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Practical Considerations When Using
Perturbed Forest Inventory Plot Locations
To Develop Spatial Models: A Case Study

John W. Coulston1, Gregory A. Reams2, Ronald E.

McRoberts3, and William D. Smith4

Abstract.—U.S. Department of Agriculture Forest

Service Forest Inventory and Analysis plot information

is used in many capacities including timber inventories,

forest health assessments, and environmental risk

analyses. With few exceptions, actual plot locations

cannot be revealed to the general public. The public

does, however, have access to perturbed plot coordi-

nates. The influence of perturbed plot coordinates on

the development of spatial models is unknown. We

examined the influence by comparing the accuracies

of two spatial models for predicting forest biomass,

ordinary kriging and residual kriging. We developed

each model using the actual coordinates and 10 inde-

pendent perturbations of the actual coordinates. We

tested for differences in accuracy using analysis of

variance. No statistically significant difference in

accuracy was found. The results represent only a small

portion of the possible outcomes, however. We suggest

a simulation study to examine the spatial range of

influence that plot coordinate perturbation has on

model accuracy. 

Introduction

The Forest Inventory and Analysis (FIA) program of the U.S.

Department of Agriculture (USDA) Forest Service collects data

on tree and forest attributes using a quasi-systematic sample.

These data are used for many purposes including timber inven-

tories, forest health assessments, and risk assessments. Because

of privacy issues, actual plot locations cannot be revealed to

scientists outside the FIA program or the general public. FIA

has implemented several methods for perturbing plot locations

to protect plot integrity and ensure landowner privacy. Although

the perturbed plot locations are available to the public, the

effects of the perturbations on the accuracy of spatial models

are unknown.

Before 2002, FIA field plot locations perturbed within 1.6 km

of the actual locations were available to the general public.

Although currently no national standard exists for perturbing

plot coordinates, guidelines that may be satisfied at the regional

level using different techniques are available. One method

currently used is to randomly shift plot locations and swap data

among plots. In this article, we use the term “perturbed” to

denote both the random shift in plot location and the swapping

of plot attributes. Plot perturbation influences the spatial char-

acteristics of the data and, therefore, can influence the accuracy

of spatial models.

Spatial models and FIA data are widely used in environmental

assessments. For example, Morin et al. (2003) used FIA field

plot data, perturbed plot locations, and median indicator kriging

to interpolate a surface of percent forest basal area of species

susceptible to Phytophthora ramorum (a fungus-like organism

that causes Sudden Oak Death). This interpolated surface was

then intersected with other spatial data and used to assess the

potential susceptibility of Eastern forests to Phytophthora

ramorum. Coulston et al. (2003) used ordinary kriging to predict

potential ozone injury at FIA phase 3 (formerly forest health

monitoring) plot locations and assess ozone injury risk to

ozone-sensitive Northeastern tree species. This analysis was

conducted using the centers of the sampling hexagons (White

et al. 1992) as plot locations rather than the actual plot locations. 
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Spatial models generally rely on the relationship among obser-

vations by distance and direction (e.g., kriging). More complicated

spatial models may further rely on ancillary data that are inter-

sected with plot data (e.g., residual kriging). The objective of

this study was to examine the influence of FIA plot coordinate

perturbations on the accuracy of two spatial models for predicting

forest biomass. The first model was ordinary kriging of forest

biomass, and the second model was residual kriging in which

forest biomass was predicted using percent forest and leaf area

index (LAI) derived from Moderate Resolution Imaging

Spectroradiometer (MODIS) data. 

Methods

Plot-level estimates of percent forest land use and forest biomass

were obtained for 3,914 FIA plots in Minnesota. The plot locations

were randomly perturbed 10 different times in accordance with

the procedures used by the FIA program of the North Central

Research Station, USDA Forest Service. Perturbing plot locations

entails randomly shifting the x and y coordinates of the actual

locations for all plots, and swapping plot attributes (e.g., tree

volume m3ha-1) entails exchanging coordinates among a proportion

of plots. These manipulations are usually done within a county,

and plot attributes can be swapped only if the plots are sufficiently

similar (e.g., same forest type). The data set consisting of the

percent forest land use and forest biomass estimates and the

actual plot locations is denoted REAL, while the 10 data sets

consisting of the estimates and the perturbed plot locations are

denoted REPS. Before the spatial models were developed, we

randomly extracted 180 plots (approximately 5 percent) from

the data set. Average plot biomass for these extracted plots was

26.6 tons/acre, and the standard deviation was 19.3 tons/acre.

The biomass models were then developed without these plots,

model predictions were made for the 180 plots, and the accuracy

of the models with and without plot coordinate perturbations

(i.e., for the REAL and REPS data sets) was compared. 

Because ordinary kriging is a central technique in this analysis,

we provide a brief overview. (For more details, see Cressie 1993

or Isaaks and Srivastava 1989.) Ordinary kriging is a standard

interpolation technique with a minimum of three steps required

to estimate values at unmeasured locations. First, the empirical

semivariogram is calculated; second, the empirical semivariogram

is modeled; and third, parameter estimates obtained from the

modeled semivariogram are used to predict values at unmeasured

locations. The semivariance between values for a particular lag

distance h is

where N is the number of pairs (i,j), and vi – vj is the difference

between the values of pair (i,j). A semivariogram is a graph of

semivariance by distance class. Several model types may be

used to model the empirical semivariogram, including the

Gaussian model, wave model, power model, and exponential

model. Most variogram models can be characterized by three

parameters: the nugget, sill, and range. The nugget refers to the

y-intercept of the modeled semivariogram and is a function of

microscale variation or measurement error. The sill refers to the

maximum value of semivariance (i.e., the total variation in the

data), and the range is the distance at which the semivariance

reaches 95 percent of the sill. 

After the semivariogram has been modeled, ordinary kriging

can be used to estimate values at unsampled points. Ordinary

kriging is a weighted average such that

where       is the estimate at unmeasured location 0, wi is the

weight for the ith observation, and Vi is the value of the ith

observation. The weights sum to 1 and are determined by mini-

mizing the overall estimation error. The estimation variance is

where γ(si – s0) is the modeled semivariance for the distance

between si and s0, and λ is the Lagrange multiplier from solving

the linear system of equations for minimum estimation error.

We predicted forest biomass using kriging at each of the

extracted 180 plots using the REAL and REPS data sets. To

accomplish this, we first examined the sample variograms for
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each of the 11 data sets. Second, we modeled the sample vari-

ograms with the power model

In this model, a is dimensionless and dictates the shape of the

variogram, and C1 has the same dimension as the variance. The

parameters C1 and a were estimated using weighted nonlinear

regression where the weight was inversely proportional to distance

and semivariance. The logic behind this weighting was that small

semivariance values near distance 0 have the most importance

for kriging. This weighting is similar to the weighting proposed

by Cressie (1985). Third, we used the ordinary kriging equation

to predict biomass values at the 180 locations extracted before

model development using the REAL and REPS data sets.

Delhomme (1978, 1979) first proposed combining regression

and kriging. In our study, we used residual kriging for which a

regression model was developed to predict forest biomass

using percent forest and LAI. The model residuals were then

kriged. The percent forest values were collected in the field for

each plot, and the LAI values were obtained by intersecting a

1-km resolution map of LAI with the REAL and REPS data

sets. The model was developed empirically with general form 

, (1)

where E(Bm) is the statistical expectation of forest biomass

(tons/acre), exp(.) is the exponential function, Pf = percent forest

land use, c = percent forest parameter, LAI = leaf area index

derived from MODIS satellite imagery, and g = parameter for

adjusted LAI. To solve model (1), we first transformed it into

its linear form by taking the natural logarithm of each side.

Next, we used ordinary least-squares to estimate each parameter.

The linear model was then back-transformed, and the semivariance

of the residuals was examined and modeled with the power

variogram model. We then used ordinary kriging to predict the

residual for the prediction for each of the 180 plots extracted

from the analysis. The final predicted value of forest biomass

was the sum of the predicted value from model (1) and the

predicted residual from kriging. This method was applied to the

REAL and REPS data sets. 

We used analysis of variance to examine the influence that plot

coordinate perturbation had on the accuracy of the spatial models.

Specifically, we tested for differences in mean error and mean

squared error among results for the 180 plots extracted from

the data. If we observed an overall difference, we then examined

the reason for the observed difference using Tukey’s studentized

range test. 

Results

We visually inspected the empirical variograms of forest biomass

for differences. Plot coordinate perturbation had the greatest

influence on semivariance values between plots closer than approx-

imately 1,900 m (fig. 1); i.e., the plot coordinate perturbation

changed correlations among observations for plots separated by

relatively short distances. The total variation and range of spatial

autocorrelation were relatively uninfluenced which was expected

because relatively small shifts in plot locations should influence

only local variability. We used a power variogram model to

develop the theoretical variogram. The power model does not

technically have a sill and range, but the plot coordinate pertur-

bation did influence the parameter estimates      and    . 

Figure 1.—Empirical semivariogram for the REAL data set
(solid dark line) and the REPS data sets (solid gray lines).
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No statistically significant difference exists in mean error or

mean square error among kriging estimates based on the REAL

and REPS data sets (table 1). The mean error of estimates based

on the REAL data set was 1.192 tons/acre, which fell between

the high and low limits from the REPS data sets. The estimates

based on the REAL data set had the highest mean square error.

Because no statistically significant difference exists between

estimates based on the REAL and REPS data sets, they all fell

in the same Tukey grouping. 

We developed a regression model to predict forest biomass based

on percent forest and LAI. The linearized model had R2 = 0.88,   

= 2.59, and    = 0.23. Standardized regression coefficients

were used to compare the influence of each predictor variable

when the variables are measured in different units (SAS 1999).

The standardized regression coefficients were    = 0.811 and 

= 0.127, suggesting that the model was most heavily influenced

by Pf. Figure 2 shows the nonlinear form of model (1). The

parameter estimates were slightly different for models developed

from the REPS data sets. The range of estimates for the c

parameter was 2.59–2.73, and the range of estimates for the g

parameter was 0.16–0.23. All the regression models based on the

REPS data sets had R2 0.88 which was similar to that obtained

for the regression model based on the REAL coordinates.

No statistically significant difference exists in mean error or

mean square error among residual kriging estimates based on

the REAL and REPS data sets (table 1). Residual kriging using

the REAL data set had a mean error of 1.201 tons/acre and a

mean squared error of 316.83 (tons/acre)2. The highest mean

error from the REPS data sets was 1.308 tons/acre, and the

highest mean squared error was 321.12 (tons/acre)2. The lowest

mean error and mean squared error were 1.032 tons/acre and

311.36 (tons/acre)2, respectively. Because no statistically signif-

icant difference exists between estimates based on the REAL

and REPS data sets, they all fell in the same Tukey grouping. 

Figure 2.—Predicted biomass based on model (1).

Kriging estimates Residual kriging estimates
Data Mean error Mean squared error Mean error Mean squared erro

tons/acre (tons/acre)2 tons/acre (tons/acre)2

REAL 1.192 343.07 1.201 316.83
REPS01 1.211 339.24 1.032 315.43
REPS02 1.218 339.13 1.247 321.12
REPS03 1.184 338.40 1.212 213.97
REPS04 1.190 340.29 1.221 316.48
REPS05 1.234 339.07 1.308 315.61
REPS06 1.179 341.23 1.083 315.07
REPS07 1.213 338.27 1.174 316.12
REPS08 1.159 338.40 1.123 316.04
REPS09 1.203 341.68 1.189 316.85
REPS10 1.177 338.73 1.281 311.36

Table 1.—Mean prediction error and mean squared prediction error for estimates of biomass based on the REAL and REPS data sets.
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Discussion

In this study, the plot coordinate perturbations did not influence

the accuracy of the spatial models. Two characteristics of the

data, however, may have contributed to this outcome. First, the

biomass variable had a weak spatial structure based on the vari-

ogram. Second, the regression model was based on percent forest

estimates from the field and LAI estimates based on MODIS

imagery. Based on the standardized regression coefficients, the

percent forest variable had the highest weight in the model. 

We considered forest biomass to exhibit a weak spatial structure

because the proportion of the semivariance explained by distance

was relatively small. We can examine the strength of the spatial

structure in many ways. With the power variogram model, the

C1 parameter typically has estimates between 0 and 2 (SAS

1996). When C1 approaches 0, the semivariogram approaches a

horizontal line. Our estimate was      = 0.033, which suggests a

weak spatial structure; i.e., biomass has large variance and

exhibits little spatial correlation, even at small distances. When

the empirical semivariogram exhibits a horizontal linear struc-

ture (i.e., slope = 0 or horizontal line), the best linear unbiased

predictor is the average. When the spatial structure is weak, the

kriging equation will produce estimates close to the global

average. We hypothesize that when the variable of interest has a

weak spatial structure, the plot coordinate perturbations have a

minimal effect on the accuracy of kriging estimates because

estimates approach the global average.

The regression model developed for this study was most heavily

influenced by the percent forest variable. This variable was col-

lected in the field so that each plot, regardless of plot coordinate

perturbation, had the actual field estimate for percent forest.

The LAI variable was obtained by intersecting the imagery with

the plot locations. The MODIS data were 1-km in resolution

which matched well with the plot coordinate perturbation,

because 95 percent of the perturbed plot locations were within

0.8 km of the actual plot location. Also, LAI estimates were

adjusted by the percent forest in model (1). We suggest that the

influence of plot coordinate perturbation on the accuracy of

residual kriging depends on the resolution and the spatial auto-

correlation of the intersected information. 

For spatial models developed by intersecting ancillary data

(e.g., regression kriging, residual kriging, mixed models), the

two most important characteristics of the ancillary data are the

resolution and the spatial autocorrelation. The resolution of the

ancillary data is important because the probability that a plot

will be assigned incorrect information during intersection

decreases with decreasing resolution. For example, plots will

more likely be assigned the correct value from intersection

when the resolution of the ancillary data is 5 km as opposed to

30 m. The autocorrelation of the ancillary data is also important

because plots will more likely be assigned a value similar to the

correct value when high autocorrelation exists. For example, if

the resolution of the ancillary data is 30 m, and the spatial

autocorrelation is zero (i.e., a random spatial pattern), the prob-

ability of assigning the correct value to the plot is very low. If

the resolution of the ancillary data is 30 m, and the spatial

autocorrelation is large, however, the probability of assigning

the correct value to the plot is much greater. 

Conclusions

The objective of this study was to examine the influence of plot

coordinate perturbation on the accuracy of kriging estimates

and residual kriging estimates. For the cases we examined, no

statistically significant influence on accuracy exists.

Generalizations should be made with caution due to the potential

influence of the following factors: 

1. Spatial structure in the variable of interest. A weak spatial

structure should produce little effect, while a strong spatial

structure may produce a larger effect. 

2. Spatial resolution of ancillary data. Coarse spatial reso-

lution decreases the probability of assigning incorrect

ancillary data values to a plot, while fine spatial resolution

increases the probability. 

3. Spatial autocorrelation of ancillary data. High spatial

autocorrelation in ancillary data decreases the probability

of large errors in the assignment of ancillary data value to

a plot, while low spatial autocorrelation increases the

probability. 

We suggest that these topics be further investigated using

simulated variables of known spatial structure.
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