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A Model-Based Approach to Inventory
Stratification

Ronald E. McRoberts1

Abstract.—Forest inventory programs report estimates

of forest variables for areas of interest ranging in size

from municipalities to counties to States and Provinces.

Classified satellite imagery has been shown to be an

effective source of ancillary data that, when used with

stratified estimation techniques, contributes to increased

precision with little corresponding increase in costs.

A new approach to stratification based on using satellite

imagery and a logistic regression model to predict

proportion forest area is proposed. The results suggest

that precision may be substantially increased for estimates

of proportion forest area and volume per unit area.

Introduction

The Forest Inventory and Analysis (FIA) program of the U.S.

Department of Agriculture (USDA) Forest Service reports esti-

mates of forest variables for medium to large geographic areas

of interest (AOI) such as counties, national forests, and States

based on data collected from arrays of field plots. Due to budg-

etary constraints and natural variability among plots, sufficient

numbers of plots frequently cannot be measured to satisfy pre-

cision guidelines for the estimates of many variables unless the

estimation process is enhanced using ancillary data. Classified

satellite imagery has been accepted as a source of ancillary data

that can be used with stratified estimation techniques to increase

the precision of estimates with little corresponding increase in

costs (Hansen and Wendt 2000, McRoberts et al. 2002, Hoppus

and Lister 2003). The objective of the study was to evaluate the

utility of satellite image-based stratifications derived from

logistic regression predictions of proportion forest area (P) for

increasing the precision of estimates of volume per unit area

(V) and P.

Data

The FIA program has established field plot locations using a

sampling design that is assumed to produce a random, equal

probability sample (McRoberts and Hansen 1999). The sampling

design is based on a tessellation of the United States into

approximate 2,400-ha hexagons derived using the Ecological

Mapping and Assessment Program methodology (White et al.

1992). At least one permanent plot has been established in each

hexagon. The hexagonal array has been divided into five

nonoverlapping, interpenetrating panels, and measurement of

plots in one panel is completed before measurement of plots

in the next panel is initiated. Panels are targeted for selection

on a 5-, 7-, or 10-year rotating basis, depending on the region

of the country. 

In general, locations of forested or previously forested plots are

determined using Global Positioning System receivers, while

locations of nonforested plots are determined using aerial

imagery and digitization methods. Each field plot consists of

four 7.31-m (24-ft) radius circular subplots. The subplots are

configured as a central subplot and three peripheral subplots

with centers located at 36.58 m (120 ft) and azimuths of 0
o
,

120
o
, and 240

o
from the center of the central subplot. Among

the observations field crews obtain are the proportions of

subplot areas that satisfy specific ground land use conditions.

Subplot estimates of P are obtained by collapsing ground land

use conditions into forest and nonforest classes consistent with

the FIA definition of forest land. Field crews also measure the

diameter at breast height (d.b.h.), 1.37 m (4.5 ft) and the height

of each tree with d.b.h. ≥ 12.5 cm (5 in). Statistical models are

used to predict the volume of each tree from the d.b.h. and height

measurements, and volumes of all trees with d.b.h. ≥ 12.5 cm

on each subplot are added to obtain subplot estimates of V. The

national FIA program uses an infinite sampling framework and

attributes aggregations of data for the four subplots to the point
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corresponding to the center of the central subplot. For two study

areas (fig. 1), one in southern Indiana and one in northern

Minnesota, FIA plot data and three dates of Landsat Thematic

Mapper (TM) or Enhanced TM+ imagery were used.

Observations of P and V obtained between 1999 and 2003 were

available for 1,211 FIA plots in the Indiana study area and for

2,114 FIA plots in the Minnesota study area. 

Landsat imagery for one Indiana scene (path 21, row 33) and

one Minnesota scene (path 27, row 27) was obtained from the

Multi-Resolution Land Characterization 2001 land cover mapping

project (Homer et al. 2004) of the U.S. Geological Survey.

Imagery for three dates corresponding to early, peak, and late

vegetation green-up (Yang et al. 2001) were obtained for each

scene: April 2001, July 2000, and October 2001 for the Indiana

scene and March 2000, July 1999, and October 1999 for the

Minnesota scene. Preliminary analyses indicated that Normalized

Difference Vegetation Index (NDVI) (Rouse et al. 1973) and

the tasseled cap (TC) transformations (brightness, greenness,

and wetness) (Kauth and Thomas 1976, Crist and Cicone 1984)

were superior to both the spectral band data and principal com-

ponent transformations in predicting P. Thus, 12 satellite image-

based predictor variables were used: NDVI and the three TC

transformations for each of the three image dates. Because

plots would eventually be assigned to strata derived from pixel

classifications or predictions, the constraint that a plot could

not sample multiple strata had to be accommodated, and the

FIA plot configuration requires a 3 x 3 block of pixels for

geospatial coverage, the mean of each transformation of the

spectral values was calculated for each 3 x 3 block of pixels

and attributed to the center pixel of each block. Similarly, the

FIA plot observations of P and V were attributed to the pixel

containing the plot center.

Methods

Stratified Estimation

Stratified estimation requires accomplishment of two tasks: (1)

calculation of the relative proportion of the land area correspon-

ding to each stratum, and (2) assignment of each plot to a single

stratum. After the classifications or predictions for the satellite

imagery have been obtained and aggregated into useful strata,

the two required tasks are relatively easy to accomplish. The

first task is accomplished by counting the number of pixels in

each stratum and then calculating the relative proportions of

pixels in strata. The second task is accomplished by assigning

plots to strata on the basis of the stratum assignments of their

associated pixels.

Stratified estimates for FIA variables are calculated using stan-

dard methods (Cochran 1977):

, (1)

and

, (2)

where

, (3)

, (4)

and where Yhi is the ith observation in the hth stratum of the variable

of interest; h=1,…H denotes strata; wh is the weight for the hth

stratum, calculated as the proportion of pixels in the AOI

assigned to the stratum; nh is the number of plots assigned to

the hth stratum;       is the sample mean for the hth stratum; and  

is the sample estimate for the stratum variance. 

Figure 1.—Study areas.
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The FIA program uses stratified estimation but not

stratified sampling. For estimation purposes, at least

five plots per stratum are considered necessary to

obtain reliable stratified estimates. If fewer than five

plots are assigned to a stratum, the user has four

options: (1) combine similar strata, (2) increase the

size of the AOI so that the stratum includes a sufficient

number of plots, (3) combine strata and increase the

size of the AOI, or (4) do not use stratified estimation. 

The effectiveness of a stratification is often evaluated using rel-

ative efficiency (RE) calculated as follows: 

, (5)

where            is estimated variance,          is the estimate of the

mean obtained under the assumption of simple random sampling

(SRS), and        is the estimate of the mean obtained using

stratified estimation. RE > 1.0 indicates that the strata and

stratified estimation have the desired effect of reducing variance

and increasing precision, while  RE   1.0 indicates the strata are

having little benefit. 

Model Prediction

Predictions of P for individual pixels in each study area were

obtained using a logistic regression model (LOG):

(6)

where E(.) is statistical expectation, exp(.) is the exponential

function, the βs are parameters to be estimated, and the Xs are

the 12 transformations of the satellite image spectral values.

Separate sets of parameter estimates were obtained for each

study area. 

Because the estimates of all parameters of model (6) are obtained

from observations for all plots in the study area, the model

prediction for each image pixel will also be based on the obser-

vations for all plots in the study area. Thus, because the same

plots are assigned to strata as were used to calibrate the model

from whose predictions the strata were derived, concern that

the plots do not constitute random samples of strata may exist.

Breidt and Opsomer (2002) showed that for samples smaller

than those used for model calibration for this study, this concern

may be dismissed. 

Analyses

For each study area, the pixel predictions of P were grouped into

0.01-wide classes beginning with     = 0.01 and ending with        

= 1.00. Plots were assigned to the resulting 101 classes on

the basis of the class assignments of the pixels containing the

plot centers. The optimal grouping of the 101 classes into four

strata was determined, subject to the constraint that no stratum

with fewer than five plots was permitted. Within each study

area, three optimality criteria were considered: REP, REV, and

REP + REV. 

As a basis for comparison, means and standard errors for P and

V were obtained for each study area under the SRS assumption.

In addition, means, standard errors, REP, and REV were obtained

for the approach to stratification used by the regional FIA

program of the North Central Research Station (NC), USDA

Forest Service. With the NC approach, four strata are derived

from the 21 classes of the National Land Cover Data (NLCD)

(Vogelmann et al. 2001, Homer et al. 2004). First, the NLCD

classes are aggregated into forest and nonforest classes, and

second, 2-pixel-wide forest edge and nonforest edge classes are

constructed along the forest/nonforest boundary (Hansen and

Wendt 2000, McRoberts et al. 2002). These four classes—

Forest, Forest Edge, Nonforest Edge, and Nonforest—are then

used as strata. For the Indiana study area, the four strata were

derived from the 1992 version of the NLCD, while for the

Minnesota study area, the four strata were derived from the

2001 version of the NLCD. 

Results

Estimates of mean P and V were nearly indistinguishable for

the different approaches to stratification (table 1). In all cases,

REP > REV, which is consistent with previous findings and can

be attributed to the closer relationship between P and a forest/

nonforest classification than between V and the classification.

For both study areas, the LOG approach was superior to the
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NC approach with respect to increasing the precision of estimate

of mean P and V. The largest REP for the LOG approach was 63

percent greater than REP for the NC approach for the Indiana

study area and 51 percent greater for the Minnesota study area.

The largest REV for the LOG approach was 36 percent greater

than REV for the NC approach for the Indiana study area and 21

percent greater for the Minnesota study area.

As expected, for each study area the largest REP was obtained

for the LOG approach when the strata boundaries were selected

to maximize REP, and the largest REV was obtained when the

strata boundaries were selected to maximize REV. The decrease

in REP when the strata boundaries were selected to maximize

REV was approximately 25 percent for both study areas, although

the decrease in REV when the strata boundaries were selected to

maximize REP was less than 10 percent for both study areas.

Thus, REP is apparently more sensitive to changes in strata

boundaries than is REV. When the strata boundaries were selected

to maximize REP + REV, the relative decreases in both REP and

REV for both study areas were less than 5 percent. Finally, very

little advantage was realized for either study area when selecting

strata boundaries to maximize REP + REV as compared to

selecting them to maximize REP. 

Conclusions

The LOG approach was superior to the NC approach for estimating

both mean P and V for both study areas. Increases in REP were

63 and 52 percent for Indiana and Minnesota, respectively, and

increases in REV were 36 and 21 percent for Indiana and

Minnesota, respectively. Although selection of strata boundaries

to maximize REP + REV rather than to maximize either REP or

REV individually had a slight advantage, selection of boundaries

to maximize REP was nearly as effective.

Greater REs could possibly have been achieved with a few more

strata for these data sets. However, the bimodal distributions of

the plots (figs. 2a and 2b) with respect to    , with most plots

either completely forested or completely non-forested, suggest

that the minimum of five plots per stratum would be difficult to

achieve with larger numbers of strata, particularly for the smaller

geographic areas for which the FIA program reports estimates.

Strata Indiana study area Minnesota study area
Approach optimization Mean SE RE Mean SE RE

criterion

Proportion forest area
SRS 0.3383 0.0127 1.00 0.7279 0.0091 1.00
NC 0.3545 0.0067 3.60 0.7267 0.0073 1.53
LOG REA 0.3373 0.0052 5.87 0.7298 0.0060 2.33
LOG REV 0.3349 0.0060 4.50 0.7241 0.0064 1.74
LOG REA + REV 0.3393 0.0053 5.72 0.7298 0.0060 2.33

Volume per unit area (m3/ha) 
SRS 47.44 2.15 1.00 48.91 1.25 1.00
NC 49.75 1.53 1.99 48.78 1.17 1.13
LOG REA 47.32 1.37 2.47 49.12 1.09 1.32
LOG REV 46.97 1.31 2.71 48.62 1.06 1.37
LOG REA + REV 47.57 1.35 2.54 49.12 1.09 1.32

Table 1.—Comparisons of results of stratifications.
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