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Uncertainty Estimation of the Self-Thinning Process
by Maximum-Entrophy Principle

Shoufan Fang and George Z. Gertner

Abstract.--When available information is scarce, the Maximum-Entropy Principle
can estimate the distributions of parameters. In our case study, we estimated tile

distributions of thc parameters of the forest sell`thinning process based on literature
informatimr, and we derived the conditional distribution functions and estimated the

95 percent confidence intcrval (CI) of the self-thinning proccss for several tree
species. The 95 percent CI indicated that the slope parameter of the so-called sell`
thinning law can be considered a nmdom variable with a mean value of-3/2.

In ecology, the equation to describe thc relationship exterior uncertaiuty may have the same importance as the
between plant density and individuals' average biomass is interior uncertainty, since sampling cannot easily guaran-
considered the "self-thinning law" (or "self-thinning tee that all the observations of a collected sample meet the
rule"). Its form is: closure assumption, which is tile basis of the self-thinning

law. Therefore, the estimated paraineter b is impacted by
B = a • D b or log(B) = A + b. log(D) (1) both tile interior and exterior uncertainty. Thus, it is

necessary to be aware of uncertainty in studies of the
relationship between average size and density since we

where B is the average biomass of individual biobody, [) cannot eliminate unce:ainty by current techniques.

is density. A [equaling to log(a)] and b are parameters.
"['hisrelationship is called a "law" or "role," not only In studies of the self" thinning law', uncertainty will mainly
because its parametcr b has a quite stable value, but also exist in the distribution of average biomass. Whenever
because it can be derived from and interpreted by ecologi- density is given, differences in species, climate patterns,

cal theory (Drew and Flewelling 1977, Hozumi 1980, and site quality will produce different total and average
Zeide 1987). h is also widely applied in forest studies biomass. In data collection, measuring error will mainly

and management (Smith and Hann 1985; Valentine 1985, occur in measurement ofbiomass, since it is much harder
1988; Weller 1987). to measure than density. In Eq. 1, density is the indepen-

dent variable and average biomass is the dependent

Many studies showed that the value of parameter b is variable. The estimated parameters will influence only
close to -3/2 (White and Harper 1970, Hutchings 1979, biomass and not density. Therefore, uncertainty will be
Dean and Long 1985). However\ some studies found that reflected by biomass. To estimate uncertainty of the sell"

the estimated parameter b is not always around -3/2. It thinning law is to estimate the behavior of biomass. The
behaves like a random variable instead of a constant, behavior of biomass is represented by the distribution of

Tolerance of a species, age, and site quality can vary the biomass at each density. It is almost impossible to

value of parameter b (Zeide 1985, 1987; Weller 1987; directly estimate the distribution of biomass at all the
McFadden and Oliver 1988; Lonsdale 1990). The other possible densities, because density is actually a continu-
factor that causes this parameter to change is climate, ous variable. The way to estimate uncertainty in the sell`

because tolerance property and site quality are both thinning law is to estimate the uncertainty of parameters A
associated with weather conditions (Zeide 1985, 1987). and b first, and then estimate bionrass.
The influence of those factors is usually not considered in

a study. This can be considered to be interior uncertainty Parameters A and b have been estimated in many studies.
in studies of this law in specific forest ecosystems. On the Those point estimates have been integrated to draw the

other hand, sampling, measuring, grouping, and process- histograms of A and b (Weller 1987). Since we know that
ing can cause uncertainty in data (Gertner 1991). This is species can cause variation in parameters A and b, it is not
exterior uncertainty. In studies of self-thinning law, the proper to estimate their distribution and analyze uncer-

tainty without considering species. After grouping based
on species, the numbers of the estimated parameters A

Ph.D. candidate and Professor of Biometrics, W503 and b are too small to estimate their distributions by

Turner ttall, 1102 S. Goodwin Ave., Department of traditional statistical estimation methods. Maximum-
Natural Resources and Environmental Sciences, Univer- Entropy Principle (MEP) can estimate distribution of

sity of Illinois at Urbana-Champaign, Urbana, IL 61801, random variables based on insufficient information
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estimate the distribution of parameters A and b can be one that its mean is -0.5 and its interval is {-0.8, -0.2 }. For
way to analyze the uncertainty of the self-thinning law. conven'ence, b, the absolute value of b, was used in

estimation. Following Laplace's principle ofinsuffi-

The purpose of this study is to demonstrate the usage of ciency, uniform distribution was selected as prior distribu-
MEP in forestry study by applying it to estimate the tion of both A and b'. For species Pinus taeda, Picea
distribution of parameters A and b with literature informa- abies', Trifolium subterraneum, Erigeron canadensis, and
tion and to estimate the distribution of biomass to indicate Eucalyptus regnans, the mean and midpoint are equal m

uncertainty ill the self-thinning process, each species (see table 2). According to MEP (Kapur
1989, WoodbmN 1993 ), the joint posterior probability

ESTIMATION OF PARAMETERS' distribution function (p.d.f.) of A and b" is a uniform
DISTRIBUTION BY MEP distribution:

1

Wcller (1987) studied many cases of parameters A and b /" (A, b') = 0.6(A a - A i) (2)
for several species. In his study, Weller took B as the
biomass on unit area instead of individual average

biomass in Eq. 1. With this change, the value ofb should
be close to -1/2 (Weller 1987). We take Weller's param- For the other species, the p.d.f, of A and b' is (Kapur
eter A, b estimates (see table 1) as literature information 1989, Woodbury 1993):

in our study. With the data set, we computed the coeffi- -flexp(-/3A)
cient of correlation between parameters A and b. The f(A,b') =
coefficient of correlation was -0.045. It is very small. 8o, 0.6[exp(-/3A 1)- exp(-flA2)] (3)

parameters A and b can be considered independent.
where 13can be numerically solved as (Woodbury 1993):

We estimated sample mean and interval for each species
3(A2- AI - 2/.tA)

with the estimated A's in table I. The sample means and /3
intervals are listed in table 2. For parameter b, we assume 2b¢2

Table 1.- Estimates oj)oarameters of selJ_thinning law (fi'om Weller 1987)

Species and Intercept Slope Species and Intercept Slope
case number [log(a)] (-b) case number [log(a)] (-b)

Abies sacchalinsis Beta vulgaris
(1) 1.71 2.766* (1) 4.79 0,662*
(2) 4.39 0.465 (2) 5.12 0.692"
(3) 4.16 0.649* (3) 5.09 0,668*

Erigeron canadensis (4) 5.22 0.649
(1) 4.36 0,621" (5) 5.30 0,648
(2) 5.70 1.038" (6) 6.39 1.335

Eucalyptus regnans (7) 9.93 2,304
(1) t .39 2.478* Picea abies
(2) 3.44 1.066" (1) 3.97 0,433*

Lolium perenne (2) 3.90 0,422*
(1) 4.80 0.427 Pinus strobus
(2) 4.20 0,245 (1) 3.34 1,116*
(3) 4.33 0.544* (2) 3.78 0,724*
(4) 4.28 0.503 (3) 3.44 0,954*
(5) 3.74 0.324 Pinus taeda

Trifofium subterraneum (1) 4.21 0,305*

(1) 4.60 0,473 (2) 3.42 0,670*
(2) 5.17 0,622

*By Weller's analysis: the slopes are different from -1/2 at 0.05 level.
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Table Z--Estimated distribution of parameter A Jbr dijferent ,species by MEP

Species Lower bound(& ) Upper bound(A2 ) Mean [3

Abies sacchalinsis 0.06 6.04 3.420 -0.098321

Beta vulgaris 3.16 11,59 5.976 0.526256
Erigeron canadensis 2,71 7.35 5.030 --*
Eucalyptus regnans -0.26 5.09 2,415 --*
Lolium perenne 2.14 6.45 4.280 0.009826
Picea abies 2.25 5.62 3.935 --*
Pinus strobus 1.69 5.43 3.520 0.035833
Pinus taeda 1.77 5.86 3.815 _*
Trifolium subterraneum 2.95 6.82 4.885 --*

*In those species, their intercepts have uniform distribution.

The computed 13values for different species is in table 2 and Jacobian J= 1. Therefore, the joint distribution of y_
and the estimated malginal distribution of parameter A for and y_, can be transfoizned by:
all the species are in figure 1.

W(yby2) = f[GI(ybY2),G2(YbY2)JJJI (4)
Distribution Transformation

andthe marginal distribution of y_ is:

Assuming the distribution of parameters A and b are

./] (A) and f'; (b), respectively, and their joint distribution WI(Yl) = fW(y_,Y2)dy2 (5)
is f(A, b), the distribution ofbiomass can be gained by
using the following translbrmatien. WI (Y0 is the distribution of the dependent variable,

log(B), in Eq. 1, if the joint distribution of y_ and Y2 is

Let Yt = A - b'.log(D) and Y2 = b' integrable.

where b'=-b, A and D have the same meaning as in Eq. l, PROBABILITY DISTRIBUTION FUNCTION

andy_equals the logarithm ofbiomass. OF LOG(B)

We can have: Based on the posterior distribution etA and b', W_(y 0

can be gained by integration on Y2 for each type of

A = G i(Yl ,Y2) = Yl + Y2.log(D) and distribution, since both types of joint distribution etA and
b" are integrable. The area of the joint distribution of y_
and Ys can be divided into two to three different sections

b'= G 2 (Y1,Y2) = Y2 (see fig. 1). Integration was based on the boundapy of
each section under each relationship between log(D) and

the intervals of parameters A and b'.

section # A-b'log(D) section# A-b'log(D) A-b'log(D)

A A A

Fig. l-a Fig. 1-b Fig. 1-c

Fignre 1.--The three integral sections of the joint distribution of yj and Y2 under different relationships between log(D)
and the intelwals of parameters A and b': Fig. 1 a. [0.6log(D)]' < (A, - A,)' +0.6:, Fig. 1-b.
[0.6log(D)]' =(A, - A,)' +0.6', andFig, l-c. [0.6log(D)]' > (A2 - A_)_ +0.6'.
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For Uniform Distribution of A and b' And the marginal p.d,£ of YEis :

For species E. canadensis, E. regnans, P abies, P. taeda, W_(y,)= _W(y_, Y2)dy_ (9)
and Z s'ubterraneum, parameters A and b have joinl p.d.f.
of uniferrn expressed by Eq. 2. The transformed joint

p.d.E of y_ and y_ is: Just as with uniform distribution of parameters A and b',
I integration section detennines v's marginal p d f When

W(yl,y2) =/[Gl(yby2),G2(yl,y2)]_ JI=
0.6(A:. Af ) the intervals of parameter A and log(D) have different

relationships, the obtained Wt(y_) s are l'sted in table 3-2.
(6)

C. D. E AND CONFIDENCE LEVEL OF LOG(B )
And the marginal distribution of y_ is :

Fortunately, with different relationships between log(D)
{-- dY2 (7) andintervalsofpalametersAandb',W_(y,) hasthesame

W,(y_) = J 0.6(A_ -A_ ) p.d.f, on Section I (or Section 3) when the joint distribu-
tion of A and b' is the same (see table 3). The difference

When the relationships between A's interval and log(D) is of p.d.f, occurred in Section 2. Therefore, we can find out

different, the marginal distribution of y_ will be different the relationship between confidence level and upper and

within different sections. The integrated generalized lower bounds on Yl's distribution. Let 2a be the
W_(y,) 's are listed in table 3-l. confidence level, y, and Ym-,, be the lower and upper

bounds of 1-2a confidence interval, respectively. We
For Exponential Distribution of A and b' will derive the relationships between confidence level and

bounds based on the joint distribution of parameters A and
In species L. perenne, B. vulgaris, A. sacchalinsis, and/_ b'.

strobus, parameters A and b' have exponential joint

distribution (Eq. 3). The transformed joint p.d.f, of Yl For Uniform Distribution of A and b'
and Yz is:

In table 3-1, the W,(y_) of Section 1 is in the first row. Its
W (y,, y_,) = f[G_ (y, y. ) G. (y,, y__)_JI colxesponding eumnmlated probability distribution (C. D.

F.) will be:

_ - ,Bexp{- riD', +y_ log(D)]} (8)

0.6[exp(- ,6A_)- exp(-/3A,)]

Table 3-1 .--The probability distribution function _?/'log(B)for those species in which the parametel;_ A and h 'have
un_[brmjoint distribution

[i' Relationship W, (y_) Interval

W(y,, y_)[O.8 (A' - Y')-I* A, -0.8log(D) < y_< A, -0.2log(D)
log(D)

[0.61og(D)]2 <(A2-A,)_"+O6z 0.6. W (y_, y_) A_- 0.2log(D)< y, < A 2- 0.8log(D)

,y2)[-(_ ) 0.2] A_-0.21og(D)>y, >A_ -0.81qg(D)W(y_

0 elsewhere

W(y,,y0[0. 8 (A,-y,)_]', At-O.gMg(D)<y,<A_-O.21og(D)
log(D)

Az- 0.2log(D)> y, > A z-0.8log(D)[0.61og(D)]2=(A2-A,)-' +062 W'v ,_(A: - y, )
t. _,Yz)/_ 0.21

0 elsewhere

W(y,,y2)[0.8 (A_- y,).] A,-0.81og(D)<y, <A 2-0.8log(D)
log(D)

[0.61og(D)]2>(A,_-A,) _+0.62 W(y,, y_) (A,log(D)-y_) A2- 0.8log(D)< y, <' A, -0.2log(D)

.... (A_ -y,) A2-0.2log(D) > y, > A, -0.2log(D)
• w/y,,y__Jt- _ 0.2]

0 elsewhere
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Table 3-2.--The plvbability distribution fimetion of log(B) jor those species in which the parameters A and b 'have
exponential joint distribution.

Situation W_(Yk)* Interval

G_(A,, A_, y_)exp(-fly t) A_- 0.8log(D) < y_< A_- 0.2log(D)

0.61n(D)[exp(-flA,) exp(-flA_)]

G, (A_, A_)exp(-,@ _) A, -0.2log(D) < y, < A2-0.8log(D)

[0.61cg(D)]2<(A -AS +(162 0.61n(D)[ex p(-flA,) -exp(-flA:)]

G_(A_, A_,,y, )exp(-fly_) As -0.2log(D) > y, > A2- 0.81o_D)

0.61n(D)[exp( flA,)- exp(-flA_)]
0 elsewhere

G, (A,, A_, y_)exp(-/3y, ) A, -0.8log(D) < y, < A, - 0.2log(D)

0.6[n(D)[exp(-flA, )- exp(-flA _)]

[0.6k)g,(D)]-'=(Az -A,)-' +(I(_ G_(A _,A_,y,)exp(-fly_) A2-0.2log(D) > y , >A_-0.8log(D)
0.61n(D)[exp(-flA,) -exp(-flA,)]

0 elsewhere

G_(A,, A_, y_)exp(-fly, ) A, -0.8log(D) < y_< A 2 - 0.8log(D)

0.6[n(D)[exp( flA_)- exp(-flA_ )]

G,(A,,A_,y0exp(-/3y_) A2-0.81og(D)<y, <A, 0.2log(D)

[0.6log(D)]2> (A2- Ay +(162 0.6In (D)[ex p(-,b'A,) -exp(-flA _)1
G_(A,,A :, y0exp(-fly,) A2-0.2log(D)> y, >A,-0.2log(D)

0.61n(D)[exp(-flA L)-exp(-flA_)]
0 elsewhere

• In W,(y,), G_(A_,A.,y 0 = exp[-0,8fllog(D)l-exp[-fl(A_ Y0],

G2(A _,A,_) = exp[-0.8fllog(D)] -exp[-0.2fllog(D)],

G _(A., A_, y, ) = exp[-fl( A,, - y, )] - exp[-0.2fllog(D)].

and G,(A, ,A_,,y,) = exp[-fl(A__ - y,)]- exp[-fl(A, -y,)].

P(Y,) = W,(y,)dy, = 1,667Y_[A_- 0.81og(D)]- 0.833{[A_ - 0.8log(D)]-' - Y,_}
0.81og(D)(A,- A,)

A, - 0.8log(D) < Y_< rain{ [A_ -0.21og(D)],[A2 - 0.8log(D)]}

After setting confidence level 2a , the lower bound will be:

y,, = A_ - 0,8log(D) +@ .2 .a .log( D)(A 2- A,) , log(D)>0 (10)

The W_(y_) of Section 3 is in the third row. Its corresponding C. D. F. will be:

l_¢Wt(y,)dy,j = 1 0.833{[12- 0.21og(D)]" - Y,_}- 1.667{Y,[0.21og(D)- A,]- [A'_ +0.041og_'(D) - 0.4A_Iog(D)]}P(Y,)
v_ log(D)(A,- A,)

A 2 - 0.2log(D) > Y, > max {[A, - 0.21og(D)],[A2 - 0.8log(D)] }

Accordingly, the upper bound will be:

y,_, = A2 - 0.2log(D) - _]1.2. o_.log(D)(A2 - A, ) log(D)>0 (11)
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For Exponential Distribution of A and b' 2). In Case 7 ofB. vulgaris and Case 1 ofP strobus, self-
thinning processes cannot be covered by the con-espond-

Based on the W 1(y_) of Section 1, the corresponding C. ing 95 percent confidence area when log(D) is larger than
D. F. will be: 3. In Case 1 of either A. sacchalinsis orE. regnans, the

v. self-thinning process is outside the corresponding 95

[ Wt(yt)dy _ percent confidence area. Of all the 28 cases, just 4 fail toP(Y, )
4-a follow the self-thinning law based on 95 percent confi-

dence area. The proportion not supporting the self-
thinning law is 14.3 percent. In 85.6 percent of the cases,

1.33[ff jA-'(I .25+ 1.25,LiA_- fi log(D)] t- the self-thinning law cannot be rejected.

- fllog(D)(e._A,- e_ )
CONCLUSION AND DISCUSSION

1 667 {e/_'_'*A_o_k,_(olk+ yil_e_(,_2+n>}• , Maximum-Entropy Principle (MEP) provides an altema-
fllog(D) e_'_(e_A2- eZaL) tive to estimate the distribution of random variables with

insufficient infonnation. Using probability transforma-

A, -0.8log(D) < Y_ < min{[A_ -0.2log(D)] [A; -0.8log(D)]} tion, distribution and uncertainty ofbiomass canbe
obtained from the nnce_lainty of parameters A and b of

the self-thimfing law based on literature infonnation.
With uncertainty in nature, sampling, and parameter

And the C. D. F. on Section 3 is: estimation method, parameter b of the self-thinning law
shotfld be a random variable instead of a constant. The

estimated 95 percent CI areas of the studied species

1.667 e_ I suggested that the mean value orb should be-3/2.
P(Y, ) 1 Jw,(y,)dy, I

log(D) [(e aA'-e/J*'_) [fl - A2vl LITERATURE CITED
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Figure 2__The estimated 95 percent CI of log(B) o/each species and its individual cases'. Pig. 2-a. legend of Fig,ure 2.
Fig. 2 b. species': A. sacehalinsis, F:ig. 2-c. species: B. vulgaris, Fig. 2-d species: E. canadensis; Fig. 2-e. sT)ecies:
E. regnans, Fig. 2-f species: L. perenne, Fig. 2-g. species: Rabies, Fig. 2-h. .species: E strobus, Fig. 2-i. species:
R taeda, Fig. 2-j. species: T. subterraneum.
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