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Comparing Mapped Plot Estimators

Paul C. Van Deusen1

Abstract.—Two alternative derivations of estimators

for mean and variance from mapped plots are compared

by considering the models that support the estimators

and by simulation. It turns out that both models lead

to the same estimator for the mean but lead to very

different variance estimators. The variance estimators

based on the least valid model assumptions are shown

to perform poorly in practice.

Introduction

Mapped plots are an integral part of the U.S. Department of

Agriculture Forest Service Forest Inventory and Analysis (FIA)

annual forest inventory design. The concept of mapping is

intended to reduce the potential bias of having more than one

forest condition on a single plot. The plot is mapped to indicate

what proportion of the plot is covered by a particular condition.

In the past, plots were moved or rotated into a uniform condition

to avoid this problem. Plot rotation leads to a small bias in the

estimates (Birdsey 1995), and mapping was believed to be a

more statistically defensible approach (Hahn et al. 1995). 

More than one estimator has been suggested for obtaining esti-

mates of means and variances from mapped plots. Estimator 1

(EST1) is described in a FIA document (FIA 2004), and estimator

2 (EST2) is described in Van Deusen (2004). These estimators

will be derived using a model-based approach and then compared. 

Review of Theory

The FIA plot design consists of four circular subplots in a fixed

configuration. Small diameter trees are measured only on smaller

concentric plots in the larger subplots. Ignoring the specifics

of the FIA plot design simplifies derivation of the estimators

without loss of generality. Therefore, the estimators are derived

under the assumption that the sample plots consist of a single

fixed-area plot.

The simple forest inventory model used in Van Deusen (2004)

is followed here. Assume two conditions exist, C and B, where

C is a circular condition surrounded by condition B (fig. 1).

Estimates of the mean and variance of type C are of interest,

and the other types that surround it are denoted as B. The shape

of type C could be anything, in practice. Sampling is either

systematic or simple random and uses fixed-area circular plots

with radius d. The edge of type C is shown by a dash line, and

a perimeter band that overlaps the outer edge of area C is

shown by solid lines. The plot contains both conditions when

the plot center falls within the perimeter band. The condition

boundary is mapped when it crosses a plot. 
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Figure 1.—An area of condition C surrounded by condition B.
Condition C is bounded by the dash line that is contained in a
perimeter band of width equal to the diameter of the fixed-area
circular plots. Plots with centers that fall within the band will
contain some of both conditions. All other plots contain only one
condition. One plot that is fully in condition C is shown along
with a plot that overlaps the boundary. Plots that contain no C
are not of interest.
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The following notation is similar to that used in Van Deusen

(2004):

ai = The proportion of the area of plot i that is within condition C. 

n = The number of plots that contain some condition C.

Where:

= A variable that can be measured on each randomly located

plot that completely or partially overlaps condition C. For plots

that don’t overlap C,       = 0.

yi =      /pi is the original measurement expanded to a per acre

(hectare) or total value.

pi = A value proportional to the selection probability of the plot,

e.g., this would be 1/5 for a fifth-acre circular plot.

= The per unit area mean of variable y for condition C, e.g.,

cubic meter per hectare pine volume.

After a plot is located, the amount of variable     is recorded and

expanded to a per acre value, y. When plot i contains none of

condition C, yi = 0, and ai=0. The n plots that contain a non-zero

amount of condition C are labeled 1,...,n.

Estimator Derivation

A model-based approach is used to derive mapped plot estimators.

The estimators called EST1 and EST2 in the introduction are

both derived in this section.

EST1 is derived first by starting with the following model:

(1)

where e1 is a random error term and                                     .

This model states that the expanded plot value is equal to the

mean per unit area value,    , multiplied by the average proportion

of a plot,    , that is in the condition of interest. The variance of

the expanded plot value is proportional to the squared average

proportion in the condition.

Consider the result of dividing equation (1) by     to get the

following equation:

(2)

where                            . The transformed variable,                

, is the variable that the estimators in the “Stat Band”

document (FIA 2004) are based on. Thus, the following estimators

for mean and variance are based on this equation:

, and (3a)

(3b)

These are standard mean and variance estimators that would apply

to simple random or stratified random sampling without a finite

population correction factor (Cochran 1977, Thompson 2002).

EST2 is derived from a related model that allows for plot values

to vary according to the percentage of the plot falling in the

condition:

(4)

where                                     . Equation (4) states that the

amount, yi, in the condition is related to the proportion, ai, of

the plot that falls in the condition. The variance of yi is also

proportional to ai, which seems intuitively reasonable. Using

standard least-squares formulas, the following are the estimators

for the mean and variance (Van Deusen 2004): 

, and (5a)

, where (5b)
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(5c)

More detailed discussion about the derivation of equations (5b

and 5c) can be found in Van Deusen (2004).

Note that equations (3a) and (5a) are identical because            

. The variance estimators, however, are quite different.

Intuition suggests that v2 should be less than v1 because equation

(4) is more flexible than equation (1). The exception is when

all plots are fully in the condition so that                 , making

equations (3b) and (5b) identical. In general, equation (1) is a

crude model of the relationship between the plot values, yi, and

the proportions, ai.

Simulated Comparison

Simulated data are used to compare variance estimators v1 and

v2. The same simulation scheme used in Van Deusen (2004) is

used here. Y-values are drawn from a normal distribution with

standard deviation 300 and mean 1,000. There are 1,000 repli-

cations with 100 samples per replication. The average proportion

of the plot in the condition area varies from 0.75 to 1.0. More

simulation details are available in Van Deusen (2004).

The simulation results in no noticeable bias in estimates of the

mean (Van Deusen 2004), and the variance estimates are identical

when     = 1.0, as they should be. Variance estimator v1 deterio-

rates, however, as     moves away from 1.0 (fig. 2). The relative

variances (fig. 2) are computed as                       , where      is

the average of the estimated variances based on 100 observations

from each of the 1,000 replications, and v is the simulated

variance computed from the means of the 1,000 replications.

A relative variance of 0 means the formula is unbiased, a value

of 1 shows that the formula is predicting twice the variance

that it should, and a value of 2 indicates that the formula is

overpredicting by a factor of 3.

Discussion

The simulation shows that the model that best describes the

data produces the most accurate variance estimator, which is v2

in equation (5b). The model that led to v1 in equation (3b) is

based on the notion that each plot measurement (yi) has the

same expected value regardless of the plot proportion (ai) in the

condition. Therefore, that this variance estimator performs

poorly when plots have widely differing proportions within the

condition is not surprising.

Other models might represent the data well that have not been

considered here; therefore, no guarantee exists that equation (5b)

is uniformly better than any alternative. For example, consider

equation (4) with different variance assumptions on the error

term, e2i. Suppose the variance of the error was assumed to be

a function of the squared proportion, i.e.

. This would lead to the following

estimate of the mean:

(6a)

which is different from the mean estimator produced by the

other models. A potential problem with this “mean of ratios”

estimator is that plots with small ai values are given large weights.

Intuitively, this seems like a bad idea because these plots contain

less information about the condition than a plot that is fully in

the condition. 

Figure 2.—Simulated comparison of two estimators for variance
of the mean from mapped plots. A relative variance of 0 means
the variance estimator was unbiased, a value of 1 means it
predicted twice the actual variance, and a value of 2 means it
predicted three times the actual variance.
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The variance estimator for the ratio of means model is the

following:

(6b)

where                   . This model was evaluated in the simulation

described above, and it compared favorably (fig. 3) with equation

(5b). The simulation included ai values down to 0.5, so that no

chance of dividing yi by a miniscule ai value was possible.

Because equation (6b) doesn’t perform any better than (5b) in

this controlled situation, this equation is not recommended. 

Variance Estimator Is Unbiased

The purpose of this section is to prove that the variance estimator

for EST2 is unbiased. Reconsider the assumption that the variance

of the error term in equation (4) is proportional to          .

Suppose a circular plot contains the variable of interest, y. If the

coverage of the plot is absolutely homogeneous, the amount of

y, say f(y), on a proportion of the plot, would be f(y)=ay. This

would lead to Var(f(y))=a2Var(y). Recall that                 and

therefore            . In fact, the y variable will not be exactly

homogeneous across the plot; therefore, a2Var(y) would understate

the variance of f(y). A better approximation is likely to be

Var(f(y))=aVar(y). This is the justification for the assumption

used in equation (4).

Intuitively, adjusting the degrees of freedom downward when

using partial plots makes sense, and thus the denominator of

variance estimator (5c) uses            rather than n, the number of

plots. Clearly,                , with equality occurring when all plots

are fully in the condition. Adjusting the degrees of freedom

downward for partial plots results in an unbiased estimate of

the mapped plot variance. Consider the variance estimator for

mapped plots with known population mean,

(7)

The numerator of equation (7) could be written as           and,

by the variance assumptions for equation (4), this has expected

value of                  . Therefore, equation (7) is an unbiased estimator.

Equation (5c) is also justified by this result because it has 1

degree of freedom subtracted from the denominator to account

for the estimated population mean parameter.

In general, the sample size for mapped plots should be adjusted

to account for only using a proportion of the plot, ai. This makes

sense intuitively and theoretically as shown for equation (5c). A

plot that is only 50 percent in the condition should count half as

much as a plot that is fully in the condition. This is the justification

for dividing by           rather than n in equation (5b).

Conclusions

Mapped plots are being installed by FIA as part of the annual

forest inventory system. Two estimators for means and variance

that have been proposed elsewhere were re-derived and compared.

It turned out that both estimators for the mean were identical, but

the variance estimators were quite different. A simulation showed

that the variance estimator from the literature (Van Deusen 2004)

performed significantly better than the alternative estimator. 

A mean of ratios estimator was also discussed. The mean of

ratios variance estimator performed about as well as the estimator

from the literature (Van Deusen 2004). The mean of ratios esti-

mator, however, could perform badly if small slivers of plots are

included in the analysis, and, therefore, is not a recommended

estimator for this particular use.

Figure 3.—Simulated comparison of two variance estimators
defined by equations (5b) and (6b). The relative variance is as
defined for figure 2.
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