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Stratum Weight Determination Using
Shortest Path Algorithm

Susan L. King1

Abstract.—Forest Inventory and Analysis uses post-

stratification to calculate resource estimates. Each

county has a different stratification, and the stratification

may differ depending on the number of panels of data

available. A “5 by 5 sum” filter was passed over the

reclassified forest/nonforest Multi-Resolution

Landscape Characterization image used in Phase 1,

generating an image in which each pixel represents

the count of forested pixels inside a 5 by 5 window.

The forested pixel count ranges from 0 to 25 or 26

classes. In the next step, the ground plots are overlaid

on the class map generated by the 5 by 5 window. The

objective is to find the break points in the 26 classes

that minimize the difference in the number of acres/plot

between strata while simultaneously maximizing the

number of strata. These are conflicting goals. More

strata imply larger deviances between the strata. Also,

the stratum must have contiguous classes with at least

four plots. This is a nonlinear integer programming

problem. Because software is not readily available to

solve a nonlinear integer programming problem, the

problem was reformulated to finding the shortest path

through the network. For each county, the optimal one,

two, three, four, five, six, and seven strata are found,

and various heuristics for determining the final solution

are investigated and compared.

Introduction

The annual Forest Inventory and Analysis (FIA) sampling

design is composed of three phases. Phase 1 uses satellite

imagery to classify the land area in a State as forest or nonforest.

Phase 2 is the traditional ground sample. An interpenetrating

hexagonal grid is placed across a State with one ground plot

per grid cell. Each hexagonal grid represents 5,937 acres.

One-fifth of the ground plots spread uniformly across the State

are visited yearly. Each year’s plots/hexagonal grids are referred

to as a panel. On a subset of the Phase 2 plots, additional variables

are measured to determine forest health. This subset is the Phase

3 sample. This article focuses on finding an automated and

efficient procedure for determining the optimal number of strata

and, hence, the stratum weights for Phase 2 forest land estimates

or “on the fly” resource estimates of user-defined polygons.

The objective is to minimize the difference in the Phase 1-to-

Phase 2 ratio between the strata (deviance) while simultaneously

maximizing the number of strata.  Each stratum must have a

minimum of four ground plots. When the population is divided

into as many homogenous strata as possible, the variance of the

population estimates tends to be lower. As the number of strata

increase, it becomes more difficult to find break points in which

all the strata have approximately equal Phase 1-to-Phase 2 ratios. 

Methods

Phase 1 and Phase 2 Cost Information

The satellite imagery used for the Phase 1 sample was a forest/

nonforest map acquired from National Land Cover Data (formerly

Multi-Resolution Land Characterization [MRLC]). This vegetation

map was made by the U.S. Geological Survey Earth Resources

Observation Systems (EROS) Data Center (Vogelmann et al.

2001) and is based on 1992 Landsat 7 Thematic Mapper data;

other intermediate-scale spatial data were used as ancillary

data. For the forest/nonforest call, the MRLC was reclassified

so that the forest classes and woody wetland received a value of

1, and other pixels received a value of 0. A “5 by 5 sum” filter

was passed over the reclassified forest/nonforest MRLC image,

generating an image in which each pixel represents the count

of forested pixels inside a 5 by 5 window. The forested pixel

count ranges from 0 to 25, which creates 26 classes (bins). The

Phase 2 plots were overlaid on the filtered image to obtain a
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forested class call for each plot. For the Phase 1 sample, both

the total number of pixels in a polygon of interest, such as a

county, and the number of pixels in each bin are known. This

information is used to develop a cost function, which is not

limited to a monetary function. A cost function also can be time,

distance, or another measure to be optimized. Again, the objective

is to break the 26 bins into strata that minimize the variance by

equalizing the Phase 1-to-Phase 2 stratum acres/plot costs while

simultaneously maximizing the number of strata. Each stratum

must have contiguous bins and at least four ground plots. The

bins must be contiguous so that similar forested and nonforested

bins are grouped together.

To mathematically formulate the cost information, let the

26 bins be numbered from 1 to 26. There are    strata, and b1,

b2,,…,        are the break points between strata. The first bin

(end point b0) is always in stratum 1, and the last bin (end point   

) is always in stratum . The Phase 1 area for each county or

polygon for bin i is:

(1)

On a per stratum basis for a county, the Phase 1 area for stratum

j is:

(2)

The Phase 2 county or polygon sample size for each bin is:

(3)

The Phase 1-to-Phase 2 ratio is the number of acres/plot, also

known as the stratum weight. This stratum weight will be used

as the “cost” for stratum j.

(4)

Objective Function

Two objective functions are defined. The deviance objective

function is the sum of the absolute value of the cost differences

between a stratum and the adjacent lower stratum. This is

expressed mathematically as:

(5)

The smoothed deviance is the sum of the absolute value of

the cost differences between a stratum and all the previous strata.

This is expressed mathematically as:

(6)

By including all possible pairs of strata, the smoothed

deviance should better reduce the cost difference between strata

over the deviance objective function. In each case, these objective

functions tend to result in proportional allocation to the strata,

which is the expectation from a systematic sample of plots.

Shortest Path

Mathematical optimization is a tool for finding the combination

of decision variables and their values that minimize or maximize

an objective function while simultaneously satisfying a set of

constraints on the decision variables. In this article, the deviance

or smoothed deviance function is the objective function, and the

constraints are the contiguous bin requirement and the lower

bound on the number of ground plots per stratum. One mathe-

matical optimization procedure to optimally determine the best

allocation of bins to a stratum is the shortest path algorithm.

The problem is formulated as a feed-forward network (fig.1). A

Figure 1.—Each stage in this three-stage network corresponds to
a stratum. Bin combinations are located at the node, and the cost
between bin combinations is located on the arcs.
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network has nodes joined by arcs, and, in this problem, the arcs

are directed in only one direction. The objective is to traverse

the network from the start node to the stop node with the least

cost. Each arc has an associated cost, which could be time,

money, distance, or another measure. In this case, cost is the

deviance or smoothed deviance objective function. The stages

in the network correspond to the strata. The network in figure 1

is a three-stage or three-strata network. The cost encountered

from the start node to stage 1 is 0, and the cost encountered

from stage 3 to the stop node is 0. The nodes in each stage cor-

respond to the number of bins. In stage 1, all the nodes include

the first bin, and, in stage 3, all the nodes contain bin 26. In

stage 1, if bins 1 through 24 are selected, in the three-stratum

case, bin 25 must be selected in stage 2, and bin 26 selected in

stage 3. If only bin 1 is in the first stratum, many combinations

exist for strata 2 and 3. If four plots are not in the bin combina-

tion at a node, the arc is assigned a large cost so that this path

never will be selected. Paths containing these infeasible arcs

are pruned from the network before solving for the shortest

path through the network. 

Many approaches and algorithms are available to solve a

shortest path problem. Dijkstra’s Algorithm (1959) is the classic

method for computing the shortest path from a single source

node to every other node in a weighted (stratum weight cost on

an arc is a weight) network. This algorithm, a simple and con-

sequently easily implemented algorithm for finding the shortest

routes, is the most widely used in GIS software packages.

Dijkstra’s Algorithm is used for solving problems that require

real-time solutions—for example, routing an ambulance to an

accident site and from there to the nearest hospital. Its perform-

ance depends on the data structures (for example, heaps or priority

queues) used to represent the network (Derekenaris et al. 2001).

Improving the data structure efficiency of Dijkstra’s Algorithm

and other approaches to solving the shortest path problem are

active areas of research. Nevertheless, shortest path algorithms

are used routinely to solve large-scale problems and are available

in most programming languages.

Almost any problem that can be formulated as a shortest

path through a network also can be solved using dynamic pro-

gramming, that is, the problem can be solved using recursive

equations without special software. The drawback of dynamic

programming is the “curse of dimensionality.” As both the

number of stages and nodes increase, so do the number of

recursions. Information for the recursions must be stored in a

lookup table. The feasibility of using dynamic programming

for solving the stratum weight problem was not investigated.

Another mathematical optimization approach to optimally

allocating bins to the strata is nonlinear integer programming.

If bin i is assigned to stratum j, the decision variable is 1; oth-

erwise, the decision variable is 0. In addition to the constraints

requiring at least four ground plots and consecutive bins, con-

straints are added to ensure that each bin is assigned to only

one stratum, and that each stratum has at least one bin. The

objective function is either equation (5) or (6). The objective

function is nonlinear because the denominator term, number of

ground plots in a stratum, is an integer variable. Commercial

software is not readily available to solve nonlinear integer pro-

gramming problems, but is readily available to solve a shortest

path problem.

Data

Three panels of annual inventory data from Pennsylvania

were used to evaluate the procedures for determining the stratum

weights for each county. From this information, estimates are

calculated for the number of acres of nonforest and forest for

each county and the State. The complete range of forested

conditions is found in Pennsylvania, from heavily nonforested

to heavily forested counties. Heavily forested or nonforested

counties may require only one stratum, whereas counties with a

mixture of forest conditions may require as many as seven strata. 

Table 1 shows the possible stratifications from the shortest

path algorithm for Mifflin County using the smoothed deviance

objective function and three annual panels. The shortest path

cost increases as the number of strata increases. The one-stratum

solution starts at the first bin and stops at the last bin. The cost

is 9,763 acres/plot. For the two-stratum solution, the first stratum

has bins 1 through 25, and the second stratum has bin 26. The

shortest path is the difference between the cost of 10,194 acres/

plot and 9,417 acres/plot, or 776.7 acres/plot. The shortest path

cost increases as the number of strata increases. This precludes

building one network and allowing the algorithm to select the

strata combination with the lowest cost. From the table, dividing

the 26 bins into two groups of equal cost is easier than three

groups of equal cost. Larger numbers of strata should have



86 2003 Proceedings of the Fifth Annual Forest Inventory and Analysis Symposium

lower sampling errors, however. From a mathematical point of

view, stopping at bin 25 for the first of two strata makes sense,

but is it wise from a biological perspective? Bins may have no

or a sparse number of ground plots, and they are grouped with

the strata that best balances the cost.

Because the shortest path cost directly increases as the

number of strata increases, a single network cannot be built

because the smaller strata solutions would prevail. Therefore,

several heuristics were investigated for selecting the “optimal”

number of strata. (Optimal is in quotation marks because the

procedures are rules of thumb and not mathematically based

procedures that develop necessary and sufficient conditions for

optimality). One heuristic was to divide the shortest path by the

number of difference pairs and graph the new cost versus the

number of strata. The hypothesis was that the curve would

decrease, reach a minimum, and then increase. The solution

would be the number of strata at which the curve reached its

minimum. The curves for each county did not follow the expected

pattern, however; the cost per difference pair tended to increase

with an increasing number of strata. A second heuristic ties the

last bin in the first stratum and the first bin in the last stratum

to NLCD imagery classification break points developed by

Hoppus et al. (2001). Not all the counties could be classified

with NLCD imagery break points because the requirements are

too stringent or the county is essentially all forest or nonforest

and the only appropriate stratification is one stratum. The final

procedure is a series of relaxations on the NLCD imagery

requirement. The procedure is as follows.

Imagery-Based Heuristic for Selecting the “Optimal”

Number of Strata

Step 1. Create table 1 for each county. For each strata combi-

nation, calculate: 

Cost range = largest cost of a strata – smallest cost of

a strata

Next, sort by county and descending cost range. This

sorting guarantees that the solution with the largest

number of strata that meets the remaining criteria will

be selected first.

Step 2. Separate the counties that can be stratified only by

one stratum (group A) from the remaining counties.

From the remaining counties, select the counties with

a cost range of less than 6,000 acres/plot, a break point

between the first and second stratum at bin 7 or lower,

and the break point between the highest stratum and

its adjacent lower stratum at bin 24 or higher. (These

break points are the NLCD imagery classification break

points.) From the counties that meet these criteria,

select the solution with the largest number of strata

(group B). Remove group B counties from the remaining

data.

Step 3. Relax the standards on the remaining data (original

data set minus groups A and B). From the remaining

counties, select the counties with a cost range of less

than 6,000 acres/plot, fewer than 12 bins in the first

stratum, and the last stratum in bin 19 or higher. From

the counties that meet these criteria, select the solution

with the largest number of strata (group C). Remove

group C counties from the remaining data.

Step 4. Relax the standards on the remaining data (original data

set minus groups A, B, and C). From the remaining

counties, select those counties with a cost range of less

than 6,000 acres/plot. From the counties that meet these

criteria, select the solution with the largest number of

strata (group D). Remove group D counties from the

remaining data.

Step 5. Select any remaining counties based on the smallest

cost range. Place these counties in group E.

Step 6. Add groups A, B, C, D, and E to form the final solution. 

Strata
Start1 Stop1 Cost1 Start2 Stop2 Cost2 Start3 Stop3 Cost3 Start4 Stop4 Cost4

Shortest
number path

1 1 26 9,763

2 1 25 9,417 26 26 10,194 776.76

3 1 1 5,116 2 24 11,204 25 26 11,005 12,174.29

4 1 1 5,116 2 6 6,471 7 22 12,244 23 26 12,149 27,059.84

Table 1.—Possible stratifications for Mifflin County.
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Ratio Heuristic

Another heuristic is the ratio heuristic:

(7)

For the first panel, the ratio is approximately 30,000 acres/plot.

For the second and third panel, the ratio is approximately 15,000

and 10,000 acres/plot, respectively. Exact numbers for the ratio

heuristic could easily be calculated, but the approximations are

used in this study. 

To implement the ratio heuristic, apply Step 1 in the imagery-

based heuristic. For Step 2, find the solution with the highest

number of strata so that the cost range is less than the ratio in

equation (7).

Results

Currently, a human expert performs the stratification for the

annual inventory. From the number of plots in the county and

their distribution in the 26 classes, the expert can estimate the

number of strata. Using this information and a spreadsheet

macro, the expert can visually examine the impact of different

break points in the cost per stratum equation (4). The final

solution is achieved when the expert believes that the cost cannot

be further balanced among the strata. Table 2 shows the division

of land between nonforest (0) and forest (1) for the three panels

of annual inventory data in Pennsylvania.

The statistics in table 2 are calculated using FINSYS

(Born and Barnard 1983), the computer program used by the

Northeastern FIA unit to calculate sampling statistics. Because

the data must be in a special format for FINSYS, “what if ”

questioning is difficult. As a result, the remaining statistics were

calculated with a user-written SAS macro (SAS Institute 1999)

and benchmarked against FINSYS. The results for the three-

panel problem with a deviance objective function and a smoothed

deviance objective function are shown in tables 3 and 4,

respectively. According to the ratio rule, for three panels, the

maximum cost range should be 10,000 acres/plot. For evaluation

purposes, 6,000 acres/plot also was considered. The sampling

Forest land Area (acres) Mean area (%) Sampling 
error (%)

0 12,030,500 41.9 1.2

1 16,652,100 58.1 0.9

Table 2.—Human expert’s result for three-panel stratification in
Pennsylvania.

Procedure Forest land Area (acres) Mean area (%) Sampling error (%)

Imagery-based 0 11,767,610 41.03 1.179
1 16,915,021 58.97 0.820

Cost range <  6,000 acres/plot 0 11,794,962 41.12 1.164
1 16,887,670 58.88 0.813

Cost range < 10,000 acres/plot 0 11,769,360 41.03 1.172
1 16,913,272 58.97 0.816

Table 3.—Three-panel stratification using optimization and deviance objective function.

Procedure Forest land Area (acres) Mean area (%) Sampling error (%)

Imagery-based 0 11,760,770 41.00 1.175
1 16,921,862 59.00 0.817

Cost range <  6,000 acres/plot 0 11,794,956 41.12 1.169
1 16,887,675 58.88 0.817

Cost range < 10,000 acres/plot 0 11,736,291 40.92 1.165

Table 4.—Three-panel stratification using optimization and smoothed deviance objective function.

Total Land Area (acres) in State
Ratio=

Total Number of Plots Measured
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errors are lower for the optimization procedures. The mean area

percentages differ by approximately 1 percent between the expert

and the optimization. In the optimization groups, the imagery-

based procedure had slightly higher sampling errors. For the

optimization procedure, the lowest sampling errors were for the

smoothed deviance objective function and the ratio decision rule

using a cost range of less than 10,000 acres/plot. Consequently, in

the remaining statistics, the imagery-based decision rule is not

further investigated, and only the smoothed deviance objective

function is investigated.

Table 5 shows the results for two-panel combinations. Panels

1 and 2 are shaded light gray, panels 1 and 3 are shaded dark gray,

and panels 2 and 3 have a white background. For two panels,

each plot is worth approximately 15,000 acres. A decision rule

of cost range of less than 10,000 acres/plot is for comparison.

The sampling errors are close. The cost range of less than

10,000 acres/plot decision rule has slightly lower sampling

errors in two of the three cases. In the first and second panel

combination, the lowest sampling error for the forest land is for

the cost range of less than 10,000 acres/plot decision rule, and

the lowest sampling error for nonforest is the cost range of less

than 15,000 acres/plot decision rule.

Table 6 presents the results for the single panel. Panels 1

and 2 are shaded light gray, panels 1 and 3 are shaded dark gray,

and panels 2 and 3 have a white background. The ratio decision

rule would be to accept the stratification with the largest number

Procedure Forest land Area (acres) Mean area (%) Sampling error (%)

Cost range < 10,000 acres/plot 0 11,824,972 41.23 1.457
1 16,857,659 58.77 1.022

Cost range < 15,000 acres/plot 0 11,916,395 41.55 1.443
1 16,766,236 58.45 1.025

Cost range < 10,000 acres/plot 0 11,824,972 41.23 1.457
1 16,857,659 58.77 1.022

Cost range < 15,000 acres/plot 0 11,810,641 41.18 1.498
1 16,871,991 58.82 1.048

Cost range < 10,000 acres/plot 0 11,633,254 40.56 1.457
1 17,049,378 59.44 0.994

Cost range < 15,000 acres/plot 0 11,660,065 40.65 1.495
1 17,024,023 59.35 1.024

Table 5.—Two-panel stratification using optimization and smoothed deviance objective function.

Procedure Forest land Area (acres) Mean area (%) Sampling error (%)

Difference < 15,000 acres/plot 0 12,105,840 42.21 2.367
1 16,576,792 57.79 1.728

Difference < 30,000 acres/plot 0 12,215,132 42.59 2.289
1 16,467,500 57.79 1.698

Difference < 15,000 acres/plot 0 11,841,438 41.28 2.396
1 16,841,194 58.72 1.685

Difference < 30,000 acres/plot 0 11,632,008 40.55 2.344
1 17,050,624 49.45 1.599

Difference < 15,000 acres/plot 0 11,872,889 41.39 2.363
1 16,809,742 58.61 1.669

Difference < 30,000 acres/plot 0 11,871,364 41.39 2.338
1 16,811,268 58.61 1.651

Table 6.—One-panel stratification using optimization and smoothed deviance objective function.
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of strata so that the cost range between the stratum with the

largest and smallest cost is less than 30,000 acres/plot. These

results are contrasted with those obtained from using 15,000

acres/plot. The sampling errors are larger with fewer panels.

The sampling errors are lower for the difference of less than

30,000 acres/plot for all three panels.

Conclusions

The procedure described in this article is an automated

approach to determining the stratification for a county, State, or

other polygon. Using this procedure achieved lower sampling

errors than with the current human expert procedure. By for-

mulating the problem as a shortest path through the network,

fast and efficient computational procedures are available to

provide a real-time solution. Actual solution time depends on

the number of arcs in the network. Arcs increase with the num-

ber of polygons to be simultaneously processed and the number

of strata. Pruning of infeasible paths before optimization and a

fast computer processor reduce the solution time. Different

shortest path algorithms affect the solution speed. 

From the shortest path formulation, the optimal one-, two-,

three-, four-, five-, six-, and seven-strata solutions are found.

To find the “optimal” solution, several heuristics were investi-

gated. The ratio heuristic is easily implemented and provided

the smallest sampling errors. 
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