the use of 
value and basal area measures of growing stock as the appropriate constraints for 
determining investment-efficient diameter distributions. Martin (1982) derived 
investment-efficient diameter distributions using the Weibull distribution func- 
tion. His problem formulation reduced the decision variables to the Weibull 
function parameters and the total number of trees. Solutions were obtained with 
a gradient projection method. 

Adams and Ek (1974) addressed the second issue by formulating and solving 
a transition strategy problem with the constraint of achieving an investment- 
efficient diameter distribution after a specified number of periods. They used a 
gradient projection method, but the number of decision variables and constraints 
exceeded algorithm capacity for problems with more than three transition har- 
vests. 

The optimization technique presented here differs from these approaches be- 
cause it considers the transition and equilibrium problems jointly. Interpretation 
of solutions generates new insights into the economics of uneven-age management. 

This paper is presented in four sections. In the first we formulate the problem 
of determining the optimal sequence of diameter distributions and selection har- 
vests for an existing stand without the constraints of period-to-period sustain- 
ability or specified equilibrium endpoint. We trace the development of this for- 
mulation through the forestry literature. 

The second section shows how to solve this problem with a gradient-based 
nonlinear programming technique called the method of steepest descent. 

In the third section we demonstrate the solution algorithm with the use of a 
whole-standldiameter-class simulator for mixed-species northern hardwood stands 
developed by Ek (1974) and modified by Adams and Ek (1974). We use the 
algorithm to determine stand-specific management regimes for three different 
stumpage value functions. Finally, we examine the sensitivity of solutions to 
changes in the termination criterion and starting conditions for the algorithm. 

We conclude with a discussion of optimal equilibrium stand structures and 
methods for expanding the problem statement and solution algorithm to consider 
cutting cycle and species composition problems. 

The determination of the optimal sequence of diameter distributions and selection 
harvests for an uneven-aged stand can be stated in a discrete-time optimal-control 
formulation with free terminal point and bounded control variables: 

max z = C C P , X ~ Y ,  + 2 P,x,, 
1 y"} i=O j=1 j= 1 



subject to: 

xoj j = 1, . . . , M (given) (4) 

where 

X, = a state variable representing number of trees per acre in diameter class 
j at the beginning of period i before cut, 

Y, = a control variable representing the percentage of the number of trees per 
acre in diameter class j which are cut at the beginning of period i, 

P, = the discounted net price per tree in diameter class j at the beginning of 
period i, 

J, = a continuous nonlinear function with continuous partial derivatives rep- 
resenting the change in number of trees per acre in diameter class j during 
period i, 

N = the number of periods in the planning horizon, 
M = the number of diameter classes. 

The objective function, equation (I), is formulated to seek control-variable 
values that maximize the present value of net returns (PNW), assuming that all 
remaining trees are harvested at the end of the planning horizon. No restrictions 
are placed on the form of the terminal diameter distribution. For a planning 
horizon greater than 150 years, the discounted value of the terminal diameter 
distribution is so small that it has no effect on the determination of the control 
variable values in earlier periods. In these cases, the value of the optimal man- 
agement regime obtained from this formulation can be viewed as the present value 
of future income that could be obtained by managing the existing land and timber 
with an uneven-aged system indefinitely. 

Constraints (2) represent the stand growth dynamics. The number of trees per 
acre in diameter class j at the beginning of period i + 1 equals the number of 
trees before cut in diameter class j period i less the amount cut plus the change 
in number of trees (fij) which is a function of the residual diameter distribution. 
The stand growth dynamics are used to compute the state variables for a given 
control variable sequence and a given initial stand diameter distribution. Con- 
straints (3) ensure that control variables are fractions between 0.0 and 1.0. The 
initial diameter distribution is given by (4). 

Optimal control theory has been applied to stand-level management problems, 
but results have either not been presented or have been unstable and difficult to 
interpret. Adams and Ek (1974) developed a control theoretic formulation of a 
conversion strategy problem in which the control variables were the number of 
trees cut per diameter class in each period. Because both state and control variables 
were constrained to be non-negative, the development and execution of a solution 
procedure was impractical. When the control variables were changed to the per- 
centage of trees cut per diameter class in each period and bounded between 0.0 
and 1.0 (Adams and Ek 1975), no constraints were needed on state variables. No 
solution procedure was presented, however. 

Bullard (1983) adapted the control theoretic formulation of Adams and Ek 
(1 974) to mixed-species even-aged hardwood stands. He demonstrated that a prob- 



lem with eight decision variables and two periods could not be solved with a 
nonlinear programming technique. 

Rapera (1980) formulated the optimal control problem defined by equations 
(1) to (4) and tested three solution procedures. He used the stand growth simulator 
given by Adams and Ek (1974) to model diameter class growth dynamics, using 
a stumpage value function that assigned premiums to large diameter trees. He 
found that the two procedures which used the gradient-based control-vector- 
iteration method (McDonough and Park 1975) converged to solutions within 
specified tolerances. However, values of optimal solutions varied by more than 
25 percent depending on different initial values given to control variables. Harvest 
patterns ranged from periodic removal of all trees greater than 6 inches to the 
maintenance of a downward-sloping residual diameter distribution with a max- 
imum tree size of 20 inches. Rapera concluded that many locally optimal solutions 
existed. 

The solution procedure that we present is a multidimensional version of the 
method of steepest descent used by Dreyfus and Law (1977, p 102) to numerically 
solve single-variable discrete-time optimal-control problems. The method of 
steepest descent is a gradient-based method which finds solutions by setting first 
derivatives equal to zero. Since these conditions are necessary for any relative 
maximum or for any other types of stationary solutions, there is no way of 
distinguishing the absolute maximum. Thus, we never know if the global optimal 
solution has been found. Nevertheless, the values and harvest patterns for solu- 
tions obtained for different initial values of control variables do not vary widely. 
As a result, we can make stronger conclusions about optimal uneven-aged man- 
agement regimes. 

The solution method seeks to improve the objective function value (2, equation 
(1)) by successive approximations of the control variables. Starting with an initial 
guess of the control variables {Y,O), i = 0, . . . , N - 1 and j = 1, . . . , M, we 
seek formulas for finding a better sequence {YV1}, i = 0, . . . , N - 1 and j = 1, 
. . ,  M. 

We define T.{Xil; . . . , Xi,, YilO, . . . , Y,,O) as the value of equation (1) from 
period i through period N, starting in period i with state Xi,, . . . , XiM and using 
the guessed control sequence. The function Ti satisfies the recurrence relation: 

M 

Ti = 2 PuXjjx,lo + Ti+,(Xil - Xi, Yi10 + Jl, . . . , XiM 
j- 1 

- xiMyiMO +AM; Yi+llO,- . . X+1M0) (5) 
i=O,  . . . ,  N -  1 

and the boundary condition: 

We use the stand growth dynamics to compute the state sequence {X,,O), i = 1, 
. . . , Nand j = 1, . . . , M, determined by { Y,O) and {Xoj}. To improve the value 
of (2) we need to know how it would behave if we changed x; but kept all other 
control variables fixed. Partial differentiation of (5) with respect to Y,O gives the 
answer: 



where lo  means expressions are evaluated in terms of the particular sequence 
{ Y;, X;). We can compute (7) if we know d z.+, /axi+, , k = 1, . . . , M. Hence we 
take the partial derivative of (5) with respect to Xu: 

Partial differentiation of the boundary condition (6) yields: 

This allows us to compute partial derivatives (8) for all periods i working backward 
from period N. Equations (7), (8), and (9) allow the computation of aTi/a Y,O, j = 
1, . . . , M, at each period of the guessed control sequence. We use this information 
to compute the change in each control variable 6Y$ so that 

Yo1=Y,,0+6Y,0 i = O  , . . . ,  N - 1  and j = 1 ,  . . . ,  M. (10) 

Suppose we let the change in each control variable 6 Yi,p be proportional to the 
size of the partial derivative dTi/d Y,O: 

i = O  , . . . ,  N -  1 and j=  1 , . . . ,  M. (11) 

The resulting change in the objective function value can be approximated: 

For a specified improvement we can use (12) to compute p: 
- 
62 

P = (13) 

and use equations (1 1) and (1 0) to compute the new decision sequence { Yo1). 
Whenever the new values of the control variables are outside the bounds given 
by equations (3), we set their values equal to the nearest bound. The new decision 
sequence is used in dynamical equations (2) to compute the state sequence {XC1), 
and if {Yo1) and {X,') improve the value of z by more than a predetermined 
limit, they are used as the starting point for the next iteration. If they do not 
improve the value of z, we replace by 62/2 and compute a new solution, repeating 
the process until z improves by the desired amount. The process terminates when 
we seek an increase that is smaller than a predetermined limit and even this 
does not give the desired improvement in the value of z. No improvement in z 
is possible when all of the following conditions hold: 

dT,/t3Yo = 0.0 for 0.0 < Yo < 1.0 (14) 

a ~ ~ / a ~ ,  I 0.0 for Y,= 0.0 (15) 

dTi/dYo 2 0.0 for Yo= 1.0. (16) 

A control sequence { Yo} which satisfies these conditions also satifies Kuhn-Tucker 
necessary conditions for constrained optimization, which are satisfied by any 
relative minima, maxima, or other stationary solution. Thus, we must compare 



TABLE 1. Initial diameter distribution, volume, and stumpage value functions 
for a site index 60 northern hardwood stand. 

Diameter class midpoint (inches) 

Function 6 8 10 12 14 16 18 20 

Initial diameter distribution 
(treedacre) 69.9 49.3 37.5 29.7 24.1 10.7 2.1 0.3 

Volume (ft3/tree) 3.9 10.1 17.9 27.4 38.4 51.0 65.1 80.8 
Stumpagevalue,regimel($/ft" 0.01 0.01 0.01 0.01 0.025 0.05 0.08 0.10 
Stumpage value, regime 2 ($/ft3) .03 .04 .05 .06 .07 .08 .09 .10 
Stumpage value, regime 3 (S/ft3) .05 .05 .05 .05 .05 .05 .05 .05 

the values of solutions that are obtained from several different starting guesses 
for the control sequence to make an estimate of the globally optimal solution. 

Stand Growth Projection.-We employ a whole-standdiameter-class simulator 
for northern hardwoods reported by Ek (1974) and modified by Adams and Ek 
(1974). The simulator was incorporated into static-optimization techniques by 
Adams and Ek (1974) and Adams (1976). The simulator computesJ;,, the change 
in the number of trees per acre in a 2-inch diameter class j during a 5-year growth 
period i as a function of the residual stand structure at the start of the growth 
period. This change is equivalent to upgrowth from diameter class j - 1 less 
upgrowth into diameter class j + 1 less mortality from diameter class j. Models 
for diameter class upgrowth and mortality are a function of site index, diameter 
class midpoint, number of trees in the class, and total stand basal area and number 
of trees. A separate ingrowth model is used to predict upgrowth into the smallest 
diameter class (6 inches). 

The largest diameter class is 20 inches. Due to limits on the growth data used 
to construct the simulator, Adams and Ek (1974) and Adams (1976) assumed 
that only trees 18 inches in diameter and smaller were retained in the residual 
stand. Trees were allowed to grow up to 20 inches during a 5-year growth period, 
but were cut at the beginning of the next period. To make our results comparable 
to the solutions given by Adams (1976), we introduce the same constraint by 
setting the value of the control variable for the 20-inch diameter class equal to 
1.0 in each period. The solution procedure is otherwise unaffected. 

Optimal Management Regimes.-To demonstrate the gradient method we de- 
velop three management regimes for a site index 60 mixed hardwood stand. These 
are developed to maximize present value of net returns (PNW) from harvests 
taken in 5-year intervals over a 150-year planning horizon with a real interest 
rate of 4 percent and with three different functional relationships between tree 
diameter and stumpage value: (1) a sawlog objective where price per cubic foot 
is constant to 12 inches and increases rapidly to 20 inches, (2) a cordwood and 
sawlog objective where price per cubic foot increases at a constant rate with 
increasing tree size, and (3) no market premium for larger trees (Table 1). The 
initial diameter distribution is the profit-maximizing pre-harvest equilibrium di- 
ameter distribution developed for a sawlog objective and corresponding stumpage 
value function with a 4 percent real interest rate presented by Adams (1 976). Net 
cubic foot volume per tree is from the cordwood volume table given by Adams 
and Ek (1974). 

Management regime 1, developed with a sawlog objective, can be divided into 



DIAMETER (in.) 

FIGURE 1 .  Residual diameter distributions at selected points of management regime 1.  Shaded regions 
show number of trees cut. 

two 75-year blocks on the basis of harvesting patterns and resulting sequences of 
residual diameter distributions (Table 2). All 6-inch and 77 percent of the 8-inch 
trees are cut at the start. These initial heavy cuts in the smallest diameter classes 
accelerate the growth of trees in the 10-inch and larger diameter classes. These 
trees are cut in future periods when they reach the three most valuable diameter 
classes. A downward-sloping diameter distribution is present at the end of 75 
years due to natural regeneration (modeled by the ingrowth function) and low 
levels of cut in the smallest diameter classes. The sequence of residual diameter 
distributions shows the management of a pulse over the 75-year period (Fig. 1). 

During the second 75 years a downward-sloping diameter distribution is main- 
tained by natural ingrowth, mortality, and cuts taken from the 20-inch diameter 
class. Due to the high value of 20-inch trees, the values of cuts stay between $24 
and $32/acre even though the total number of trees harvested in each period is 
low. 

Management regime 2, where price per cubic foot increases at a constant rate 
with increasing tree size, removes at the first harvest all trees in diameter classes 
greater than 6 inches (Table 3). Subsequent harvests take all 10-inch trees and 
65-95 percent of the 8-inch trees, leaving an increasing number of trees in the 
6-inch diameter class and a small number of trees in the 8-inch diameter class. 

A similar harvest pattern exists for management regime 3 -no market premium 
for large diameter trees-which specifies that all trees in the 8-inch or greater 
diameter classes are cut at the start (Table 4). Upgrowth into the 8-inch diameter 
class is cut in each subsequent period. The residual diameter distributions include 
increasing numbers of trees in the 6-inch diameter class and no trees in the 8-inch 
or larger diameter classes. 

Imposition of the maximum-tree-size constraint does not affect the solutions 



TABLE 2. A portion of management regime I (PN W = $1 71.42/acre). 

Diameter class midpoint (inches) Totals 

trees ft2 $ - - -  
Year 6 8 10 12 14 16 18 20 acre acre acre 

A. Cut treedacre 
0 69.9 37.8 
5 6.4 1.1 

10 3.5 .o 
15 .4 .O 
20 .o .o 
25 .O .O 
30 .O .O 
35 .o .o 
50 2.1 .O 
75 8.0 .6 

100 4.8 1.0 
145 .3 .8 

B. Residual treedacre 
0 0.0 11.5 
5 3.4 7.3 

10 8.0 5.6 
15 14.1 5.8 
20 19.2 7.4 
25 23.1 9.7 
30 26.4 12.1 
35 29.4 14.5 
50 37.4 21.6 
75 25.7 22.8 

100 23.5 15.8 
145 39.5 21.4 

obtained for management regimes 2 and 3 because the maximum residual tree 
sizes are 8 and 6 inches, respectively. The impact of the constraint on regime 1 
depends on the value per cubic foot assigned to trees greater than 20 inches. If 
this is the same as the value of a 20-inch tree, the constraint would have no effect, 
but if it increases at the same rate for trees with increasing diameter, a pulse- 
transition harvest pattern with a maximum tree size greater than 20 inches would 
be obtained. 

Sensitivity Analysis. -There are two problems connected with the use of the meth- 
od of steepest descent to solve these problems: (1) the gradient method converges 
at a very slow rate as a stationary point is approached, and (2) there is no assurance 
that a stationary point is a global optimum, because the production surface defined 
by the stand simulator is not convex (see Bullard (1 983) for proof of nonconvexity). 
We therefore performed sensitivity analysis to evaluate these drawbacks. 

Solutions obtained with the gradient method depend on the tolerance used to 
terminate the algorithm. For a smaller tolerance, the method terminates closer 
to a stationary point and execution times are longer. 

We terminated the algorithm when an additional iteration improved the ob- 
jective function value by less than $0.00 1. The range in values of Z examined 
was bounded by $128.0 and $0.1. Reducing the termination criterion to $0.0001 
caused differences of less than one tree per acre per diameter class in residual 
diameter distributions for the first eight periods of all three management regimes, 



TABLE 3. A portion of management regime 2 (PNW = $299.13/acre). 

Diameter class midpoint (inches) Total 

trees ft2 $ - - -  
Year 6 8 10 12 14 16 18 20 acre acre acre 

A. Cut treeslacre 
0 0.0 49.3 37.5 29.7 24.1 10.7 2.1 0.3 153.7 106.0 225.6 
5 .O 14.9 .O .O .O .O .O .O 14.9 5.3 6.3 

10 .O 21.7 1.7 .O .O .O .O .O 23.4 8.5 10.3 
15 .O 27.6 3.6 .O .O .O .O .O 31.2 11.6 14.3 
20 .O 32.9 4.7 .O .O .O .O .O 37.6 14.1 17.5 
25 .O 37.2 5.1 .O .O .O .O .O 42.3 15.8 19.6 
30 .O 40.7 4.9 .O .O .O .O .O 45.6 16.9 20.8 
3 5 .O 43.4 4.5 .O .O .O .O .O 47.9 17.6 21.5 
50 .O 48.9 3.0 .O .O .O .O .O 51.9 18.7 22.3 
7 5 .O 53.7 1.4 .O .O .O .O .O 55.1 19.5 22.8 

100 .O 55.8 .7 .O .O .O .O .O 56.5 19.9 23.0 
145 .O 57.0 .3 .O .O .O .O .O 57.3 20.1 23.1 

B. Residual trees/acre 
0 69.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 69.9 13.8 8.6 
5 116.5 4.2 .O .O .O .O .O .O 120.7 24.3 15.7 

10 149.1 9.8 .O .O .O .O .O .O 158.9 32.7 21.8 
15 172.3 13.5 .O .O .O .O .O .O 185.8 38.6 26.1 
20 189.6 14.9 .O .O .O .O .O .O 204.5 42.4 28.8 
25 203.2 14.4 .O .O .O .O .O .O 217.6 45.0 30.2 
30 214.2 13.1 .O .O .O .O .O .O 227.3 46.7 31.0 
35 223.5 11.5 .O .O .O .O .O .O 235.0 47.9 31.5 
50 244.0 7.1 .O .O .O .O .O .O 251.1 50.4 32.1 
75 262.8 3.1 .O .O .O .O .O .O 265.9 52.7 32.8 

100 271.3 1.5 .O .O .O .O .O .O 272.8 53.8 33.1 
145 276.3 .7 .O .O .O .O .O .O 277.0 54.5 33.4 

but greater differences did occur in later periods. Objective function values irn- 
proved by less than 1 percent. 

Execution times for regimes l , 2 ,  and 3 were 72,6, and 9 seconds, respectively, 
on a Control Data Corp. CYBER 73/16. Reducing the tolerance increased exe- 
cution times by more than 100 percent. 

We also analyzed a subset of solutions to each problem using different sets of 
starting values for the control variables. Two sets of starting values were the 
boundary conditions (0.0 and 0.99) and each remaining set utilized starting values 
randomly chosen between 0.0 and 0.99. 

Management regime 1 was obtained with starting values set at 0.0. Solutions 
with different sets of starting values had differences of less than one tree per acre 
per diameter class in residual diameter distributions for the first eight periods. 
Markedly different diameter distributions were established and maintained in 
subsequent periods. The maximum difference between objective function values 
obtained with different starting values was less than 2 percent. Execution times 
varied from 200 to 400 seconds. Similar sensitivity results were obtained for 
management regimes 2 and 3. 

Because of the stability of the solutions, we conclude that each of the three 
management regimes is very close to the globally optimal solution for the lirst 
eight periods. The long-term management regimes are dependent on starting 
values given to control variables because large discount factors make the margmal 
values of distant-period control variables smaller than the termination criterion, 



TABLE 4. A portion of management regime 3 (PNW = $274.39/acre). 

Diameter class midpoint (inches) Totals 

trees ft2 $ - - -  
Year 6 8 10 12 14 16 18 20 acre acre acre 

A. Cut trees/acre 
0 0.0 49.3 
5 .O 19.1 

10 .O 29.3 
15 .O 36.2 
20 .O 41.2 
25 2.4 44.8 
30 5.3 47.2 
35 6.8 48.5 
50 6.8 50.2 
75 3.5 52.4 

100 1.5 54.4 
145 .1 56.5 

B. Residual trees/acre 
0 69.9 0.0 
5 116.5 .O 

10 151.6 .O 
15 178.2 .O 
20 198.8 .O 
25 212.5 .O 
30 220.3 .O 
35 225.0 .O 
50 233.4 .O 
75 247.7 .O 

100 260.7 .O 
145 273.4 .O 

and the algorithm terminates before the values of these control variables reach a 
stationary point. The slow convergence rate for distant-period control variables 
shows that many near-optimal long-term management regimes exist but, due to 
the limits on execution time, prevented us from analyzing long-term stationary 
solutions. 

Optimal Equilibrium Stand Structures. -Our solutions suggest two types of op- 
timal equilibrium stand structures: (1) a downward-sloping diameter distribution 
if large value premiums are assigned to trees in larger diameter classes (manage- 
ment regime I), and (2) a truncated diameter distribution if premiums for larger 
trees are gradual or absent (management regimes 2 and 3). 

A comparison of management regime 1 with an investment-efficient manage- 
ment regime developed by Adams (1976) for the same stumpage value function 
and interest rate demonstrates that dynamically determined management regimes 
differ from equilibrium regimes determined with static-optimization techniques. 
Furthermore, the PNW of management regime 1 ($17 1.42/acre) is 5 percent 
greater than that of equilibrium harvests taken over the same planning horizon 
plus the liquidation value of the terminal stand. Thus, a stand-specific manage- 
ment regime developed with a dynamic optimization technique will not converge 
to the equilibrium determined using a static optimization technique. 



The difference in the values of dynamically and statically determined manage- 
ment regimes calls into question the use of static analysis for developing longrun 
equilibrium management regimes (Adams and Ek 1974, Adams 1976, Martin 
1982) and for determining the value of an uneven-aged stand (Chang 198 1, Hall 
1983). A detailed comparison of the problems solved by dynamic and static 
optimization techniques is beyond the scope of this paper. A comparison of these 
problems is necessary, however, so that managers and analysts can select the 
proper decision-making tools. 

The truncated equilibrium diameter distributions suggested by management 
regimes 2 and 3 result from the shapes of the ingrowth and price functions. The 
number of trees growing into the 6-inch diameter class is greatest for truncated 
residual diameter distributions. When the stumpage value function assigns equal 
or gradually increasing values per cubic foot for trees of increasing diameter, an 
incentive is given to liquidating the growing stock greater than 6 inches and 
capturing high levels of periodic ingrowth. 

Management regimes 1, 2, and 3 are sensitive to the forms of the growth 
equations and parameters used in the equations. In particular, the maintenance 
of a truncated diameter distribution is dependent on the predicted high level of 
periodic ingrowth. Thus, these solutions should be viewed with caution until the 
accuracy of the growth model projections is validated. 

Expanding the Solution Algorithm and Problem Statement. -The gradient meth- 
od converges to the globally optimal harvest in the first period and beyond, though 
it does not produce stable solutions for the long-term management regime. A 
procedure has been developed1 which takes advantage of the stability of the first- 
period solution to develop long-term management regimes that are stable and 
independent of starting values given to control variables. 

The problem statement, which we used to determine the optimal sequence of 
diameter distributions for a 5-year cutting cycle, can be expanded to consider 
both cutting cycle length and species composition problems. Sequences of diameter 
distributions with cutting cycles which are multiples of the simulator projection 
interval can be analyzed by setting control variables equal to zero in the periods 
between harvests. Sequences of diameter distributions for species classes can be 
developed by defining state and control variables and growth equations for species 
and diameter classes. 
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Biological Processes and Soil Fertility 

Edited by J. Tinsley and J. F. Darbyshire. 1984. Martinus Nijhofl/Dr. W .  Junk, 
Publishers. 

Reviewed by A. G. Wollum 11, Department of Soil Science, North Carolina State 
University, Raleigh, NC 27695-7619 

This book was first published as the proceedings of the meeting of Commissions I11 and 
IV of the International Society of Soil Science as volume 76 of Plant and Soil, except for 
the preface and introductory chapter. Because of space limitations, not all of the papers 
presented at the conference were included in this book. Some not included were reserved 
by the authors for publication by some other venue. However, abstracts of all papers 
presented by traditional oral means or those presented by posters are included in the 
Conference Transactions. 

The book is divided into seven sections, each of which contains at least a keynote address 
as well as contributed papers. Some sections contain one or more introductory lectures. 
There are a total of 22 contributed papers included in the book. Subjects include topics 
on nutrient cycling (in several sections); measurements of microbial populations; interac- 
tions of organisms, organic matter, and soil management; and effects of noxious materials 
on biological processes in soil. 

In my opinion the strength of the book is in the keynote and introductory chapters. Most 
of these are well written, informative, and bring together information from a wide range 
of sources. In this respect, these chapters provide a good review for those individuals 
studying the soil-plant-microbe interaction. They are "timeless," and much of the infor- 
mation will be valid for years to come. I was somewhat annoyed that several of these 
chapters ended with allusions of advertisement for the next conference. 

Some sections appear to be incomplete. I assume this is a result of the fact that not all 
contributions were published. Not having access to the Conference Transactions, one 
wonders what might be overlooked. 

The book is printed on high quality paper and in an easy-to-read print. Generally the 
book is error fiee, although some typographic errors were noted. I do not believe the 
binding will wear well under heavy use. 

Despite some minor shortcomings, I was excited about this book. Perhaps I found support 
for some of my biases. I will use it for supplementary reading material for my soil micro- 
biology class. I also recommend it for those seeking to upgrade their backgrounds. It is an 
important book not only for soil microbiologists, but for those involved in soil fertility 
and plant nutrition work. Principles presented are equally applicable to wild-land as well 
as agronomic management schemes. 


