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Abstract._ne of the most important functions of forest inventory is to facilitate
management decisions towards forest sustainability based on inventory projections
into the fature. Therefore, most forest inventories are used for predicting future
states of the forests, in modem tbrestry the most common methods used in inventory
projections are based on implicit functions describing time and site dependent

relationships derived from panel data. The essence of the implicit functions used for
inventory projections is that each function is defined by its own value at one point in
time--usually at the inventory time--ailed the initial conditions or reference values.
For this reason, these functions are also called self-referencing, and initial conditions

are obtained from sampling, measurements, re-measurements, or other type of
inventories. Classic examples of such fimctions, although not exclusive, are the site
index models. They can have different algebraic forms using fixed or variable base
ages and be base-age iavariant or base-age variant. We explain the implications of
different algebraic tbnns of the self-referencing models that can be used fiw inven-
tory projections and discuss the forestry literature on base-age variant models under
the base-age invariance agenda.

BACKGROUND two-dimensional relations. To enhance the applications of
these two-dimensional relations, they could, at times, be

The models most frequently used in forestry to describe developed separately for different sites or even individually

panel data, i.e., pooled cross-sectional and time-series or for difli_rent stands. In a geometrical sense, the collections
longitudinal or repeated measurements use self-referencing of curves developed separately for different sites or stands
(Northway 1985) forms of site equations, in forestry almost could be classified today as a discrete collection of two-

all dynanic processes are necessarily dependent on the dimensional polymorphie non-disjoint (Clutter et al. 1983)
cross-sectional aspect of forest dynamics relating to height curves.
different ecological productivity sites, hence: the site
models. The site models are in principle the same as mixed- Historically, such a collection was usually in the form of
effects models (Lindstrom and Bates 1988, 1990), random- graphs or tables that were developed Ibr a discrete collection
effects models for longitudinal data (Chi and Reinsel 1989, of sites, or stands. They represented a four-dimensional

Laird and Ware 1982, Racine-Poon 1985, Sfiratelli et al. height space in which the dimensions were: reference-
1984), and panel data models (Furnival et al. 1990). Yet, in height (discrete); age of reference-height (continuous);
forestry literature, they are most frequently referred to as site prediction age (continuous); and prediction height (continu-
index models or site-dependent height over age models, ous). The reference-height was reduced to discrete catego-

ries because only a discrete number of heights at any given
Different types of site models contribute immeasurably to age could be matched with existing curves.
efficient forest management by facilitating inventory
updates and projections, growth and yield forecasting, and For some applications, generic curves were anamorphically
site productivity identification and stratification. These adjusted for individual stands by a simple means of manual
models are also the best illustrations of the evolution of site multiplication of a guide curve using a ratio of observed to
models in forestry and historical changes in site model predicted height at an arbitrary age so that the newly
furors and expectations, generated curve would pass through a known height-age

pair. Algebraically adjusting a single base model to specific
The earliest efforts in height modeling concentrated on two- situations or stands by scaling definitely improves the
dimensional nrodels (height over age). Both hand-drawn efficiency over the previous multiple-models approach.
curves and the earliest equations that were capable of This approach also reduces the number of models involved
consistently generating more intt-icatc shapes approximated in the prediction system and, in the analysis phase, allows

data from different stands to be combined in a complemen-
tary system. It extends the discrete reference-height to a

D. Wamell School of Forest Resources, The University of continuous reference-heigbt through a simple but explicit
Georgia, Athens, Georgia 30602, USA, Phone: (706) 542- multiplication and is therefore more functional. In principle,
8169 this algebraic adjustment approach is similar to some
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contemporary systems of site-tree height curves, and flexible and usually require more terms (or parameters) to
localization &models with the Kahnan filter approach satisfactorily explain the data. This may lead to model

(Walters et al. 1991) could be considered a modem applier- overparameterization and unreasonable predictions outside
tion of such a method, the range of the data on which the model is calibrated.

Linear models with many parameters are likely to become

Newer approaches to site-tree height modeling ahnost atypical in shape and difficult to defend biologically. Non-
exclusively involve three and tour dimensions by adding to linear models are mole flexible, more likely to be biologi-
basic height over age models additional explicit variables of eally sound, and usually much better behaved outside of the
site index (S, third dimension) and base age (Ab, fourth data range (Pienaar and Tumbul11973).
dimension). An early algebraic inclusion of 8 into simple
anamoi!ohic models was followed by incJvased model Pcschcl (1938), Prodan (1968), Ricker (1979), Cieszewski
complexity necessary to describe height growth polymer- and Bella (1989, 1991b, 1994), EIfving and Kiviste (1997)
phism and other desirable model charactciislics. Some of and othars give nmnerous examples of basic growth models
these included: (1) curves tln'ough the origin, (2) variable and various site models used to model height in forestry.
asymptotes, and (3) equality of predicted height and S at From the stand view of a model formulation, the site index
base age. models can be categorized as a fixed base age, base-age

invariant, and base-age variant. These categories are
Pesehel (1938) and Prodan (1968) credit Spath in 1797, described below.
Hosst_ld in 1822, and Smalian in 1937 with the first

attempts to express height growth by mathematical equa- Fixed Base-Age Models
tions. Today parameters for such equations are commonly
approximated or estimated through linear, and more Fixed base-age site index models denote models that predict
recently, non-linear regressions. With such equations height at any age as a function of this age and a site index at
becoming more and more complex, containing new added a fixed base age that is obtained from a direct height
variables such as S and Ab, the generated curves, or rather measttrenaent at any age. These models can he uncon-
multidimensional spaces, have brought about improvements strained or constrained to define the site index as equal to
in biological soundness such as polymorphism and vm'iable height at the base age. It is important to recognize that the
asymptotes. With increasing sophistication in the analysis site index in the unconstrained S models does not define any
approaches used to determine model parameters, the model height at any age. Assuming such a definition is one of the
simulations become more exacting, most prevalent misconceptions about S models of practi-

tioners who might be using heights at base age as a known
Bailey and Clatter (1974) introduced the concept of base- site index either in the model fitting or in computing model
age invariance in which a height at any age may be predictions.
predicted directly from any age-height pair without
compromising consistency of the predictions. Base-age There are many modifications of base models providing
invariant models can be viewed as four-dimensional either anamorpbic or polymorphic fixed base-age site index

spaces that are continuous over all dimensions. The height models such as the modifications of the Chapman-
heights predicted with base-age invariant models are Richards function by Hegyi (1981), Lundgren and Dolid
unaffected by arbitrary changes in base age. In their (1970), Biging (1985), Ek (1971), and Payandeh (1974), and
work, Bailey and Clutter (1974) applied a technique that the modification of the logistic function by Monserud
has become know as the algebraic difference approach (1984).
(ADA, see also Borders et al. 1984). Site models derived
with this approach are mathematically sound and always Some of the modified models became so complicated in an
compute consistent estimates, attempt to obtain a better fit to the data flaat they became

unsolvable fur S as a function of a height and age. Since

At present, virtually all site index models are based on they require prior knowledge of S, usually calculated from
algebraic forms of Ihe fixed or variable base-age formula- an observed height at stone age, separate models are
tions that can be either base-age specific, base-age invariant, developed fur S as a function of the height at any age.
or base-age variant. The different mathematical forms of Models for height and S that are derived separately are
these models have different implications for the model usually incompatible with their corresponding height

operational use in inventory projections, models. Another problem is that some base-age specific
models, e.g., all the above modifications of the Chapman-

MODEL FORMS AND FUNCTIONAL Riehards and the logistic functions, generate craves that
ASSUMPTIONS may not go through appropriate heights at their base ages.

That is, they predict heights at base ages that are not equal to

The mathematical equations used in growlh and yield the site index used as a predictor variable. These and similar
modeling can be linear or non-linear. Linear models are less models can be conditioned to give site index as the predicted
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height when age is equal to base age, e.g., Burkhart and selections of base ages unless such changes are defined in
Tennant (1977), while analytically unsolvable models can a multi-base-age-specific fitting of the model. Thus, the
be treated numerieany by iterative search routines, base age variant models are neither base age invariant in

their lbrms nor are they base-age invariant in their
When the fixed base-age S models are simple enough to be coefficients. They are equivalencies of conglomerations
solvable for S, they arc in terms of predictions functionally of multiple base-age specific models with smooth and
equivalent to the base-age invariant models. A similar eontinuoas changes between different base-age specific

functional equivalency can be achieved with the fixed base- submodels. This seems to be what Goclz and Burk (1992)
age S models that are not solvable for S but are applied with intended but mislabeled as base-age invariance.
compatible numerical solutions for the S values.

The notion &base-age invariance is applicable only to
Base-Age lnvariant Models models that can directly and consistently predict height at

all ages from a single reference height at a single refer-
Bailey and Clutter (1974) introduced the notion of Base- once age, i.e., base age. lterative models that predict only
Age Invariance in the forestry literature. This concept has a fixed increment or height for each age cammt be base-
been defined as invariance of predictions and curves (the age invariant because they do not use a single base age
invariant) with respect to the selection &base age, i.e., (selection of which could be an issue) nor do they directly
not changing predictions for any selection of base ages predict all heights frmn any selection of a base age.
within each site series. Base age is simply a common age Simply, if there are no multiple predictions of all heights
value for all cmwes at which the heights on the cmwes from multiple individual selections of base ages, there is
represent site indices (or the reference heights) or initial nothing that can be variant or invariant with respect to
conditions of the equation. If the curve is invariant, any selection of the base ages. Thus, for example, the iterative

such age-height point on a curve chosen as a reference model in Wang and Payandeh (1995) is neither base-age
unequivocally defines the very same curve. This is not variant nor base-age invariant (just like it is neitber tall
true with the models listed above. Thus, they are not nor short). It simply does not involve the relevance of this
base-age invariant, concept.

Two conditions must prevail for a model to be base-age Furthermore, a model fonnulation is base-age invariant if
invariant: and only if it analytically defines all heights as a fimction
(1) the model must be represented in a base-age invariant of any height with outcomes totally unaffected by any

algebraic tbrm, and choices of base ages and without any use &other equa-
(2) the model coefficients must be estimated in a way tions, numeric searches, programs, generators, guesses, or

that avoids any influence of the choice of base age on any other means. Models that require iterative numerical

the values of the model coefficients, searches for estimation of arbitrary heights from inputs at
any ages or for estimation of compatible site indexes are

Using a base-age invariant algebraic form but base-age not base-age invariant. Clearly, if the existence of
specific estimation will result in a base-age invariant numerical approximations of a model solution was the
equation with base-age specific ceetticients. That is, it only criterion for base-age invariance, then every base-
would not result in a base-age invariant model. Using a age-specific model ever invented would be base-age
base-age specific algebraic form and base-age indepen- invariant and the term would be meaningless.
dent parameter estimation methods would result in a base-
age specific equation with base-age invariant coefficients, Examples of base-age invariant models published since
e.g., Garcia (1983)_ A model like that of Garcia (1983) Bailey and Clutter (1974) include: Amain etal. (1998),
could just be solved for the site-specific coefficient Borders et al. (1984), Borders el al. (1988), Begin and
(Bailey and Clutter 1974) and, with back substitution, Schutz (1994), Cao et al. (1993, 1997), Cieszewski and
converted to a totally base-age invariant model. Bclla (1989, 1991a, 1993), Clutter et al. (1983), Clutter et

al. (1984), DaPlat and Tran-Ha (1986), Elfving and
When a base-age dependent algebraic form is used, the Kiviste (1997), Lappi and Bailey (1988), McDill and
achievement of a base-age invariant model is impossible. Amateis (1992), Vicary etal. (1984), and Ramirez etal.
Clearly, if the coefficient estimation method was base-age (1987). Examples of different approaches to proper
invariant, i.e., if no base ages contributed to (or affected) derivation of base-age invariant models besides Bailey
the estimation of coeflicients, the model could not and Clutter (1974) are in Amoro et al. (1998), Cieszewski
possibly produce predictions governed by the base ages and Bella (1989, 1994), Elfving and Kiviste (1997), and
because no information about base-age influence on McDill and Amateis (1992).
prediction would be acquired. In other words, the model
predictions canuot be functionally changing with different
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Other forestry examples of development of tree base-age values, only output values. This is unlike the fixed-age S
invariant equations (not using this name) published before models with incompatible S solutions. The degree of the

Bailey and Clutter (1974) are Bennett et al. (1959), Coile inconsistencies depends on the selection of sites and base
and Schumacber (1964), and Lenhart (1968, 1972). ages.

Site index models are usually based on panel data (i.e., S1 MEASUREMENTS VS. S ESTIMATES
temporal and spatial attributes combined in the same
measurelnents). Not all potentially base-age invariant SI models require the knowlcdgc of S for their use. This
models have been used for modeling panel data. In fields knowledge crones from various height measurements and
outside of forestry, examples of such equations and their at times from S estimates from other variables. It is clear
proper derivations used for individual Y over X relation- that S estimate from other variables is an estimate, but it is
ships may be found in the works of Schnute (1981) and not clear if it should be considered an estimate or a
Ratkowsky (/983, 1990). measurement when it is defined by a direct height

measurement at an age different than the base age.

Other equivalencies of base age invariant equations in
mathematics, physics, and other fields resulting fi'om Site index can be considered either a measurement or an

initial condition or boundary value solutions to diff:eren- estimate depending on the mathematical form of the
tial equations or other difference equations have been in applied site index model and the lreatment of the site
use since the early 16/17 _'century. For example, index solution for a fixed base-age S modeh In a simplest
Johannes Kepler (1571-1630) fornmlated Kepler's" second case of a variable base-age model, the measured reference
law relating to movement of planets, which may be height enters the model directly as the S at any given base

expressed as A(t 2 ) = A (t,)+ _ h(t 2 -t t ) age, and it is clearly a measurement. Any S at a fixed age,
-a truly base-age invariant equation, and it can be used to e.g., 50 years, predicted by this model can be considered
fit panel data in forestry as, in fact, demonstrated in an estimate, but it is ilTelevant to the usage of this model

Bailey and Clutter (1974) where A =Ln H. or to its predictions that are strictly driven by the direct
height measurement at any given age.

Begin and Schutz (1994) is a kind of standout. The
authors develop a truly buse-invariant model according to A similar case, though not as obvious, is a fixed base-age
the definition in Bailey and Clatter (1974), but they S model with a compatible S solution. In such models the
appear to be unaware of the existence of that article and height at any age enters the mathematical formula without
cite Goelz and Burk (1992), who they, in fact, do not any deviation from its actual value, and at the age of the
follow. Furthermore, treatment of coefficients and fitting measured reference height, which is the age of the model
in Begin and Schutz (1994) mimics that of DuPlat (1986), initiation, the model contains no error other than the one
who admittedly also _bllows Bailey and Clutter (1974). associated with the measurement. Furthermore, any

imprecision of such model estimates results from the

Base-Age Variant Models model infidelity rather than from the fact that S is
estimated from a height at age different than the base age

The base-age variant site index models are formulations and that this estimation in turn results in a model input
that create curves that vary under different choices of base different from the actual measurement.
ages during the model applications. Examples of those
models include Goelz and Burk (1992), Payandeh and A special comment should be made about the fixed base-
Wang (1994, 1995), Huang (1994a,b), Huang et al. age S models that have compatible S solutions but are not
(1994), and Wang and Payandeh (1996)/ conditioned to predict appropriate heights at the base age,

such as Hegyi ( 198l), Lundgren and Dolid (1970), and
The base-age variant models are capable of creating Biging (1985). These models are just as consistent in
similar inconsistencies as the fixed base-age site index predicting heights as the conditioned fixed base-age S
models with incompatible S solutions. However, since the models with compatible S solutions, and for all intents
base-age variant models are using as input height at any and purposes, the site indexes in these models should be
age, they do not generate inconsistencies of the imput considered measurements, not estimates. Unfortunately,

these models mis-display the site indexes due to their
sloppy formulations and may mislead a careful practitio-
ner about the misgivings of the model S inputs. ]'he part
of the formula in these models that pretends to be the siteSince expressing such relationshipx as equalities implies

contradictions such as "l=O"a proper notationjbr them could index, e.g., S or SI, is really just a mathematical constant
be defined by replacing "=" signs with "(" orfor a small range without any necessary associated meaning other than a
of tl values they could be expressed correctly as approximates necessity of an intermediate calculation. This intermedi-
usbN "(" ate calculation must be followed indiscriminately to the
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age of measured height even if the input height is mea- CONSISTENCIES OF INVENTORY PROJECTIONS
sured at an age equal to the base age. However, as long as

S in these models is computed as the intermediate step, The consistencies of the inventory projections arc
the fixed base-age S models will compute consistent examined for the above mentioned form of site index
height estimations regardless of the age at which the input models, assuming the following four criteria of potential
height is measured, and they will always be initiated model uses:
exactly at this very height. Theretbre, the inherent site
index in these models is measurement, not estimate, (1) Computations of site index stability over time
despite the superficial appearance of the seemingly (2) Predictions of heights at all ages from different base
erroneous fomaulation, ages

(3) Predictions of heights at a harvest age using intenne-

The only situation of site index applied as an estimate diatc computation of S
exists in applications of fixed base-age S models using (4) Predictions of heights at a harvest age directly from
incompatible site index prediction models. This is so measured heights at different ages.
because such applications result in initiating the height
nmdels at heights different frmn those measured and It is noted that the last point does not directly reflect
intended for the model input. Such applications disregard inventory projections, but it indirectly affects them

the basic principle of the S nmdel being a family of height because site indexes are used in ahnost all growth and
over age time-series trends, of which a unique trend is yield models as necessary input variables, thus affecting
identified by a height measurement at any arbitrary age. all computed growth and yield predictions.
Clearly, ifa height at any age is used to identify a unique

series, this height must belong to this series and no Base-Age [nvariaut Models
statistical considerations are relevant to this concept.
Thus, in considel'ation of S models, treating S as an Base-age invariant site index models report consistent

estimate that somehow needs to be statistically inferred heights regardless of the base ages used and always are
from height and age measurements is a mistake resulting consistent in correctly reporting the site indexes as equal

from a misunderstanding of those models and their to heights at base ages. When using these models, the site
function as merely a description of height over age trends indexes calculated from generated height over agc series
across a range of productivity sites. Accordingly, statisti- are constant over time (fig. 1a). Regardless of what base
cal developments of the site index prediction models age is used, the height over age patterns are always
meant to predict the fixed base-age site indexes from identical for any given site. Figure lb shows fmlr sets of
heights at arbitrary ages are ill-founded and serve no other curves for three sites. As a result of base-age invariance
purpose than confusing the reader and discrediting the use with respect to selection of base ages, all sets of curves on
ors models in the eyes of the general public. All S this graph are identical so it seemingly appears to repre-
models should be used with compatible analytical or sent only one set of curves.
numerical S solutions. If an actual equation predicting S
(frmn heights and ages) is practically necessary for a Similarly, when computing heights at the harvest age of
given S height over age model, it should be calibrated on 150 years, the predictions are indifferent to the base age
this very model to be as compatible with it as possible, from which the harvestable height is computed. The
The compatibility between the two models is in this case heights at harvest age depend only on the productivity site
the bottom line criteria, and for this reason it is wrong to and are indifferent to both the base age and the method of
calibrate such a model on the data. This compatibility is computation. When they are computed from site index
the only criterion because it is the height measurement that is computed from the measured height and age (fig.
that defines the series we seek--not some kind of other l c), they are identical to the ones computed directly from
"mysterious" variable (like site index) that we might the measured height and age (fig. 1d).
approximate or infer from the measurement. Conse-
quently, in consideration of S models, the site index can The base-age invariant models produce identical predic-
be assumed an estimate only in situations of model tions regardless of which way they are used, and site
misuse and misinterpretation. In all other uses of S indexes computed with these models are unaffected by
models, the site index is either a measurement (variable age. Using any height age pair within a height over age
base-age models) or a parameter of intermediate computa- series, these models define unequivocally the very same
lions (fixed base-age models) serving a function equiva- series.
lent to a measurement.
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Figure I .--Base-age-invariant models for low,medium, and hz h sites." a) ,siteindex predictions unaffbcted by age of
reference height, b) heightpredictions unaffected by selection of base age,"c)predictions of height at harvesting age
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height at harvesting age (computeddirectlyJ?om rejereneeheight and age) unaJJeetedhy age q[reference height.



Fixed Base-Age S Models with yield inconsistent values varying with different ages of
Compatible S Solutions height measurements (fig. 3c). This in turn may result in

erroneous height predictions. In the example illustrated in

When the fixed base-age S models are used consistently figure 3d, the measured height at age 100 yields 41.4 m,
with intermediate S calculations, then even if they are which implies the site index of 25. l, which in turn

unconstrained they should produce appropriate heights at predicts a height of 41.2 m at a harvest age of 150 years.
any input age (including the S base age) equal to input
heights at the input age. Of course, for the unconstrained Base-Age Variant S Models with Variable
models, S will be different than the H at base age, but this Base-Age S Measurements
is not impm_ant because the curves arc driven through
appropriate input heights anyway and the site indexes arc The base-age variant g models, e.g., Goelz and Bm'k

simply misreported while the height predictions are not (1992), Payandeh and Wang (1994, 1995), Huang ( 1994a,
affected by this misreporting, b), Huang et al. (1994), and Wang and Payandeh (1996),

are the most inconsistent and ambiguous of all the models

Proper uses of those models with cm'apatible S solutions discussed, and their algebraic formulations are malformed
will generate predictions that are similar to those from and ill conditioned. According to these models:
using base-age invariant models. The site indexes
computed for different ages as well as heights at base age (1) site indexes vary over time (fig. 4a);
and at harvest age will be constant over the whole range (2) heights over age trends change with base ages (fig.
of input ages. As a consequence of the stable site indexes, 4b);
the height over age trends will be also consistent and (3) heights at harvest age (fig. 4c and d) or any other age
invariant with respect to the selection of the input base can be anything; and
ages in the model applications (fig. 2b). Similarly, the (4) predictions are biased by different types of model
height at harvest age (fig. gc) or any other age will be usage (fig. 4b and c vs. d);
consistent and unaffected by the age of the input height
measurement. A more complete discussion of these models and their use

go beyond the scope of this paper.

Unlike the case of base-age invariant models, there is a
standing issue with the model ambiguity of the fixed base- CONCLUSIONS
age S models. The definition of site index, the method of
model constraint, the methodology of model usage, the The consistency of model estimations in using self-
model parsimony, and the compatibility and methodology referencing models depends on the type of model used.
of obtaining site index solutions are just some of the The highest consistency of model predictions and
problems of fixed base-age S models. It is probably these interpretations is expected from base-age invariant models
and similar associated dilemmas and misuses that with direct use of height age measurements fur their input
contribute to a broad criticism of site index models and a and lack of ambiguity about the model input vs. output
broad public mistrust and disapproval of site index models interpretation.
in general.

Fixed base-age S models with adequate compatible S
Fixed Base-Age S Models with Incompatible solutions in analytical or numerical fumas alike can

S Solutions using S Estimates provide the equivalent of base-age invariant S model
consistency in model predictions despite their ambiguity

Fixed base-age site index models used with incompatible about usage and model interpretation. The misleading
S solutions compute predictions affected by different forms of these models suggesting a special role of S in the
choices of base ages. The site indexes in these models are model interpretation are only superficial and can be
estimates because they are not a mere consequence of the ignored if a base-age invariant methodology for parameter
model form transforming the height measurement into a estimation is used to calibrate these models (Bailey' and
point of reference; instead, they are statistical inferences Clutter 1974, Garcia 1983, DuPlat 1992).
based on isolated from the S model data interpretations.
As a consequence, tlle site index estimates in these Fixed base age S models with incompatible S solutions

systems are inconsistent over different ages (fig. 3a). This developed separately from the height over age models
means that the selections of growth series for inventory produce inconsistent results that are varying predictions

projections are mnbiguous (fig. lb,c) even though the with different choices of base ages. The use of those
heights over age series are consistent (fig. lc). models is ambiguous and unreliable in terms of inventory

projections with no conclusive numbers to relay on. The
Due to the change in site index with input age, any ambiguity is in the future forecasting determination of the

predictions of heights will be base-age dependent and will input heights (the input height is different from intended)
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