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Uncertainty Estimation of the Self-Thinning Process
by Maximum-Entrophy Principle

Shoufan Fang and George Z. Gertner

Abstract—When available information is scarce, the Maximum-Entropy Principle
can estimate the distributions of parameters. In our case study, we estimated the
distributions of the parameters of the forest self-thinning process based on literature
information, and we derived the conditional distribution functions and estimated the
95 percent confidence interval (CI) of the self-thinning process for several tree
species. The 95 percent CI indicated that the slope parameter of the so-called self-
thinning law can be considered a random variable with a mean value of -3/2.

In ecology, the equation to describe the relationship
between plant density and individuals® average biomass is
considered the “self-thinning law” (or “selt-thinning
rule™). lts formis:

B=a-D" or log(B)=A +b-log(D) )

where B is the average biomass of individual biobody, D
is density. A [equaling to log(a)] and b are parameters.
This relationship is called a “law” or *rule,” not only
because its parameter b has a quite stable value, but also
because it can be derived from and interpreted by ceologi-
cal theory (Drew and Flewelling 1977, Hozumi 1980,
Zeide 1987). It is also widely applied in forest studies
and management (Smith and Hann 1985; Valentine 1985,
1988; Weller 1987}

Many studies showed that the vatue of parameter b is
close to -3/2 (White and Harper 1970, Hutchings 1979,
Dean and Long 1985). However, some studies found that
the estimated parameter b is not always around -3/2, It
behaves like a random variable instead of a constant.
Tolerance of a species, age, and site quality can vary the
value of parameter b (Zeide 1985, 1987; Weller 1937,
McFadden and Oliver 1988; Lonsdale 1990). The other
factor that causes this parameter to change is climate,
because tolerance property and site quality are both
associated with weather conditions (Zeide 1985, 1987).
The influence of those factors is nsually not considered in
a study. This can be considered to be interior uncertainty
in studies of this law in specific forest ecosystems. On the
other hand, sampling, measuring, grouping, and process-
ing can cause uncertainty in data (Gertner 1991). This is
exterior uncertainty. In studies of self-thinning law, the
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exterior uncertainty may have the same importance as the
interior uncertainty, since sampling cannot easily guaran-

* tee that all the observations of a collected sample meet the

closure assumption, which is the basis of the self-thinning
law. Therefore, the cstimated parameter b is impacted by
both the interior and exterior uncertainty. Thus, it is
necessary to be aware of uncertainty in studies of the
relationship between average size and density since we
cannot eliminate uncertainty by current techniques.

In studies of the self-thinning law, uncertainty will mainly
exist in the distribution of average biomass, Whenever
density is given, differences in species, climate pattcrns,
and site quality will produce different total and average
biomass. In data collection, measuring error will mainly
occur in measurement of biomass, since it is much harder
to measure than density. [n Eq. 1, density is the indepen-
dent variable and average biomass is the dependent
variable. The estimated parameters will influence only
biomass and not density, Therefore, uncertainty will be
reflected by biomass. To cstimate uncertainty of the self-
thinning law is to estimate the behavior of biomass. The
behavior of biomass is represented by the distribution of
biomass at cach density. It is almost impossible to
directly estimate the distribution of biomass at all the
possible densitics, because density is actually a continu-
ous variable. The way to estimate uncertainty in the self-
thinning law is to estimate the uncertainty of parameters A
and b first, and then estimate biomass.

Parameters A and b have been estimated in many studics.
Those point estimates have been integrated to draw the
histograms of A and b (Weller 1987). Since we know that
species can cause variation in parameters A and b, it is not
proper to estimate their distribution and analyze uncer-
tainty without considering species. After grouping based
on species, the numbers of the estimated parameters A
and b are too small to estimate their distributions by
traditional statistical estimation methods. Maximum-
Entropy Principle (MEP) can estimate distribution of
random variables based on insufficient information
(Kapur 1989, Woodbury 1993}). Applying MEP to
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cstimate the distribution of parameters A and b can be one
way to analyze the uncertainty of the self-thinning law.

The purpose of this study is to demonstrate the usage of
MEP in forestry study by applying it to estimate the
distribution of parameters A and b with literature informa-
tion and to estimate the distribution of biomass to indicate
uncertainty in the self-thinning process.

ESTIMATION OF PARAMETERS’
DISTRIBUTION BY MEP

Weller (1987) studied many cases of parameters A and b
for several species. In his study, Weller took B as the
biomass on unit area instead of individual average
biomass in Eq. 1. With this change, the value of b should
be close to -1/2 (Weller 1987). We take Weller’s param-
eter A, b estimates {see table 1) as literature information
in our study. With the data set, we computed the coeffi-
cient of correlation between parameters A and b. The
coefficient of correlation was -0.045. It is very small. So,
parameters A and b can be considered independent.

We estimated sample mean and interval for each species
with the estimated A’s in table 1. The sample means and

that its mean is -0.5 and its interval is {-0.8, -0.2}. For
convenience, b’, the absolute value of b, was used in
¢stimation. Following Laplace’s principle of insuffi-
ciency, uniform distribution was selected as prior distribu-
tion of both A and b’. For species Pinus laeda, Picea
abies, Trifolium subterraneum, Evigeron canadensis, and
Eucalyptus regnans, the mean and midpoint are equal in
cach species (see table 2). According to MEP (Kapur
1989, Woodbury 1993 ), the joint posterior probability
distribution function (p.d.f) of A and b is a uniform
distribution:

_— 1
FIAD) 0.6(A,- A ) (2)

For the other species, the p.d.f. of A and b’ is (Kapur
1989, Woodbury 1993):

-fexp(-BA)
0.6[exp(-BA ) - exp(-BA,)] (3}

A=

where {3 can be numerically solved as (Woodbury 1993}

C3(Ax- Ay- 2

intervals are listed in table 2. For parameter b, we assume 2#%4
Table 1.~ FEstimates of parameters of self-thinning law (from Weller 1987)
Species and Intercept Slope Species and Intercept Slope
case number floa(a)] {-b) case number [log(a)] (-b)

Abies sacchalinsis Bela vulgaris :
(1) 1.71 2.786* (1) 4.79 0.662*
(2) 4.39 0.465 {2) : 512 0.692*
(3) 416 0.649* 3 5.09 D.668*

Erigeron canadensis {4 5.22 (0.649
(1) 4.36 0.821* (5) : 5.30 0.648
{2) 5.70 1.038* (6) 6.39 1.335

Eucalyptus regnans (7) 9.93 2.304
1) 1.38 2.478* Picea abies
{(2) 3.44 1.066* (1) 3.97 0.433"

Lolium perenne (2) 3.90 0.422*
(1) 4.80 0.427 Pinus strobus
(2) 4.20 0.245 (1) 3.34 1.116*
(3} 433 0.544* {2) 378 0.724*
(4) 4.28 0.503 {3) ‘ 3.44 0.954~
(5) 3.74 0.324 Pinus tagda

Trifolium subterraneum {1) 4.21 0.305"
(1) 4.60 0.473 (2) 3.42 0.670"
{2) 5.17 0.622

*By Weller's analysis: the slopes are different from -1/2 at 0.05 level.
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Table 2—Estimaled distribution of parameter A for different species by MEP

Species Lower bound(A ) Upper bound{A, ) Mean B
Abies sacchalinsis 0.06 6.04 3.420 -0.098321
Beta vulgaris 3.16 11.59 5976 0.526256
Erigeron canadensis 2.71 7.35 5.030 —
Eucalypius regnans -0.26 5.09 2415 —*
Lolium perenne 2.14 6.45 : 4.280 0.009826
Picea abies 2.25 5.62 3.935 —
Pinus strobus 1.69 543 3.520 0.035833
Pinus taeda 1.77 5.86 3815 —
Trifolium subterraneum 2.95 6.82 4.885 —

*In those species, their intercepts have uniform distribution.

The computed f values for different species is in table 2
and the estimated marginal distribution of parameter A for
all the species are in figure 1.

Distribution Transformation
Assuming the distribution of parameters A and b are
f1(A) and £, (b), respectively, and their joint distribution

is f(A,b), the distribution of biomass can be gained by
using the following transformation.
Let yi=A-beog(D) andy, =b'

where b'=-b, A and D have the same meaning as in Eq. 1,
and y, equals the logarithm of biomass.

We can have:

A=Gi(y1,¥2)=y1+y2log(D) and

b'=Ga(y,y2) = ¥2

and Jacobian J=1. Therefore, the joint distribution of y,
and y, can be transformed by:

Wy, y2) = TG (%.¥2).G 2y y2 ) W 4

and the marginal distribution of y, is:
Wil = [Woyy,)dy, )

W, (y,) is the distribution of the dependent variable,
log(B), in Eq. 1, if the joint distribution of y, and y, is
integrable.

PROBABILITY DISTREBUTION FUNCTION
OF LOG(B)

Based on the posterior distribution of A and b”, W (y,)
can be gained by integration on y, for each type of
distribution, since both types of joint distribution of A and
b’ are integrable. The area of the joint distribution of y,
and y, can be divided into two to three different sections
{(see fig. 1). Integration was based on the boundary of
each section under each relationship between log(DD) and
the intervals of parameters A and b’.

section # A-b'log(Dn section #  A-blog(D) A-bllog(D)
o B By ction #
& A A
Fig. 1-a Fig. 1-b ~ HFg 1<

Figure 1 —The three integral sectionis of the joint distribution of 'y, and y, under different relationships between log(D)
and the intervals of parameters A and b': Fig. 1-a. [0.6log(D)]* <(A .- A ) +06°, Fig. I-b.
[06log{ D))’ =(A .- A ) +06°, and Fig. 1-c. [0.6log(D)]” > (A, - A)) +06°.
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For Uniform Distribution of A and b’

For species E. canadensis, E. regnans, P. abies, F. taeda,
and T subterraneum, parameters A and b have joint p.d.f.
of uniform expressed by Eq. 2. The transformed joint
p.dfofy, and y, is:

1
W(s,y2) = TG y2) Gy Y2 IR g
OlA, I

(©)
And the marginal distribution of y, is:

S P 7)
Wl(yl)m-[(}.ﬁ(A2~Ai) (

When the relationships between A's interval and log(D) is
different, the marginal distribution of y, will be different
within different sections. The integrated generalized
W,{y,)'s are listed in table 3-1.

For Exponcntial Distribution of A and b’

In species L. perenne, B. vulgaris, A. sacchalinsis, and P
strobus, parameters A and b’ have exponential joint
distribution (Eq. 3). The transformed joint p.d.f. of y,
and y, is:

W(y.y.) = 7165, ¥:1.G.(y,¥.) B/l

_ ~Bexpl- Bly, +y,log(D)]} (8
0.6exp(- fA,}- exp(- PA,)]

And the marginal p.d.f. of y is:

W,(y,) = [Wiy,,y.)dy, ©)

Just as with uniform distribution of parameters A and b’,
integration section determines y, s marginal p.d.f.. When
the intervals of parameter A and log{D) have different
relationships, the obtained W (y,) s are listed in table 3-2.

C. D.F. AND CONFIDENCE LEVEL OF LOG(B)

Fortunately, with different relationships between log(1»)
and intervals of parameters A and b’, W (y,) has the same
p.d.f. on Section 1 (or Section 3} when the joint distribu-
tion of A and b’ is the same (see table 3). The difference
of p.d.f. occurred in Section 2. Therefore, we can find out
the relationship between confidence level and upper and
lower bounds on y, s distribution. Let 2¢ be the
confidence level, ¥ and y,  be the lower and upper
bounds of 1-2g confidence interval, respectively. We
will derive the relationships between confidence level and
bounds based on the joint distribution of parameters A and
b’

For Uniform Distribution of A and b’
In table 3-1, the W (v} of Section 1 is in the firstrow. Its

corresponding cummulated probability distribution (C. D.
F.) will be:

Table 3-1.—The probability distribution function of log(B) for those species in which the parameters A and b’ have

uniform joint distribution

Relationship W (y,) —
Wiy, y, 08— Yidys A, —08logD) <y, <A, —02logD)
log(D)
[0.6108(]))]1 <(A2 "A|)2 --|-0.62 0.6 W(y 13Ya ) Al "0.210g(D) < ¥, < Az _0810g(D)
Wiy, yz)[(ﬁz;y—ﬂ- 0.2] A, ~02logD) >y, > A, —0.8log(D)
fog(D)
0 elsewhere
Wy, y 08— By A, —08log(Dy <y, <A, ~0:2log(D)
tog(D)
[06log(D)f =(A,—A)" +06" I [T A 0ToED Sy S A, 08D
log(D)
0 elsewhere
- - —0.8log(D)
Wiy, y 08 - LYy A, —08logD) <y, <A, —0.8log(D)
log(ID)
(4,-,) A, —08logD) <y, < A, ~02log(D)
2 2 W(Y yt Y 2 } -
[06log(D)}’ >(A, -AY +06' Toe(D)
_ =0 —0.2log(D
Wiy, =2l 02) A, —02logD) >y, > A, —02log(D)
log(D)
s elsewhere
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Table 3-2.—The probability distribution function of log(B) for those species in which the parameters A and b’ have
exponential joint distribution.

Situation Wy, ) Interval
G (A, A,y exp{—fy ) A ~08logD) <y, <A —02ogD)
0.6I0(D)fexp(-fA,)-exp(-AA, )]
GL(A LA exp(=fy,) A, -02logD) <y, <A, —08log(D)
[06log(D)' <(A, ~A,) +(16° D.6In(DYexp(-PA ) -exp{-fA )] '
GL(A LA,y Jexp(-By ) A, —02log(D) >y, > A, —(8log(D)
0.6In{D)exp(-HA ) -exp(- BA )]
0 elsewhere
G A LA, Yy expl=fy) A, —08logMhy<y, <A, —02log(D)
0.6in(D)[exp(-BA ) -exp(-8A,)
[06log(D))’ =(A, -A, ¥ +06" G AA A,y exp(=fy.) A, —02log(D) >y, >A, —0.8log(D)
0.6ln(Dlexp(-pA ) -exp(-FA N
0 elsewhere
G (A LA,y exp(=fy)) A, —08logD) <y, <A, ~0.8log(D)
0.6in(D)exp(-fA ) -exp(-BA )]
G, (A LA, v exp(-fy) A, —0.8log(D) <y, <A, —0.2log(l)
[06log(D) >(A, ~A,) +06° 0.6ln(DYexp(-pA ) -exp(-BA )]
' C GLA LAY Jexp(-By) A,—02log([D) >y, > A, —02logD)
0.6In{D[expl-FA ) -exp(-BA,)]
0 elsewhere

*In W, (y,), G,(A,A,.y)=exp{-08flog(D)]-expl-B(A, -y},
G,(A,A,) = exp[-0.8 flog(D)] - exp[-0.2 Blog(D}],
G,(A.A,.y,) =expl-B(A, -y )]-exp[-0.2 flog(D)],
and G, (A, A,.y,) =expl-B(A; -y )]-exp[-B(A, -y}

L 1.667Y[A, - 0.8tog(D)]- 0.833{[A, - 0.8log(D)] - Y/}
P(Y) = W5y, = A e

A, -0.8log(D}< Y, < min{[A, -0.2log(D)],[A. - 0.8log(D)]}

After setting confidence level 2¢g | the lower bound will be:

y, =A, -08log(D)+4fl 2+ log(D)(A,-A,) ,  log(D)>0 (10)

The W,(y,) of Section 3 is in the third row. Its corresponding C. D. F. will be:

0.833{[A, - 0.2Jog(D)] - Y/} - 1.667{Y,[0.2log(D) - A,]- [A] +0.04log’ (D)~ 0.4A log(D)]}

PCY,)=1-[W,(y)dy, =1 logD)(A, - A,)
- A, -02l0g(D)> Y, > max{[A, - 0.2log(D)L[A, - 0.8log(D)}}

Accordingly, the upper bound will be:

Yi.=A,—02l0gD)- 12 a logD)A, Ay - logD)p0 Can
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For Exponential Distribution of A and b’

Based on the W, (y, ) of Section 1, the corresponding C.
D. F. will be:

o

P(YI) = jwl()’l)d)'l

—

133" (1.25+1256A, — flogD)]
- AogDye™ —e™)

1.667 {eiﬂ»\|+A1-t1Rk=g(D)l + Ylﬁcﬁiv\z“"l} )
Blog(Dye™ (2 —e™)

A, -0.8log(D)<Y, < min{{A -0.2log(D)],[A, - 0.8log(D)]}

And the C. D. F. on Section 3 is:

A

2

I 1.667 g i
P(Y)=1-|W dy, =1- e
(Y)) Jl (rdy, log(D) (eﬁAl_cjm)[ﬂ

{emA,mz—n.zh.g(Dn +YlﬁeE(A|+Y|)]
ﬁeb\’l (eﬂAl - eﬂAz )

2

+02log(D]—

A, -02In(D)> Y, > max{[A, -0.2log(D)],[A . - 0.8log(D)]}

Because the C. D. F’s at both sides are complicated, it is
very difficult to derive an explicit relationship between the
confidence level and bounds. However, when a confi-
dence level is given, both the lower and upper bound of
the confidence interval can be obtained by numerical
methods based on the two C. D. E’s.

UNCERTAINTY OF THE SELF-THINNING
PROCESS

A 95 percent confidence level was chosen to determine
the bounds of log(B) at different densities for each
species. The confidence area of each species is shown in
figure 2. In a species, the self-thinning process described
by cach case from Wetler (1987} was also drawn in figure
2. For the 28 cases [rom the nine studied species, the
proportion of the cases that do not viofate self-thinning
law is quite high. In the cases from P taeda, P abies, E.
canadensis, T. subterraneum, and L. perenne, their
estimated self-thinning processes are totally covered by
their corresponding 95 percent confidence area (see fig.
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2). In Case 7 of B. vulgaris and Case 1 of P sirobus, self-
thinning processes cannot be covered by the correspond-
ing 95 percent confidence area when log(D) is larger than
3. In Case 1 of either A. sacchalinsis or E. regnans, the
self-thinning process is outside the corresponding 95
percent confidence area. Ofall the 28 cases, just 4 fail to
follow the self-thinning law based on 95 percent conii-
dence arca. The proportion not supporting the self-
thinning law is 14.3 percent. In 85.6 percent of the cases,
the self-thinning law cannot be rejected.

CONCLUSION AND DISCUSSION

Maximum-Entropy Principle (MEP) provides an alterna-
tive to estimate the distribution of random variables with
insufficient information. Using probability transforma-
tion, distribution and uncertainty of biomass can be
obtained from the uncertainty of parameters A and b of
the self-thinning law based on literature information.
With uncertainty in nature, sampling, and parameter
estimation method, parameter b of the self-thinning law
should be a random variable instead of a constant, The
estimated 93 percent Cl areas of the studied species
suggested that the mean value of b should be 372,
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E. regnans, Fig. 2-f. species: L. perenne, Fig. 2-g, species: P.abies, Fig. 2-h. species: P. strobus, Fig. 2-i. species:

P. taeda, Fig. 2-j. species: T.subterraneum.
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