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A Proposal for Phase 4 of the Forest
Inventory and Analysis Program

Ronald E. McRoberts1

Abstract.—Maps of forest cover were constructed

using observations from forest inventory plots, Landsat

Thematic Mapper satellite imagery, and a logistic

regression model. Estimates of mean proportion forest

area and the variance of the mean were calculated for

circular study areas with radii ranging from 1 km to

15 km. The spatial correlation among pixel predictions

was incorporated into the variance calculations. The

map-based estimates were compared to estimates

obtained using only plot data for the same circular

areas. For three circular study areas in Minnesota, the

map-based estimates were similar to the plot-based

estimates and more precise. 

The Forest Inventory and Analysis (FIA) program of the U.S.

Department of Agriculture (USDA) Forest Service surveys the

Nation’s forested lands using a combination of field plot meas-

urements and remotely sensed data. Traditionally, the FIA program

has used data from these inventories to respond to the “How

Much?” question by reporting plot-based estimates of forest

attributes by county or combinations of counties. The estimates

are obtained using a three-phase approach: Phase 1 consists of

using remotely sensed data, often satellite imagery, to stratify the

land area of interest for increasing the precision of estimates,

and, optionally, to determine if a plot has accessible forest land;

Phase 2 consists of measuring a suite of mensurational variables

for plots with accessible forest land; and Phase 3 consists of

measuring a suite of variables related to forest health for a 1:16

subset of the Phase 2 plots.

Increasingly, users are also asking “Where?” and are

requesting access to plot data for estimating for their own areas

of interest (AOI), frequently for use as training or accuracy

assessment data for spatial products. Many of these applications

require the coordinates of plot locations to determine if a plot is

located in the AOI. Although forest inventory programs generally

release plot information to the public, many resist releasing

plot locations. First, release of plot locations may entice users

to visit plots for additional data, which could artificially disturb

the ecology of the sites and contribute to bias in inventory esti-

mates. Second, many forest inventory programs rely on the

goodwill of private forest landowners for permission to observe

plots on their land. Landowners generally do not welcome

unwarranted or frequent intrusions and often only permit visits

by inventory crews contingent on assurances that plot locations

and proprietary information will not be released. 

In response to the “Where?” question, the FIA program

has initiated local, regional, and national mapping efforts.

Although the objectives of these efforts have been to map the

spatial distribution of forest attributes, generally they have not

included investigations of whether the maps may be used to

produce unbiased and precise estimates of forest attributes. For

the latter objective, plot-based estimation using data for plots

located in the AOI has been necessary. However, if unbiased

and sufficiently precise estimates of forest attributes could be

obtained from maps, then several advantages would accrue. First,

release of plot locations would be unnecessary for estimation

for user AOIs. Second, because mapped values for individual

mapping units would be based on aggregated data from multiple

plots, proprietary information would not be released. Third,

estimation would be possible for small areas for which the

number of plots is insufficient for plot-based estimation. Fourth,

efficiencies would be gained by simultaneously addressing both

the “How Much?” and “Where?” questions. 

The objective of the study was to investigate estimation of

forest attributes from maps constructed using inventory plot data

and satellite imagery. In this context, FIA Phase 4 is defined as

the construction of forest attribute maps that satisfy two criteria:

(1) estimates at all spatial scales are within tolerance limits rel-

ative to plot-based estimates, and (2) estimates of the precision

of the map-based estimates are comparable to the precision of

plot-based estimates. For this study, the terms plot-based and

map-based estimates are considered equivalent to the terms

design-based and model-based estimates, respectively. Although

the second set of terms may be regarded as more correct from a
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statistical perspective, the terms of the first set are generally used

for this study because they are considered more descriptive. The

study focused on constructing maps depicting pixel-level proba-

bilities of forest ground cover using inventory plot data, Landsat

Thematic Mapper (TM) satellite imagery, and a logistic regres-

sion model, and then comparing the map-based and plot-based

estimates of forest land area.

Data

FIA Plot Data

Under the FIA program’s annual inventory system (McRoberts

1999), field plot centers are established in permanent locations

using a systematic sampling design that is assumed to produce

a random, equal probability sample. In each State, a fixed pro-

portion of plots is measured annually. For the FIA program of

the North Central Research Station , plots measured in a single

federal fiscal year (e.g., FY 2004: 1 October 2003 to 30

September 2004) comprise a single panel of plots with panels

selected for annual measurement on a 5-year rotating basis. In

aggregate, over a complete 5-year measurement cycle, a plot

represents approximately 2,400 ha (slightly less than 6,000 ac).

In general, locations of forested or previously forested plots are

determined using global position system receivers, while locations

of non-forested plots are determined using digitization methods.

Each field plot consists of four 7.31-m (24-foot) radius

circular subplots. The subplots are configured as a central

subplot and three peripheral subplots with centers located at

36.58 m (120 ft) and azimuths of 0o, 120o, and 240o from the

center of the central subplot. Among the observations field crews

obtain are the proportions of subplot areas that satisfy specific

ground land use conditions. Subplot estimates of forest land

proportion are obtained by aggregating ground land use condi-

tions into forest and non-forest classes consistent with the FIA

definition of forest land, and plot-level estimates are obtained

as means over the four subplots. For this study, all plots were

observed or measured between the beginning of FY1999 and the

end of FY2002. Although the locations of the central subplots

are considered a random, equal probability sample, the fixed

spatial configuration of the peripheral subplots with respect to the

central subplots requires accommodation of spatial correlation

among subplot observations for subplot-level analyses.

Satellite Imagery

Landsat TM imagery for scenes Row 27 and Row 28 of Path 27

was obtained from the Multi-Resolution Characterization 2001

land cover mapping project (Homer et al., in press) of the U.S.

Geological Survey. The imagery was characterized by several

salient features: (1) a combination of Landsat 5 and Landsat 7

Enhanced TM+ data, (2) three dates including early, peak, and

late vegetation green-up (Yang et al., 2001), (3) geometrically

and radiometrically corrected, (4) cubic convolution resampling

to 30 m x 30 m spatial resolution, (5) visible and infrared bands

(1-5, 7), and (6) conversion to at-satellite reflectance.

For predicting the probability of forest cover, the satellite

image spectral data were used in two forms: the 18 raw spectral

band data and 12 transformations including normalized difference

vegetation index (NDVI) and the tree tassel cap transformations

(brightness, greenness, and wetness) for each image date (Kauth

and Thomas 1976). The raw band data and the transformations

were evaluated separately. 

Combining FIA Data and Satellite Imagery

The spatial configuration of the FIA subplots with centers sepa-

rated by 36.58 m and the 30 m x 30 m spatial resolution of the

TM imagery permits individual subplots to be associated with

individual image pixels. Further, the subplot area of 167.87 m2

is approximately 19 percent of the 900 m2 pixel area and is gen-

erally deemed an adequate sample of the ground characteristics

of the pixel area. However, when describing relationships

between forest attributes and satellite image spectral values,

two phenomena must be considered. First, because a subplot is

a single, 19-percent, contiguous sample of the pixel area, the

proportion forest for a partially forested subplot may not accu-

rately represent the proportion forest for the entire pixel. Second,

Global Positioning System and image registration errors may

cause a subplot to be associated with an incorrect pixel, resulting

in the forest attribute of a subplot being erroneously associated

with the spectral signature of a non-forested pixel, and vice

versa. Both phenomena obscure relationships between observed

forest attributes and spectral values, cause bias in estimates of

parameters of models of the relationships, increase both model

residual variability and the uncertainty in model parameter

covariance estimates, and contribute to increasing the variance

of map-based estimates of forest attributes. To avoid these phe-
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nomena, when fitting models data were excluded for plots with

a mixture of forest and non-forest cover. An important result of

the exclusion of these data was that proportion forest area, Y,

was a binary variable. This variable was quantified according to

the convention that Y = 1 denoted a forested subplot and Y = 0

denoted a non-forested subplot.

Within the two TM scenes, three 15-km radius circular

study areas were arbitrarily selected to represent a spectrum of

forest/non-forest ground cover conditions (fig. 1). Because the

relationship between spectral values and the forest/non-forest

composition of ground cover was expected to be approximately

constant over the scenes, data for calibrating models were com-

bined for the three study areas. In addition, spatial variability

was evaluated for the three study areas collectively under the

assumptions that spatial correlation is stationary (i.e., it does

not change within the scene) and that spatial correlation is

isotropic (i.e., it is the same in all directions). 

Methods

Model Calibration

The relationship between the binary forest/non-forest depend-

ent variable, Y, and the continuous spectral value independent

variables, X, may be expressed as,

(1a)
or

(1b)

where i denotes subplot, pi is the probability that Yi = 1, β is a

vector of parameters to be estimated, f(Xi,β) is a function

expressing the relationship among the independent variables

and the parameters, εi is unexplained residual uncertainty, and

E(.) denotes statistical expectation. For binary data, f(Xi,β) is

often expressed as a logistic model of which one form is,

(2a)

and another is, 

(2b)

Each of the two forms, (2a) and (2b), may be expressed as one

minus the other, and parameter values for the two forms are the

same, except that the signs are reversed. 

The parameters of (2) are often estimated by maximizing

the likelihood, L, expressed as,

(3)

where n is the number of subplot observations. Maximum like-

lihood parameter estimates using (3) may be obtained using

SAS PROCs LOGISTIC, CATMOD, or GLIM (SAS 1988),

although care must be exercised to assure the model form, (2a)

or (2b), to which the parameter estimates apply. However,

because (3) cannot accommodate spatial correlation among

subplot observations, another approach to parameter estimation

must be considered if correct measures of uncertainty are

required. Nevertheless, because (3) yields unbiased parameter

estimates, it may be used to obtain parameter estimates if no

measures of uncertainty are required or to obtain initial parameter

Figure 1.—Study areas (white circles represent study areas;
solid white rectangle denotes TM Path 28 Row 27; dashed
white rectangle denotes TM Path 28 Row 28).
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estimates for iterative approaches that accommodate spatial

correlation. 

An iterative approach based on generalized estimating

equations (GEEs) as described by Albert and McShane (1995)

and Gompertz et al. (2000) was used to accommodate spatial

correlation. For the first iteration, ordinary logistic regression

using maximum likelihood was used to fit (2) to the data. The

GEE approach consisted of solving,

(4)

where the elements, zij, of Zi are,

(5)

and              is the logistic function, (2), evaluated using the

parameter estimates,    . The subplot residual covariance matrix,

Ve, was recalculated following each iteration. The standardized

residuals, 

(6)

were calculated and used to define an empirical semivariogram, 

(7)

where h is the distance between subplots, nh is number of subplots

h km apart, and the subscripts i and j indicate the ith and jth sub-

plots, respectively. The exponential semivariogram,

(8)

was fit to the empirical semivariogram using weighted nonlinear

least squares techniques. The elements, vij, of the subplot residual

covariance matrix, Ve, were estimated as,

(9)

The k+1st iterative updated estimate,       , was obtained as,

(10)

The iterative procedure of updating      and recalculating Ve

continued until convergence. The covariance matrix, Vβ, for the

parameter estimates was approximated as,

(11)

Individual variables from among the 18 raw spectral bands and

the 12 transformations were selected for inclusion in the model

by repeatedly fitting the model using the GEE technique after

eliminating the least significant variable among those that did

not contribute significantly to improving the quality of fit. 

Map-Based Estimation

Because the estimate of forest area for an AOI may be expressed

as the product of the AOI’s total area and an estimate of its

expected proportion forest land, the remaining discussion focus-

es on the estimation of the expected proportion forest land and

the precision of the estimate. For the ith pixel in the AOI, the

probability, pi, that Yi = 1 was estimated as,

(12)

where      is the vector of parameter estimates obtained from

(10). The estimate,     , of the expected proportion forest, P, for

the entire AOI is the mean of the probability estimates over all

pixels,

(13)

where N is the number of image pixels in the AOI. The variance

of      was estimated as,

(14)

where      is the covariance matrix for the parameter estimates

from (11) and ε is residual uncertainty. The first component

within the brackets of (14) quantifies the uncertainty in the

estimate because predictions for each pixel are obtained from a

model with parameter estimates obtained from the same sample.

The second component within the brackets of (14) quantifies

the effects on uncertainty of residual variation around the model

predictions. The derivation of (14) is provided in the appendix.
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An estimate of correlation among residuals at a distance h,    

(h), was obtained from the relationship,

where    (h) is obtained from (8) and                   . Thus, in

application, Cov(εi,εj) was estimated as, 

(15)

where h is the distance between the centers of the ith and jth pixels.

Plot-Based Estimation

Plot-based estimates of the mean and variance of proportion

forest land were calculated as a standard of comparison for

map-based estimates. When calculating these estimates, data were

included for all four subplots of each plot having any portion

of a subplot in the AOI. In addition, all plots in the AOI were

selected for calculation of the mean and variance, regardless of

the homogeneity of the ground cover. Inclusion of subplots

with a mixture of forest and non-forest ground cover meant

that proportion forest area could not be considered a binomial

variable when calculating the variance of the estimate of the

mean. Because the sampling design was considered to produce

an equal probability, random sample, central subplots of all plots

were considered to be randomly located, and spatial correlation

among observations from different plots was not considered.

However, the fixed spatial configuration of peripheral subplots

with respect to their corresponding central subplots meant that

spatial correlation, ρ, among subplot observations of the same

plot could not be ignored. Large area analyses indicated that the

correlation between central and peripheral subplot observations

for the same plot was approximately 0.9, while the correlation

between peripheral subplot observations of the same plot was

approximately 0.8. Estimates of the variances of the plot-based

mean proportion forest land area estimates were calculated as,

(16)

where i denotes subplots, n is the number of subplots in the AOI,

is the number of central subplots, and        is the number of

peripheral subplots.

Analyses

The inventory plot data and the satellite image spectral data were

pooled for the three study areas, and a single set of parameters

for model (2a) was estimated for all three study areas. For each

circular area, the prediction of the probability of forest land was

calculated for each pixel, and a map of the predicted probabilities

was created. Within each 15-km radius circular study area, the

map-based estimates    and Var (   )were calculated using (13)

and (14), respectively, for circular areas with radii ranging from

1 km to 15 km centered at the center of the study area. In addition,

the plot-based estimates     and              were calculated using

(15) and (16), respectively, for the same circular areas.

Results and Discussion

The NDVI and tassel cap transformations were better predictors

of the probability of forest ground cover than were the raw

spectral band data. However, these results may vary for different

ground covers and for satellite imagery of different dates. Because

of the relatively small numbers of plots in each study area and

the common set of parameter estimates for all three study areas,

a single semivariogram was fit to residual data collectively for

all three study areas. The fitted semivariogram indicated that

spatial correlation did not extend beyond 350 m.

The inventory data, satellite imagery, and logistic model

produced considerable detail in the maps depicting the probability

of forest land for each pixel (fig. 2). Comparisons of the map-

based and plot-based estimates of mean proportion forest land

and estimates of the standard errors of the estimates yielded

three primary results (table 1). First, the map-based estimates

of mean proportion forest land were very similar to the plot-based

estimates. Of the 37 circular areas for which the plot-based

standard error was greater than zero, all except four map-based

estimates of proportion forest land were within two plot-based

standard errors of the plot-based estimates. For these exceptional

four cases, t-tests using plot-based variances in the denominator

of the t-statistic yielded P = 0.04, P=0.04, P=0.02, and P<0.001.
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Radius Plot-based estimates Map-based estimates
(km) No. plots Mean SE Mean SE

Study Area 1
1 0 ----- ----- 0.4803 0.1038
2 0 ----- ----- 0.6585 0.0563
3 1 1.0000 0.0000 0.7370 0.0468
4 2 0.5000 0.3561 0.7578 0.0449
5 3 0.6667 0.2678 0.7184 0.0418
6 6 0.8333 0.1464 0.7002 0.0384
7 6 0.8333 0.1464 0.6691 0.0359
8 7 0.8571 0.1269 0.6467 0.0299
9 10 0.7000 0.1383 0.5965 0.0281
10 13 0.6154 0.1284 0.5965 0.0281
11 16 0.6094 0.1158 0.6002 0.0309
12 18 0.6300 0.1072 0.6111 0.0314
13 23 0.5490 0.0975 0.6223 0.0317
14 26 0.5914 0.0906 0.6271 0.0321
15 29 0.5992 0.0855 0.6279 0.0332

Study Area 2
1 0 ----- ----- 0.8390 0.0069
2 1 1.0000 0.0000 0.8362 0.0400
3 1 1.0000 0.0000 0.8199 0.0378
4 1 1.0000 0.0000 0.7587 0.0402
5 3 0.6667 0.2678 0.7684 0.0381
6 7 0.8571 0.1269 0.7768 0.0359
7 7 0.8571 0.1269 0.7756 0.0398
8 7 0.8571 0.1269 0.7758 0.0359
9 12 0.9167 0.0760 0.7599 0.0390
10 12 0.9167 0.0760 0.7372 0.0361
11 14 0.9286 0.0654 0.7309 0.0351
12 17 0.8676 0.0780 0.7216 0.0351
13 22 0.8010 0.0796 0.7133 0.0344
14 24 0.8170 0.0737 0.7099 0.0333
15 32 0.7065 0.0755 0.7032 0.0332

Study Area 3
1 0 ----- ----- 0.7563 0.0388
2 1 0.7500 0.4710 0.7506 0.0570
3 1 0.7500 0.4710 0.7430 0.0714
4 2 0.8750 0.2355 0.7016 0.0608
5 4 0.9375 0.1178 0.6846 0.0675
6 5 0.9500 0.0942 0.6563 0.0705
7 6 0.7917 0.1596 0.6378 0.0719
8 8 0.8438 0.1229 0.6341 0.0726
9 10 0.6750 0.1413 0.6358 0.0717
10 13 0.7500 0.1142 0.6347 0.0694
11 16 0.6692 0.1111 0.6316 0.0713
12 18 0.5949 0.1093 0.6245 0.0726
13 23 0.5525 0.0979 0.6119 0.0734
14 27 0.5447 0.0905 0.5971 0.0742
15 30 0.5236 0.0861 0.5760 0.0735

Table 1.—Mean proportion forest estimates by study area.
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Figure 2a.—Probability of forest for Study Area 1 (white=non-
forest, black=forest).

Figure 2b.—Probability of forest for Study Area 2 (white=non-
forest, black=forest).

Figure 2c.—Probability of forest for Study Area 3 (white=non-
forest, black=forest).

However, it must be noted that, on the one hand, these P-values

are conservative because the denominator of the t-statistic did

not account for uncertainty in the map-based estimates. On the

other hand, P-values for circular areas of different radii in the

same study area are not independent, because the plot data used

to obtain an estimate for any particular circular area uses plot

data for all circular areas of smaller radii in the same study area.

Nevertheless, these results indicate that the map-based and

plot-based estimates are quite similar. Second, the map-based

estimates revealed a smooth transition as the radii of the circular

areas increased from 1 km to 15 km. This result suggests that

even when the number of plots in a small circular area was

insufficient to obtain a reliable plot-based estimate, a reliable

map-based estimate was possible. Third, the map-based standard

errors were consistently smaller than the plot-based standard errors. 

Two conclusions are warranted from this study. First, for

forest land area, map-based estimation is not only feasible but

also may produce estimates that are comparable, if not superior,

to plot-based estimates. Second, although map-based estimation

for other forest attributes is expected to be more difficult than

for forest land area, the results of this study are sufficient to

encourage the FIA program to initiate a Phase 4 focusing on

construction of maps for estimation. 
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Appendix

The estimate,    , of the expected proportion forest, P, for an

entire area of interest is simply the mean of the probability

estimates,    , over all pixels,

where N is the number of image pixels in the AOI. The objective

of the appendix is to provide a derivation of the estimate for

the variance of    . First, however, two intermediate results are

demonstrated. 

The first intermediate result is that for Zi = (zi1,zi2,…,zin), a

vector of constants, and ∆′ = (δ1,δ2,...,δn), a random vector dis-

tributed N(0,V∆), 

(A1)

Although (A1) is not proven for the general case, a demonstra-

tion for the case of n=2 is provided. 

The general case follows by analogy.

The second intermediate result is that for Zi = (zi1,zi2,…,zin), a

vector of constants, and ∆′ = (δ1,δ2,...,δn), a random vector dis-

tributed N(0,V∆),

(A2)

Although (A2) is not proven for the general case, a

demonstration for n=2 is provided. 

by (A1)

The extension of this result to the general case also follows by

analogy.
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The primary result is that for pi equal to the probability

that Yi = 1 (i.e., that the ith pixel has forested ground cover),         

=         ,   , and                , the variance of      may be esti-

mated as,

(A3)

where     is the estimated covariance matrix for the estimates of

ββ, Zi is a vector with elements, 

and εi is a residual. The proof follows.

by (A2).


