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K-Nearest Neighbor Estimation of Forest
Attributes: Improving Mapping Efficiency

Andrew O. Finley, Alan R. Ek,Yun Bai, and Marvin E. Bauer1

Abstract.—This paper describes our efforts in refining

k-nearest neighbor forest attributes classification

using U.S. Department of Agriculture Forest Service

Forest Inventory and Analysis plot data and Landsat 7

Enhanced Thematic Mapper Plus imagery. The analysis

focuses on FIA-defined forest type classification

across St. Louis County in northeastern Minnesota.

We outline three steps in the classification process

that highlight improvements in mapping efficiency:

(1) using transformed divergence for spectral feature

selection, (2) applying a mathematical rule for reducing

the nearest neighbor search set, and (3) using a database

to reduce redundant nearest neighbor searches. Our

trials suggest that when combined, these approaches

can reduce mapping time by half without significant

loss of accuracy.

The k-nearest neighbor (kNN) multisource inventory has proved

timely, cost-efficient, and accurate in the Nordic countries and

initial U.S trials. (Franco-Lopez et al. 2001, Haapanen et al.

2004, McRoberts et al. 2002). This approach for extending

field point inventories is ideally suited to the estimation and

monitoring needs of Federal agencies, such as the U.S.

Department of Agriculture (USDA) Forest Service, that conduct

natural and agricultural resource inventories. It provides wall-to-

wall maps of forest attributes, retains the natural data variation

found in the field inventory (unlike many parametric algorithms),

and provides precise and localized estimates in common metrics

across large areas and various ownerships.

At a pixel-level classification, the kNN algorithm assigns

each unknown (target) pixel the field attributes of the most

similar reference pixels for which field data exists. Similarity is

defined in terms of the feature space, typically measured as

Euclidean or Mahalanobis distance between spectral features.

The kNN algorithm is not mathematically complex; however,

using multiple image dates and features from each date, along

with several thousand field reference observations, makes kNN

pixel-based mapping of large areas very inefficient. Specifically,

the kNN classification approximates to F·N distance calculations,

where F is the number of pixels to classify and N is the number

of references. For example, standard kNN mapping of a 1.3 x 106

ha area, with a pixel resolution of 30 m2, and approximately

1,500 FIA field reference observations requires about 22 bil-

lion distance calculations and around 16 hours to process on a

Pentium 4, single-processor computer.

Our study examined using USDA Forest Service Forest

Inventory and Analysis (FIA) plot data and Landsat 7 Enhanced

Thematic Mapper Plus (ETM+) imagery in kNN classification

of FIA-defined forest types. Specific emphasis is placed on

improving mapping efficiency by reducing classification feature

space, decreasing the number of distance calculations in the

nearest neighbor search, and eliminating redundancy in redundant

nearest neighbor searches by building a database of feature

patterns associated with different forest type classes.

Study Area and Data

Study Area

St. Louis County, in northeastern Minnesota, is located in the

FIA aspen-birch unit. For a detailed description of the study

area, see Bauer et al. (1994). 

FIA Plot Data

The FIA program began fieldwork for the sixth Minnesota forest

inventory in 1999. This effort also initiated a new annual inven-

tory or monitoring system. In this new system, approximately

one-fifth of the field plots in the State are measured each year.

The new inventory protocol collected field data on the four-subplot

cluster plot configuration (USDA Forest Service 2000). This plot

design consists of four 1/60-ha, fixed-radius, circular subplots

linked as a cluster, with each of the three outer subplots located
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36.6 m from the center subplot. FIA assigns each subplot to the

land use class recorded at the subplot center. The 2001 inventory

sampled 1,853 forested subplots in our study area. We removed

83 subplots because they fell under cloud-covered areas in the

Landsat imagery. We removed an additional 58 subplots because

the FIA field crew and FIA algorithm disagreed in the subplot

forest type. The subsequent analysis used the remaining 1,712

subplots.

Satellite Imagery

We used Landsat 7 ETM+ satellite images for the analysis. The

study area fell within two Landsat image scenes—path 27, rows

26 and 27. Bands 1 to 5 and 7 of three year 2000 dates were

used including a late winter scene from March 12, a spring

scene from April 29 and a late spring scene from May 31. 

The images were geo-referenced to the Universal Transverse

Mercator coordinate system using the following parameters:

spheroid GRS80, datum NAD83, and zone 15. The resampling

method was nearest neighbor using a 30-m by 30-m pixel size.

The geo-referencing reference map was road vectors from the

Minnesota Department of Transportation. For image portions

with few roads, we used the U.S. Geological Survey digital

orthophoto quads from the years 1991 to 1992 with 3-m resolution.

The number of control points used in geo-referencing was 38 to

46 per date in path 27, row 27 images and 20 to 22 in 27/26

images. A second order polynomial regression model was used

to fit the image. The root mean square error for all six images

was less than 8 m. The clouds were digitized by hand and a

cloud mask was created.

A forest/nonforest mask was generated using a kNN classi-

fication described in Haapanen et al. (2004). This mask was

used to define the area extent of our forest type classification. 

Methods

k-Nearest Neighbor Algorithm

For estimating with Euclidean distances, consider the spectral

distance , which is computed in the feature space from the

target pixel p to each reference pixel pi for which the forest type

class is known. For each pixel p, sort the k-nearest field plot

pixels (in the feature space) by                              . The

imputed value for the pixel p is then expressed as a function of

the closest units, each such unit weighted according to this dis-

tance decomposition function:

(1)

where t is a distance decomposition factor set equal to 1 for all

trials. To impute class variables such as forest type, the distance

decomposition function calculates a weighted mode value.

For a class variable, the error rate (Err) indicates the dis-

agreement between a predicted value     and the actual response   

in a dichotomous situation such that     does or does not

belong to class i (Efron and Tibshirani 1993). Thus, we used the

overall accuracy (OA) (Stehman 1997, Congalton 1991) defined

as follows:

(2)

where
(3)

This is a special case of the mean square error for an indicator

variable. These estimators were preferred over the usual Kappa

estimator for reasons given by Franco-Lopez et al. (2001).

Errors were estimated by leave-one-out cross-validation.

This technique omits training sample units one by one and mimics

the use of independent data (Gong 1986). For each omission,

we applied the kNN prediction rule to the remaining sample.

Subsequently, the errors from these predictions were summarized.

In total, we applied the prediction rule n times and predicted

the outcome for n units. Such estimates of prediction error are

nearly unbiased (Efron and Tibshirani 1993).

Spectral Feature Selection

As described by McRoberts et al. (2002), it is useful to select a

parsimonious set of image features to use in the nearest neighbor

search. Specifically, McRoberts et al. caution that including

features unrelated to the attribute being estimated can reduce

classification accuracy. When using a non-weighted Euclidian

measure for the minimum distance criterion, the inclusion of

these unrelated features directly reduces the class discriminating

power of the entire feature set.

Instead of testing all combinations of spectral features in

our analysis set, we used the statistical separability measure of

transformed divergence to find feature subsets that adequately
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discriminate among forest type classes. As described by Swain

and Davis (1978), measures of divergence can be used to select

a subset of feature axes that maximally separate class density

functions. The degree to which class density functions diverge,

or are separated in a multidimensional space, determines the

classification accuracy of parametric classifiers. This approach

to feature subsetting should also be effective with non-parametric

classifiers such as kNN.

We used the transformed divergence measure implemented

in ERDAS, Inc. Imagine® geospatial imaging software to derive

feature subsets. Then kNN classification accuracy statistics were

generated for each subset and judged against the classification

accuracy of the full set of 18 features (i.e., 6 bands from each of

3 Landsat images). The smallest feature subset that  performed

at least as well as the full feature set was then moved forward in

the analysis. 

Stratification

In a similar study using the kNN classifier to characterize

forested landscape in northeastern Minnesota, Franco-Lopez et

al. (2001) found that simply stratifying by upland and lowland

significantly improved forest type classification accuracy.

Based on these findings, we divided the study area into upland

and lowland strata as delineated by the U.S. Wildlife and Fish

Service (USWFS) National Wetland Inventory. These strata

were then classified separately using their respective subplots.

Nearest Neighbor Search Reduction

As previously noted, using minimum Euclidian distance as a

nearest neighbor criterion is not mathematically complex; how-

ever, mapping large areas computing F·N distance calculations

can take significant computer processing time. 

Ra and Kim (1993) proposed the mean-distance-ordered

partial codebook search (MPS) algorithm to reduce the number

of Euclidian distance calculations required in a nearest neigh-

bor search. The first component of the algorithm is the mini-

mum distance criterion, defined by Ra and Kim as the squared

Euclidian distance (SED):

(4)

where     and       are the jth component of the target and refer-

ence vector respectively, and m is the dimension of the vector

(i.e., number of features). The next element in the algorithm is

the squared mean distance (SMD), defined as follows:

(5)

The algorithm calculates and sorts the first k nearest

neighbor distances in the reference set. Then, the SMD is cal-

culated for the k + 1 vector in the reference set. This value is

then tested with this inequality:

(6)

where dE,max is the largest distance in the sorted set of k nearest

neighbors. If this inequality is true, the SED is calculated for

the dM,i and the set of k + 1 nearest neighbors is resorted and

the maximum value is discarded. If the inequality is false, the

dM,i reference vector is discarded. This procedure is repeated for

every subsequent vector in the reference set until each is either

included in the k nearest neighbor set or rejected. 

Depending on the amount of dispersion in the reference

set, the MPS algorithm can significantly reduce the number of

Euclidian distance calculations required to classify a given target

pixel. Specifically, a reference set that contains observations

that are highly dispersed in feature space will require fewer SED

calculations to find the k nearest neighbor set when compared

to a reference set that contains observations that are underdis-

persed. Further, as k increases, the number of observations that

pass the inequality will also increase and need to be considered

using a full Euclidian comparison. Therefore, analyses with

lower values of k will be more time efficient than analyses with

higher values of k. We evaluate the usefulness of the MPS algo-

rithm by its ability to reduce the average number of Euclidean

distance calculations for different levels of k in the classification

of our study area.

Database-Assisted Mapping

The use of the kNN classifier, or any classifier, relies on a cor-

relation between characteristics of the target pixel (e.g., spectral

features) and the characteristics of observations in a reference

set for which additional information is known. It is this correlation
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that allows for meaningful assignment of class-specific reference

pixel information to target pixels. In forest type classification,

for example, we hope for low variability of spectral features in

a forest type class and high variability of spectral features

among forest type classes. This desirable “within” relationship

versus “among” class variability can also help to increase map-

ping efficiency.

When implementing a typical kNN classification, the algo-

rithm discards the target/reference similarity information and

imputed value after each pixel is processed. If within class vari-

ability is low, the typically discarded information could be saved

and reused successfully to classify pixels elsewhere in the image.

Both the storage and subsequent retrieval of this information

would be more efficient than computing the kNN for a given

image pixel. Using this premise, we tested the marginal effi-

ciency of incorporating a database system into a kNN image

classification. 

Using the MySQL database system and the MySQL++ API,

we designed a program that would insert, search, and retrieve

records that hold pixel spectral features and the kNN imputed

values associated with each feature pattern. To allow the data-

base to efficiently search for a feature pattern, it was necessary

to discretize the 0–256 range of the Landsat bands into a smaller

number of units, referred to in this report as bins. 

Many methods are available to discretize continuous data

ranging from arbitrary bin assignments across the variable’s

distribution to using complex algorithms for deciding bin range

and placement (Chmielewski and Grzymala-Busse 1996). For

our study, we used a relatively simple approach based on the

normal probability density function. Each band in the image was

divided into the same number of bins. The range and placement

of the bins was contingent on the band’s mean and standard

deviation. This approach holds the area under the bands’ theoretical

distribution equal for each bin. That is, the bins that occurred

near the mean are narrow and the bins on the distribution’s tails

are proportionally wider. Bin counts of 6, 8, and 10 were tested

for database search and retrieval efficiency. 

Repeated discretization of a variable’s distribution will

ultimately result in information loss. A balance must be struck

between the amount of reduction in classification accuracy and

improved classification efficiency. For this reason, we compared

the information loss and efficiency gain through reducing the

bin counts.

Our database-assisted mapping program started by making

a connection with a predefined MySQL database. The database

contained one table with columns to hold the discretized image

features and a column to hold the kNN estimated imputation

value. For more efficient record insertion, search, and retrieval,

the database existed as a hash table in the main memory. 

For each image pixel, the feature pattern was extracted and

compared to all records in the database. If a match was found,

the pixel received the imputation from the matching database

record; otherwise, the kNN algorithm was used to assign the

value. Each time the kNN algorithm was implemented to assign

a classification value, the associated feature pattern and resulting

imputation value were inserted in the database.

As noted above, for this database-assisted mapping to be

useful, the information insertion, search, and retrieval process

must be more efficient than implementing a single kNN search

of the reference data set. Further, the discretization process

required to make pattern matching efficient must not significantly

degrade classification accuracy. Therefore, we evaluated the

utility of database-assisted mapping though a series of time

tests and classification accuracy comparisons.

Results and Discussion

Spectral Feature Selection

Using the transformed divergence measure implemented in

ERDAS Imagine, we derived optimal subsets of 16, 14, 12, 10,

8, and 6 spectral features. Subsets that contained fewer than 14

features produced suboptimal classification accuracy and

degraded confusion matrices. Therefore, the remainder of our

analysis was performed using the 14 spectral feature subset.

Stratification

Based on results from previous studies, we divided our study

area by upland and lowland strata. These areas were delineated

based on USWFS National Wetland Inventory classification

maps. Approximately 10 percent of the forested landscape in

the study area was designated as lowland and contained 149

FIA subplots. The upland portion of the study area contained

the remaining 1,563 FIA subplots. 
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Recognizing that most classification errors resulted from

within forest type group confusion, we collapsed the 12 forest

types into their respective base groups. Figure 1 shows stratified

and nonstratified classification accuracy for the four forest type

groups sampled in our study area. Table 1 presents the com-

bined classification confusion metrics for both strata. The

spruce-fir group (forest type code 120) and aspen-birch group

(forest type code 900) show satisfactory classification accura-

cy. Generalizing to the group level, however, does not address

poor classification of the maple-beech-birch group (forest type

code 800) or the aspen-birch group’s overclassification.

Nearest Neighbor Search Reduction

Substituting the brute force nearest neighbor search, which

considers the distance to all reference observations, with the

MPS algorithm significantly reduced the number of distance

calculations needed to classify each pixel. In leave-one-out

cross-validation trials of 1,712 observations, each consisting of

14 features, we recorded the average number of observations in

the n – l reference set that failed the inequality described in

Equation 6. The trial results were k = 1 (74.4 percent failed),

k = 3 (69.3 percent failed), k = 5 (66.4 percent failed), k = 7

(64.4 percent failed), k = 9 (62.6 percent failed), and k =11

(61.2 percent failed). 

As noted in the Methods section, as k increases, a higher prob-

ability exists that a reference observation will pass the inequali-

ty and require a full Euclidean distance comparison with the

target. Our trials confirmed this relationship between increas-

ing k and number of Euclidean distance measurements. Most

importantly, our research shows that using the MPS algorithm

can significantly improve mapping efficiency by reducing the

number of calculations needed to classify each target pixel. 

Database-Assisted Mapping

Time trials using our database-assisted mapping program were

conducted on a Pentium 4, 2 GHz, Linux OS-based- computer

with 1 GB of memory. Our kNN program was written in C++,

using the MySQL++ API to interact with a local MySQL version

4.0.14 server. Our program was compiled with g++ (GCC) 3.2.2.

The program was tested on the 3-date, 14-feature image of

St. Louis County, which contains 14.72 x 106 pixels. The kNN

reference set contained 1,712 subplot observations. Across all

bin counts, the average time required for our program to search

Table 1.—Forest type group classification confusion matrix for combined upland and lowland strata, using k = 7.

Figure 1.—Overall classification accuracy of four forest type
groups at increasing values of k for no stratification, upland
stratum, lowland stratum, and combined upland/lowland strata.
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the database for a given feature pattern and return a null or

imputed value was 372 milliseconds. If a null value was returned,

the kNN algorithm was initiated and took an average of 3,947

milliseconds to run. When a kNN instance was complete, the

program used an additional average of 196 milliseconds to

insert the feature pattern and imputed record in the database. 

For individual bin counts, the insert, search, and retrieval

time was contingent on the number of records in the table.

Figure 2 shows that the total interaction time with the database

increases with the database size. After processing completed,

the table held 10-bin = 10.6 x 106 records; 8-bin = 7.29 x 106

records; and 6-bin = 3.2 x 106 records. 

Figure 3 shows the frequency at which imputed values

were retrieved from the database as the image is processed. The

fewer bins in the image, the greater redundancy there was in

feature patterns. The greater the redundancy in feature patterns,

the greater dependence on the database was required to provide

imputed values. Figure 3 also shows a rough plateau starting at

about 6.5 x 105 processed pixels. This leveling off point describes

the percent redundancy in the image for the given bin count

(e.g., approximately 80-percent redundancy in the 6-bin image).

The brute force kNN procedure took 16.1 hours to process

the sample image. Incorporating the database with a bin count

of 10 decreased mapping time by 23.3 percent. Reducing the

bin count to 8 provided a 43.2 percent decrease in mapping

time. Generalizing the image further to a bin count of 6 reduces

mapping time by 67.1 percent.

This improvement in mapping efficiency must be balanced

against accuracy loss from the discretization process. Figure 4

compares the forest type group classification overall accuracy

of the binned images against the nonbinned image and shows

that minor loss of information occurred in the 10- and 8-bin

images. At the 6-bin image count of, accuracy declined more

substantially.

The reduction in overall accuracy does not appear to be

significant despite the severity of the image generalization.

Deciding on the level of acceptable loss of classification accuracy

in return for increased efficiency, however, is specific to the

mapping project. 

Our simple approach to imposing bin boundaries on each

feature appears to maintain a significant portion of information;

however, many other discretization procedures exist that may

more effectively preserve class discriminating information  con-

tained in the images. Because of high spectral similarity, it is

difficult to differentiate between forest types or forest type

groups. Using our database-assisted mapping may enjoy experi-

ence success if classes were more spectrally distinct.

Figure 2.—Total database interaction time versus number of
pixels processed for image bin counts of 10, 8, and 6.

Figure 3.—Percent of imputed values retrieved from the database
versus number of pixels processed for image bin counts of 10, 8,
and 6.
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Conclusions

Our study documented efforts to refine the process of kNN

forest attributes classification using FIA plot data and Landsat

7 ETM+ imagery. We outlined three steps in the classification

process that highlighted mapping efficiency improvements.

First, our analysis indicated that using transformed divergence

may provide an objective way to reduce the dimensionality of

the feature set without compromising classification accuracy.

Second, the MPS algorithm proved to significantly reduce the

number of distance calculations needed to classify each pixel.

Third, the proposed database-assisted mapping provides a way

to store and retrieve computationally expensive information. 

Unlike the MPS algorithm, the discretization step needed

for database-assisted mapping requires the analyst to compromise

between increased mapping efficiency and loss of classification

accuracy. Depending on the structure of the dataset and the

degree of discretization, the loss of classification accuracy can

be minimal.
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