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Abstract. The uncertainty in 5-, 10-, and 20-year diameter growth predictions is
estimated using Monte Carlo simulations for four Lake States tree species. Two sets
of diameter growth models are used: recalibrations of the STEMS models using
forest inventory and analysis data, and new growth models developed as a compo-
nent of an annual forest inventory system for the North Central region of the United
States. Particular attention is focused on the efl_cts that uncertainty in the values of
predictor variables has on the uncertainty of model predictions. The cumulative

effects of uncertainty in model predictions for individual trees on the uncertainty of
basal area predictions at the plot and regional levels are also investigated.

The North Central Research Station (NCRS) uses the the STEMS models, recalibrated using Forest Inventory

STEMS (Belcher et al. 1982) diameter growth models as and Analysis (FIA) data, with the uncertainty ofpredic-
a component of its periodic inventory system to update tions obtained fi'om the new models developed as a

the status of trees on Forest Inventory and Analysis (FIA) component of the annual forest inventory system.
plots not measured in the current cycle. These models
predict annual diameter growth for individual trees for METHODS
pure or mixed and even- or uneven-aged stands for nearly
all species in the North Central region of the United Uncertainty Estimation
States; these models have also been recalibrated for other

regions. NCRS is also developing new diameter growth Our approach to estimating the uncertainty m model
models to be used as a component of an annual forest predictions uses Monte Carlo simulations. The essence of
inventory system. The criterion for selection of predictor the simulation process, explained in detail below, is to
variables for these kinds of models is usually a measure of initialize plot and tree conditions using actual measure-
quality of fit of the model to calibration data. Howevel; ments from permanent FIA plots, add random variation
when non-negligible uncertainty is associated with the where appropriate to mimic uncertainty, use the models to
values of the predictor variables, then additional criteria predict annual diameter growth, record estimates at fixed
ought to be considered. Uncertainty in a predictor intervals, and repeat the process many times. As part of
variable occurs when large measurement errors are the process, plot-level estimates of basal area per acre are
associated with values of the variable, as is frequently the obtained by summing results over all trees on plots, and
case with ocular measurements, or when the values of the regional estimates of basal area and basal area growth are
variable are estimates based on samples. When such obtained by surmning results over all plots. Because the
predictor variables are included in models, the effects of regional basal area and basal area growth estimates are
their uncertainties may substantially increase the total based on results from only 20 plots (see DATA section),
uncertainty in model predictions. In statistics, the they do not necessarily accurately represent true regional
estimation of parameters under these conditions falls into growth estimates, itowever, these estimates permit
the category ofproblems referred to as errors in variables investigation of the effects on uncetntainty when plot-level
(Fuller 1987). estimates are aggregated to produce estimates fbr larger

areas. Finally, although mortality is an important compo-
The objectives of the study, of which this paper is a nent of growth, it is being addressed in other work, and no
preliminary report, are threefold: (l) to estimate the total provision is made in this study for mortality during the
uncertainty in diameter growth model predictions; (2) to prediction interval.
investigate the effects of including predictor variables
with non-negligible uncertainty in growth models; and (3) For this application, a Monte Carlo process is used to
to compare the uncertainty of predictions obtained from generate uncertainty for a variety of sources in two broad

categories: first, calibration of the growth models, and
second, initial conditions for trees and plots for which the

Mathematical Statistician, Mathematical Statistician, and model is used to predict growth. In the first category,
Research Forester, respectively, North Central Research uncertainty arises from two sources: (I) residual variation
Station, USDA Forest Service, 1992 Folwell Avenue, St. around estimated diameter growth curves; and (2)
Paul, MN, USA.
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uncertainty in the estimates of the growth model param- The Monte Carlo process for this application involves six
eters. When uncertainty in the predictor variables is steps: (1) mimic uncertainty in initial plot conditions by

negligible and when the models are applied to initial adding randomly generated variation to plot-level vari-
conditions that are known with only negligible uncer- ables such as site index; (2) mimic uncertainty in initial
tainty, then these are the only two sources of variation that tree conditions by adding randomly generatcd variation to
need be considered in estimating model prediction tree-level variables such as crown ratio, crown class, and
uncertainty. For this study, uncertainty for the latter diameter; (3) use the models to predict annual dialneter
source is excluded, because estimates of parameter growth fur each tree, mimic residual uncertainty in the
covarianccs for nonlinear models are notoriously unfelt- predictions with randomly generated variation, and obtain
able when obtained using analytical methods and because predicted diameter at the beginning of the subsequent year

the alternative empirical methods require extensive, time- as the sum of diameter at the beginning of the yem,
consmning simulations that have not been completed, predicted annual diameter growth, and residual variation;

When uncertainty in initial tree and plot conditions is (4) repeat step 3 to mimic growth of trees for 20 consccu-
non-negligible, then it must be propagated through the tive years; (5) record diameter predictions for trees, basal
models and frequently results in substantially greater area per acre predictions tbr plots, and basal area and
model prediction uncertainty. Thus, the Monte Carlo basal area growth predictions for the region at the 5-, 10-,
process is also used to generate uncertainty in four and 20-year intervals; and (6) replicate steps I-5 many
additional sources related to the uncertainty of the initial times. In step 5, the basal area per acre estimate for each
conditions of trees and plots: (3) diameter measurement plot is obtained by multiplying the tree basal area estimate
error; (4) crown ratio observation error; (5) crown class and the corresponding tree expansion factor fbr all trees
observation error; and (6) variance in site index estimates, and then smnming these products for all trees on the plot.
It should be noted that uncertainty in dbh measurements Relative estimates of basal area and basal area growth at
generates additional uncertainty in variables derived from the regional level are obtained by adding basal area per
dbh such as stand basal area and stand average diametel: acre and basal area growth per acre, respectively, over all
In addition, when sampling is conducted lbr variable plots under the simplifying assumptions that each plot
radius plots, dbh measurement error affects tree expansion represents an area of 1 acre and that the plots represent a
factors and, hence, estimates of numbers of trees per acre. simple random sample of the population.

Estimates of residual variation were obtained as Distributions of the coefficients of variation (CV=o/_t)

byproducts of calibrating the models (Lessard 2000, obtained from 1,000 replications of the simulation process
Holdaway 2000). Residual variation is assumed to be serve as the basis for analyzing the uncertainty of model
nomaally distributed but heterogeneous with standard predictions. Mean values, standard deviations, and
deviations related to predicted growth as follows: coefficients of variation for simulated dbh for individual

trees stabilized by completion of 1,000 simulations (fig.

E[In(o)]=_3 + ,[321n(Ad), [1] 1). The results of the simulations are summarized as
median coefficients of variation for diameter estimates of

where E(.) represents statistical expectation, Ad is annual individual trees (table I), median coefficients of variation

diameter growth prediction, _ is the standard deviation of for plot-level estimate of basal area (table 2), and regional
the residuals for predicted diameter growth classes of estimates of basal area and basal area growth (table 3) at
small widths, and the [3sare parameters to be estimated. 5-, 10-, and 20-year intervals. For individual trees and

plot estimates, the summaries are in terms of medians
Distributions representing the uncertainty in crown class, because of possible asymmetry in the distributions.
crown ratio, site index, and diameter measurement error

were obtained from the literature. Nichols et al. (1991) The uncertainty of model predictions is analyzed with
reported that the repeatability of crown class observations respect to several lhctors and conditions. First, prediction
by field crews in the same year is approximately 80 uncertainty is obtained by conducting the simulations
pe_vent with the other 20 percent allocated unitbnnly to using all sources of variation and serves as a basis for
the two adjacent classes. McRoberts et al. (1994) comparing the rccalibrated STEMS models and the new
reported that observations of crown ratio for the same tree models. The contributions to model prediction uncer-
by separate field crews ranged + 0.3 from the median; tainty due to uncertainty in individual predictor variables
they also provide a mathematical model for estimating is determined by including the variable when calibrating
diameter measurement error as a function of diameten the model and then comparing the corresponding uncer-
Finally, McRoberts (1996) reported that coefficients of tainties of model predictions when the variable is both
variation for site index estimates, assumed to be normally excluded and included as a source of uncertainty in the
distributed, may be as great as 0.15, depending on the simulations. The results are used to assess the sensitivity
number of trces used in calculating the estimate, of the uncertainty in model predictions to individual
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Figure l.---Simulation results for a sample tree. (a) simulated values *_dbh after 20years; (b) mean of simulated values
of dbh after 20years: (c) standard deviation of simulated values of dbh after 20 years; and (d) coeJficient of varia-
tion of simulated values of dbh after 20 years.
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Table la.--Median coefficients of variationfor tree diameter estimates using STEMS-FTA

Model calibration Sources of uncertainty Coefficient of variation'
variables Res2 DBH CR SI 5-yr 10-yr 20-yr

AlP x 0.096 0.107 0.121
All x x 0.140 0.146 0.160
All x x x 0.156 0.171 0.195
All x x x 0.140 0.149 0.163
All x x x x 0.156 0.166 0.196

A A

Coefficient of variation: CV= _/}_L
2 Residual variability resulting from model calibration and applied using [1].
3 DBH, CR, SI, AD, BA.

Table lb. Median coefficien_ of variation fi_rtree diameterestimates usingAFlS

Model calibration Sources of uncertainty Coefficient of variation1
variables Res2 DBH CC CR 5-yr 10-yr 20-yr

All3 X 0.094 0.117 0.138
All x x 0.161 0.179 0.198
All x x x 0.168 0.185 0.204
All X x x 0.225 0.235 0.294
All X x x x 0.214 0.258 0.314

All except CR x x x 0.161 0.18t 0.186

DBH only x x 0.139 0.143 0.138

^ A

I Coefficient of variation: CV= cd,u.
2 Residual variability resulting from model calibration and applied using [t].
3 DBH, CR, CC, BAL, BA, AD, PHY, NT.
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Table 2a.--Median coefficients of variationfiJr plot basal area estimates using STEMS-FIA_

Model calibration Sources of uncertainty Coefficient of variation
variables Res DBH CR SI 5-yr 10-yr 20-yr

All x 0.055 0.061 0.056
All x x 0.069 0.069 0.065
All x x x 0.078 0.097 0.111
All x x x 0.085 0.108 0.129
All x x x x 0.103 0.132 0.160

See footnotes at the end of table 1a.

Table2b. Median coefficients of variationfor plot basal a_ea estimates using AFIS _

Model calibration Sources of uncertainty Coefficient of variation
variables Res DBH CC CR 5-yr 10-yr 20-yr .

All x 0.051 0.061 0.064
All x x 0.071 0.075 0.079
All x x x 0.061 0.075 0.074
All x x x 0.085 0.120 0.147
All x x x x 0.082 0.112 0.155

All except CR x x x 0.076 0.079 0.071

DBH only x x 0.080 0.088 0.096

1See footnotes at the end of table lb.
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Table3a._oe.fficients of variationJbr regionalbasal area estimates using STEMS-FIA1

Model calibration Sources of uncertainty Coefficient of variation
variables Res DBH CR SI Basal area 9rowth Basal area

5-yr 10-yr 20-yr 5-yr 10-yr 20-yr

All x 0.010 0.007 0.004 0.003 0.004 0.003
All x x 0,008 0.006 0.005 0.003 0.004 0.003
All x x x 0.011 0.009 0.009 0.004 0.005 0.007
All x x x 0.023 0.022 0.022 0.008 0.011 0.015
All x x x x 0.022 0.021 0.021 0.008 0.011 0.015

See footnotes at the end of table la.

Table3b._oeJficients of variationfor regional basal area estimates using AF1Sl

Model calibration Sources of uncertainty Coefficient of variation
variables Res DBH CC CR Basal area growth Basal area

5-yr 10-yr 20-yr 5-yr 10-yr 20-yr

All x 0.010 0.006 0.004 0003 0.003 0.003
All x x 0.010 0.008 0.005 0.004 0.005 0.004
All x x x 0.008 0.005 0.004 0.004 0.004 0.003
All x x x 0.013 0.013 0.013 0.005 0.007 0.010
All x x x x 0.014 0.013 0.014 0.005 0.007 0.010

All except CR x x x 0.010 0.007 0.003 0.004 0,004 0.003

DBH only x x 0.005 0.004 0.003 0.004 0.003 0.003

1See footnotes at the end of table lb.
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sources of uncertainty. Third, the relative importance of a annual forest inventory system. Predictions with the AFtS

variable is evaluated by comparing the uncertainty of models are obtained as products of a regional median
predictions for two conditions: (1) the variable is both growth component expressed as a three-parameter
included in the model calibration and included as a source Weibull-type function (Yang et al. 1978) of dbh and a

of uncertainty in the simulations; and (2) the variable is modifier component expressed as the exponential of a
excluded frona the model calibration and, therefore, is linear combination of factors reflecting departures from

excluded as a source of uncertainty in the simulations. If regional median conditions for CR, BA, AD, crown class
the uncertainty of predictions associated with (2) is less (CC), physiographic class (PHY), number of trees per
than with (1), then serious consideration ought to be given acre (NT), and basal area in trees larger than the subject

to excluding the variable from the model, even if its tree (BAL).
inclusion significantly increases the quality of fit of the
model to the data. In these simulations, no consideration Data

was given to correlations among tile measurement errors
or uncertainties for different sources. The STEMS-FIA and AFIS models were both calibrated

using FIA data obtained from tile 1977 and 1990 periodic
Models inventories in nm_iheastem Minnesota for red pine (Pinus

resinosa Ait.), balsam fir (Abies balsamea (L.) Mill.),
For more than a decade, the Forest Inventory and Analysis quaking aspen (Populus o_emuloides Michx.), and paper

program at the North Central Research Station has used birch (Betulapapyriferu Marsh.). The data used to
the STEMS diameter growth models (Belcher et al. 1982) initialize the simulations consist of plot- and tree-level
to predict the current diameter of trees on plots not observations obtained fur FIA Unit 2 in northeastern
measured in the current year. Although the STEMS Minnesota from the 1990 inventory. Because both the
models are used in FIA applications, they were originally STEMS-FIA and AFIS models predict diameter growth
calibrated using data obtained from research plots, for individual trees within the competitive environment of
Holdaway (2000) documents some of the differences in all trees growing on a plot, the predicted growth for an
these two sources of data. As a means of assessing the individual tree depends to some degree on the predicted

effects of applying the STEMS models to data that differ growth of all trees on the plot. Thus, the data used to
from those from which they were developed, we initialize the simulations were restricted to observations
recalibrated the STEMS models for several Lake States for plots consisting of only the four species for which the

species using FIA data (Lessard 2000) and designated the models had been calibrated. This data set consisted of
results as the STEMS-FIA models. Predictions with both observations for 441 trees growing on 20 plots.
STEMS mad STEMS-FIA are obtained as products of two

components, a potential growth component and a modifier RESULTS
component. The potential component, calibrated from
observations of dominant and co-dominant trees only, Tree Diameter Estimates
uses current diameter at breast height (dbh), stand site
index (SI), and crown ratio (CR) to predict the potential When the models were calibrated using the full set of
diameter growth of a tree. The modifier component, predictor variables, the uncertainty in initial plot and tree
calibrated from trees of all crown classes, reduces growth conditions substantially increased the uncertainty of
from the potential using measures of competition based model diameter predictions for both the STEMS-HA and
on stand basal area (BA), maximum observed basal area AFIS models (table Ia-b) (fig. 2). For example, the
for the species (BAmax), and the ratio of dbh to average median coefficient of variation for 20-year AFIS predie-
stand diameter (AD). Some of the STEMS predictor tions increased from 0.138 when only residual variability
variables, notably crown class, crown ratio, and site index, was considered to 0.314 when uncertainty fi'om all
have been demonstrated to have non-negligible uncer- sources was considered. At all time intervals, median
tainty, values of coefficients of variation were less for the

STEMS-FIA models than fbr the AFIS models when both

Advances in statistical estimation methodology since models were calibrated with the full set of predictor
development of the STEMS models in the late 1970's and variables and when all sources of uncertainty were used to
early 1980's have led to better modeling techniques and to estimate model prediction uncertainty. Although residual
greater understanding of the negative effects ofuncer- variability and dbh measurement error had the greatest
tainty in predictor variables. Thus, as a part of our effort individual eflbcts on the uncertainty of model predictions

to develop annual forest inventory procedures, we arc for both models, neither of these sources can be elimi-
constructing new diameter growth models based on nated; residual variability is unavoidable, and dbh is
slightly different concepts and using more current fundamental to the underlying model. Of the remaining
statistical methodology (Holdaway 2000). These models sources of uncertainty, crown ratio had the single greatest

are designated AFIS for their intended application in an detrimental efl'ect for both models. As a test of the overall
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effect of this variable, the AFIS models were calibrated (3) although the uncertainty in diameter growth predic-

without using crown ratio as a predictor, ancw relation- tions for individual trees was relatively large, the effects
ship between predicted growth and residual variability as of propagating this uncertainty to plot-level estimates of
per [I ] was estimated, and the simulations were repeated, basal area per acre growth and to regional estimates of
The result of eliminating crown ratio as a predictor basal area were not severe; (4) without considering bias
variable and as a source of uncertainty in initial conditions effects, eliminating all but the few most crucial predictor
was a decrease in the uncertainty of predictions (table lb). variables often produced the best results at the regional
Without consideration of bias, this result suggests that level; (5) the uncertainty of STEMS-FIA predictions at
although crown ratio was a significant predictor variable plot- and region-level we_v more sensitive to uncertainty
when fitting the model to the calibration data, the overall in the plot-level predictor variable site index than to
effect &the variable was an increase in the model uncertainty in tree level predictor variables; and (6) the

prediction uncertainty. Similarly, model prediction AFIS models were as good or better than the STEMS-FIA
uncertainty was reduced even more when all predictor models with respect to the uncertainty of plot and regional
variables except dbh were deleted fi'om the model (table predictions.
lb).

Several broad conclusions also emerge. First, even when
Pint-level Basal Area Per Acre Estimates the only the source of uncertainty considered is residual

variability, coefficients of variation were on the order of

At the plot level, the uncertainty in predictor variables 0.10 or greater for tree diameter predictions, suggesting
also had a negative effect on the uncertainty of predictions that it may be extremely difficult to develop precise
for both models when they were calibrated with the full individual tree diameter growth models when the calibre-
set of predictor variables (table 2a-b). However, in tion data are obtained from trees representing a broad
contrast to the tree-level results, uncertainty in plot-level geographic region. In addition, if uncertainty in param-
estimates was somewhat less for the AFIS models. This eter estimates had been included in the analyses, these

result is attributed to the negative effects of uncertainty in coefficients of variation would have been even larger.
site index, a plot-level predictor variable used in the Second, despite the uncertainty in diameter predictions,
STEMS-FIA models but not in the AFIS models. As with coefficients of variation on the order of 0.01 or less for

the diameter predictions, prediction uncertainty for the regional basal area estimates suggest that reasonably

AFIS models was less when dbh was the only predictor precise estimates may be obtained at this level. Although
variable than when all predictor variables were included these results will deteriorate when parameter covariances
in the model, are included, this result is still encouraging. Finally, the

conclusions suggest that for broad regional applications,

Regional Basal Area and Basal Area Growth Estimates predictions from simpler models with fewer predictor
variables that capture basic growth relationships may be

Uncertainty in predictor variables had a negative effect on less uncertain than those from more complex models with
the uncertainty of regional estimates of both basal area many predictor variables that attempt to explain a large
and basal area growth, but the effect was not nearly as proportion of variation.
severe as for tree- and plot-level estimates (table 3a-b). At
the regional level, the AFIS nrodels produced estimates ACKNOWLEDGMENTS
with less uncertainty than did the STEMS-FIA models, a
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