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Abstract._n recent work the author used the geostatistical Monte Carlo technique
of sequential Gaussian simulation (s.G.s.) to investigate uncertainty in a GIS analysis
of potential old-growth forest areas. The current study compares this earlier tcch-
nique to that of co conditional simulation, wherein the spatial cross-correlations
betwecn variables are included. As in the earlier study, uncertainties were assessed
across 500 independent spatial Monte Carlo realizations for each of three variables of
interest (quadratic mean stand diameter; age of dominant and co-dominant trees, and

percent canopy cover). Potential old-growth for the study area was estimated for

each set of these perturbed realizations using a simple GIS analysis. An uncertainty
histogram was created by adding the 500 realizations on a cell-by-cell basis. Results
were compared using empirical confidence legions from the upper percentiles of the
histogram for each study. For uncertainty assessment using these particular co-
located spatial data, co-conditional simulation creates intuitively less desirable
results, and does not appear to provide any advantage over independent realizations
using s.G.s.. For other data sets, where all variables are not measured at each
location, improvements may result.

The advent of inexpensive georeferencing through the use Pennsylvania. In 1997, Mowrer applied the s.G.s, process
of global positioning systems (GPS), and visualization to create independent realizations tbr three input variables
and manipulation of spatial data with geographic infonna- (quadratic mean diameter, mean age of dominant and co-

tion systems (GIS) have greatly facilitated the application dominant stems, and percent crown cover). A simple GI S
of geostatistical techniques to lbrestry. Moreover, tbe analysis demonstrated the propagation ofuncerlainties
exact positioning of measurement locations within forest fl'om interpolation of plot location data on estimates of
landscapes allows this point information to be analyzed potential old growth stands. The results of 500 realiza-
on a continuum ("continuous model of spatial variation," tions for each variable were propagated throngh the GIS
c.f. Heuvelink, 1998) instead of averaging plot measure- analysis, and the results were added on a cell-by-cell basis
ments within stand polygons that are assumed to be to create an uncertainty surface for the resulting old-
homogeneous ("discrete model of spatial variation," growth areas.
ibid.). Geostatistieal techniques take advantage ofspatlal

auto-correlation between variables measured at multiple Cokriging (Cart' et al. 1985) may improve the estimation
locations, as quantified by the variogram (Isaaks and process over kriging by including cross-correlations. This
Srivastava 1989). To obtain unbiased estimates at enabled the development of co-conditional simulation
intermediate unmeasured points, the model variogram is (Carr and Myers 1985), which first creates independent
then used in the kriging process to determine the mini- realizations across grids for each variable of interest, and
mum variance weighted linear combinations of measured then uses cokriging to include the auto- and cross-
values from nearby locations. Sequential Gaussian correlations between variables in the conditioning
simulation (s.G.s.) (Deutsch and Joumel 1992) calculates process. The current study used the Carr and Myers
the kriging mean and variance at each unmeasured (1985) program COSIM, with modifications, to repeat the
location, and draws a random deviate from the resulting process from the earlier s.G.s, study. For brevity sake, the

distribution to simulate the value at that point. Mowrer term co-simulation will be used in the subsequent
(1994) applied sequential Gaussian simulation to estimate discussion to mean co-conditional simulation. The goal
fbrest crown cover uncertainties for propagation through of the current study is to determine if the inclusion of

raster-based GIS. Subsequently, Hershey et al. (1995) spatial cross-correlations improves estimates with respect
compared ordinary kriging, indicator kriging, and s.G.s, to the earlier analysis.
for mapping tree species distributions across the State of

METHODS

The data for the analysis consisted of measurements on
Research Forester (Mensuration), USDA Forest Service, eighty-two 1/50-acre georeferenced plots distributed
Rocky Mountain Research Station, Fort Collins, CO, USA. across a 300-acre subalpine watershed on the Fraser
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Experimental Forest, Fraser, CO, USA. All stems greater The model forms for the three variograms (model type,
than 1 inch diameter at 4-1/2 feet above the ground were range, nugget, sill, and isotropy) were maintained from
measured and cored through the pith for age. Percent the previous analysis to maximize comparability. Thus,
crown cover was calculated from two perpendicular because the quadratic mean diameter and age variogram
crown radii on each tree. An extensive description of data nodcls were exponential their cross-variogram must be

collection techniques is provided in Mowrer (1997). The exponential, also. The equation tbr the exponential model
current analysis consisted of four separate steps: (l) (Pannatier 1996) is:

estimation of the variogram and cross-variograna model I ( _]1
structure from the georeferenced plot data; (2) modifica- _(h) = c 1- exp -
tion of the COSIM program and creation of 500 Monte
Carlo cross-correlated realizations each, for quadratic

mean diameter (q.m.d.) and age of dominant and co- Where a is the range parameter, tbe distance at which the
dominant trees, and, separately, 500 independent realiza- average squared diffkrence values reach a plateau and no
lions for perce _tc own cover; (3) repetition of the GIS longer increase. The sill, c, is the maximum variogram
analysis Ibr each of the 500 sets of realizations of input value on the vertical axis for this asymptote. A mtgget
values, creating 51)0 realizations of potential old-growth e/feet, if it were present, would be indicated by a vertical
locations for the analysis area; (4) creation of empirical model discontinuity at zero. The crown covet' variogram
confidence regions and comparison to the earlier analysis, model was maintained as spherical. The equation for the

spherical model (Pannatier 1996) is:

Variogram Modeling ..... (h) saFor all pairs of data values (vl, vj) of variable v(v,, v2 l
v,,) separated by directed vector h_j,the number of which c otherwise
is denoted N(h), the sample variogram is calculated over
all (i,j) data pairs separated by distance h, using the The model variograms are shown by solid lines in the
following equation: individual wlriograms in figure 1.

N ( h ) 2 CFOSS-Variogram

7 (,_)= 1 Z (v_-v j)
For all pairs of data values &variable u (u_, u2..... u°) and

2 N (h) ( i,/l [l_. i = h of variable v (v_, v2, ..., v,_)separated by directed vector

h_4,the number of which are denoted N(h), the sample
eross-variograrn is calculated from the following equa-

When calculating a variogram from the sample data, a tion:

fixed increment to h is selected to maximize the structure 1 ._(h)
in the variogmm. This distance increment is usually 7,,_(h) = _(u i -uj). (v, -- Vj).
called the lag spacing. Thus, the variogram value from 2N(h--_ _h
the above fomaula is calculated for increasing increments _'j_ _-'=

of h reflecting larger and larger distances between v_and
v. The sample variogram is shown by dots in individual The model cross-variogram is fitted to the sample cross-J

variograms of the matrix in figure 1. Variogram values variogram in the manner described above for the
(TIN) are plotted on the vertical axes, while the horizontal variogram. In the current study, a cross-variogram for
axes measure the magnitude of h. The model variogram q.m.d, and mean plot age of dominant and co-dominant

is developed through the selection of one of several trees was calculated for use in the subsequent cokriging
positive definite model forms (e.g., exponential, spherical, process in COS1M.
Gaussian, and power function). Positive definiteness is
necessary to ensure tbe uniqueness of the kriging and Simply stated, the idea of including cross-con'elations in
cokriging results, discussed below. The selected spatial analyses can be likened to explicit estimation of

variogram model form is then fitted (visually and math- off-diagonal elements in the multivariate correlation or
ematically) to the structure of the sample variogram, by covariance matrix in classical statistics, instead of
varying the nugget, range, and sill parameters for the assuming independence (e.g., that oil'-diagonal elements
model (Isaaks and Srivastava 1989, Goovaerts 1996). are zero). In the geostatistieal case, the diagonal elements
Interactive variogram estimation software developed by of the spatial variogram matrix are more commonly
Pannatier (1996) was used to calibrate the variograms for referred to as spatial auto-correlations and are estimated
the current study, by the variogram, while the off-diagonal elements are the
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cross-variograms. Using Moran's bivariate spatial the overall structure remains positive semi-definite
statistic permutation test (Czaplewski and Reich 1993), (Goovaerts 1997). This can make cross-variogram

age of dominant and co-dominant trees was found to be estimation for more complex models a formidable task.
significantly spatially cross-correlated with q.m.d. Figure
1 displays the variogram matrix for the current analysis, Cokriging
with the cross-variogram fbr age of dominan( and co-
dominant trees and q.m.d, as the off-diagonal element Now consider for u (u_, u,, ..., u) and v (v, v_, ..., v),
from the variograms for these (wo variables. Percent that m may be greater than or equal to n. In this case, u is
crown cover is spatially independent of the others, and considered the primary variable of interest, and v the
thus is represented by the single variogram on the secondary variable. The additional values of v )'orwhich
diagonal. In general, one must estimate n(n-l)/2 cross- values ofu are not measured may improve the estimates
variograms for n variables, because the variogram matrix ofu at all estimated locations. For each estimation
is synunetric. Certain rules must be followed in detennin- location, _, the value to be estimated is obtained from the
ing the model structure of cross-variograms, to ensure that minimum variance weighted combination of the values at

\

Figure l.--Variogram matrix, with the variograms for quadratic mean diameter (q.m.d.), age of dominant and co-
dominant trees (AgeDC), and pement crown covet" across the diagonal, and the ernss-variogram for age and

quadratic mean diameter (brown cover is' cousMered to be independent). The vertical axes measure the variogram
value (;_hl) for increasing distance between sample locations (in feet) along the horizontal axis. The sample
variograms are shown by dots and the model variograms by solid lines. Note that the overall matrix for variograms
and cross-variograms is ,symmetric.
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nearby points. This estimation process and the necessary of this sirnulation are referred to Joumel and Huijbregts

constraints on the values of the weights (a_, a,, ..., a) and (1978, p. 498.)) In COSIM, this process is repeated

(b_, b,, ..., bin) are as follows: independently for each variable ill the simulation (in the
current analysis, two: quadratic mean diameter and mean

n m age of dominant and co-dominant stems).

U = i_lai'bt +j_lbJV j
=: = Cokriging

where,
,I m Cokriging is then used to give these independent realiza-

ai =1, _/)j =0. tions the same overall spatial structure as the original
i-I j=] data, reflected in the variograms and the cross-

varingrams. As described above, the variograms and
cross-variograms are used in the cokriging process to

The cokriging estimator was used ia the COSIM program determine the minimum variance linear combination of
as described in the next section, weights for the conditioning data. A weighted moving

average of conditioning data (the actual values of qua-

COSIM Computer Program dratic mean diameter and mean age at nearby plot
locations) is thereby used to estimate values at unman-

The COSIM computer program developed by Can" and sured locations on the grid. This same set of weights is
Myers (I 985) first creates a grid of random deviates also applied to the random deviates (created in the step
through a non-conditional Monte Carlo simulation above) closest to the location of each conditioning datum.
process called "tunaing bands." The grids (one i:breach Thus, the COSIM program creates two estimates for each
variable) are then "conditioned," or adjusted to the spatial cell in the grid: the eokriging estimate and a second
correlation structure described by the variograms and estimate created by applying tile same set of weights to
cross-variograms using the cokriging algorithm, the set of simulated random deviates closest to each data

location. To create the conditioned (spatially correlated)
Non-conditional Simulatirm random deviate at each umneasured grid cell location, the

latter estimate was subtracted from the original (indepen-
The first step of the non-conditional part of the COSIM dent) random value for that grid cell, and the cokriging

program is the creation of standard normal unidimen- estimate added to the restdt.
sional random vectors with a given spatial correlation.
Each vector is split up into a number of line segments of COSIM Program Mod(fications
equal length, each assigned a standard normal random
value. This random value is then assigned to a three- It was necessary to modify the COSIM progl_m to accept
dimensional band, defined by planes perpendicular to the the exponential variogram and cross-variogram modcls.
end points of each of these short line segments along the Fortunately, Joumel and Hnijbregts (1978) derived
vector. Fifteen of these vectors are created, along the formulae for the exponential variogram model that could
lines connecting midpoints of opposite edges of a regular be used as a theoretical basis for modifying the FOR-
icosahedron (a 20-sided figure, each side consisting of an TRAN code in COSIM for the exponential models. The
equilateral triangle). These 15 vectors therefore pass at program was then mn to create 500 spatially correlated
equal angles through the center of a sphere, which is the realizations for these two variables, a process taking
center point for the simulated area. The vectors are approximately 44 hours on a 400 MHz. personal corn-
simulated in five groups of three. An initial set of three puter. (By comparison, 500 realizations with the Deutsch
vectors is rotated (by way of matrix multiplication) and Joumel (1992) s,G.s, program takes approximately 38
through five consecutive sequences to create the requisite minutes on the same machine.) The original COSIM
l 5 vectors, each with their associated bands of random model was also run to create 500 independent realizations
values, thus the term "turning bands." using a spherical variogram model for crown cover.

A user-specified grid is established that passes through the GIS Analysis
center of the Sphere. The random contribution from each

band passing through the node of each ceil in this grid is As mentioned above, the GIS analysis followed the same
sunnned to provide the random deviate for that grid cell, procedure as that outlined in Mowrer (1997). The goal of
thus completing the Monte Carlo portion of the simula- the analysis was to delineate areas that simultaneously
tion. A linear transtbrmation is then used to create satisfied three sets of conditions: quadratic mean stand
independent realizations with the same overall mean and diameter greater than 10 inches at breast height (4.5 feet
variance as the original data. (Readers interested in a above the ground), average age of dominant and co-
more detailed explanation of the non-conditional portion dominant trees greater than 220 years, and percent crown
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cover greater than 40 percent. The study area was divided other cells were given a value of zero• By multiplying the
into a grid of 30-foot square cells: 116 in the north-south binary cell values for these three images on a cell-by-cell
direction, and 160 in the east-west direction. Cells basis, those cells with a resulting value of one would
outside the delineated watershed polygon were deleted represent an area where estimated conditions satisfied the

from the analysis. Each of 500 sets of three realizations three criteria simultaneously. Otherwise a zero ceil value

(for quadratic mean diameter, age, and percent crown would result. Summing the 500 output images resulted in
cover) from the co-simulation process was used to an _'uncertainty image" where the absolute number in
initialize the GIS analysis. For comparison, one realiza- each cell reflected the level of certainty of old-growth

tion for age fi'om the current COSIM process is shown in occnrrcnce. These overall uncertainty images, resulting
figure 2a, and one realization for age from the s.G.s, from the currcnt co-simulation process and the previous
process is shown in figure 2b. The GIS analysis created s.G.s, process are shown in figures 3a and 3b, respec-
binary masks for each realization, whereby cells satisfy- tively. Figure 4 shows a conrparison of the average

ing the previous criteria were given a value of one, and cumulative variance across both the co-simulation and the

(a) (b)

Figure 2 --A single realization for age of dominant and co-dominant trees on the sample watet:_hed fir)m the conditional
co-simulation program (a), and from the s'equential Ganssian simulation ptvgram (b). Note striations across figure (a)

and definite circles at s'ampled points. Darker gray-tones indieate higher valuesJbr age.

(a) (b)

Figure 3.--"Uncertainty images "/brpotentml old-growth areas on the study watershedjrom the conditional co-simulation
program (a) and firm the sequential Gaussian simulation p_vgram (b). Darker gray-tones indicate higher probabili-
ties. Note that while striations are absent from figure (a), the definite circles around the sampled points remain.
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.070 confidence regions for the co-simulation algorithm is
_, much more geometric than that for s.G.s.. The circles of"F

_.065 higher probability surrounding certain measurement

--\.,.... sequential Gaussiag simulation points are very pronounced, and similar to the appearanceone obtains by simply depicting kriging variances. Visual

._ .060 inspection of an individual turning bands realization (fig.
2a, for example) indicated notable striations, which one

_.055 would not expect Ibr forestry applications. These haveco-conditional simulation
"averaged out" in the cumulative image (fig. 5a).

.050 A puzzling artilhct present in the co-sinmlation image isthe inclusion of one or more pixels of low probability in

.045 ' ' '100.... 20() ' ' '30() r ' '40() ' ' '500 thecenter of a circle or ring of higher probability pixels.This is difficult to explain in either a gcostatistica/or
Cumulaltive Realizations ecological context, and appears to be a rcsuh of the way

the simulation results are combined in the COSIM

Figure 4. Average cumulative variance calculated across program, as described above. After careful and protracted
identical pixel locations and summed over multiple re- scrutiny of the COSIM FORTRAN code, no method was
alizations of the co-simulation and the s.G.s. Monte apparent whereby the original data values were retained at
Curlo processes, their original locations. This is certainly contrary to

current descriptions of conditional simulation whereby
"resulting realizations honor data values at their loca-

s.G.s, realizations. Both have reached an adequately tions" (Deutsch and Joumel 1998). By contrast, the s.G.s.
smooth, level value at 500 realizations, indicating stable analysis provides "empirical spatial confidence regions"
estimation, that are continuous, and understandable from both an

ecological and geostatistical perspective.
COMPARISON OF RESULTS

CONCLUSIONS

To compare the results more closely, "empirical spatial
confidence regions" for the two methods arc presented in While the notable striations, apparent through visual
figures 5a (co-simulation) and 5b (s.G.s). These were inspection of an individual turning bands realization (fig.
constructed by selecting cells for the top 90, 95, and 99 2a) are impossible to justify for forestry applications, they
percent of the image histogram, and shading them with might be desirable lbr geological applications where
increasingly darker shades of gray. The delineation of the linear strata are common. Deutsch and Joumel (1998)

(a) Co)

Figure 5.--EmpMcal spatial confidence regions for old-growth locations on the sttidy watershed created fi'om the images
in figure 3 by selecting the pixels from the image histogram with the top 99percent (black), 95percent (dark gray), and
90 percent (medium gray) J?om the conditional co-simulation program (a) and from the sequential Gaussian simula-

tion program (h).
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note that the striations or "artifact banding" of the turning Czaplewski, R.L.; Reich, R.M. 1993. Expected value and

bands algorithm is due to the coarse partitioning by 15 variance of Moran's bivafiate spatial autocorrelation
bands. However, in the cun'ent study these striations do statistic for a permutation test. Res. Pap. RM-309.

not reflect any characteristics of the data. The fact that Fort Collins, CO: U.S. Department of Agriculture,
some of these lines appear consistently lighter or darker Forest Service, Rocky Mountain Research Station.
than those surrounding them indicates that the turning 13 p.
bands Monte Carlo process does not create completely
independent sets of random deviates along these lines. Deutsch, C.V.; Joumel, A.G. 1992. GSLIB: Geostatistical

Inrproving the random number generator and/or increas- software library and user's guide. New York, NY:
ing the number of lines in the turning bands algorithm Oxfbrd University Press. 340 p.
would likely minimize these striations. However, in light

of the symmetric appearance and seemingly contradictory " Deutsch, C.V.; Journe[, A.G. 1998. GSLIB: Geostatistical
overall appearance of the empirical confidence regions for software library and user's guide, 2d ed. New York,
the co-simulation technique, efforts to improve the NY: Oxford University Press. 369 p.

COSIM program would likely not be worthwhile.
Goovaerts, R 1996. Geostatistics for natural resources

The overall symmetrical and circular dispersion of the evaluation. New York, NY: Oxfbrd University Press.
resulting areas of old-growth is also difficult or impos- 442 p.
sible to justify ecologically. These seem more the result
of the fact that conditioning through cokriging takes place Hershey, R.R.; Ramirez, M.R.; Drake, D.A. 1995.
after the randomization process in the co-conditional Exploring the geostatistica[ techniques available to
simulation algorithm. The results from s.G.s, are much create a map of tree species distribntion: an example
more satisfying intuitively and seem much more likely to using forest inventory and analysis (FIA) data. In:
reflect approximate conditions than are the symmetric Analysis in support of ecosystem management,
circles in the co-simulation analysis. For these data, proceedings of a workshop; 1995 April 10-13; Fort
where all variables are measured at each plot location, the Collins, CO. Washington, DC: U.S. Department of

co-simulation algorithm has little to often At this point Agriculture, Forest Service, Ecosystem Management
there is no generally available software that provides co- Analysis Center: 20-30.
conditional sequential Gaussian simulation. Considering
the advantage that cokriging has to oiler with regard to Hcuvelink, G.B.M. 1998. Error propagation in environ-
improved estimation through extensively measured mental modeling. London: Taylor and Francis. 127 p.
covariates, such software would be a valuable addition to

the geostatistical techniques, lsaaks, E.H.; Srivastava, R.M. 1989. An introduction to
applied geostatistics. New York: Oxford University
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