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Preface

The Fifth Annual Forest Inventory and Analysis Symposium

was held in New Orleans, Louisiana, the second consecutive

year at this location. Given the positive response to the 2002

symposium in New Orleans, we decided to return in 2003.

Each year of this symposium series the range of presentations

has increased; 2003 was no exception, with several presentations

related to forest health and several related to information science

and distribution. of particular note for the 2003 symposium, we

welcomed participation and a presentation from our Canadian

neighbors. The symposium organizers thank all participants and

presenters and convey thanks to those who submitted their

papers for these proceedings.

Ronald E. McRoberts

Gregory A. Reams

Paul C. Van Deusen

William H. McWilliams

St. Paul, Minnesota
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Three Proposed Data Collection Models for
Annual Inventories

Greg Reams, Bill Smith, Bill Bechtold1, Ron McRoberts2,

Frank Spirek3, and Chuck Liff 4

Abstract.—Three competing data collection models

for the U.S. Department of Agriculture Forest Service

Forest Inventory and Analysis (FIA) program’s annual

inventories are presented. We show that in the presence

of panel creep, the model now in place does not meet

requirements of an annual inventory system mandated

by the 1998 Farm Bill. Two data-collection models that

use subpaneling are defined, and the pros and cons of

using those models are discussed.

The only data-collection model ensuring full

compliance with the Farm Bill uses subpaneling with

both spatial and temporal controls, resulting in the

measurement of a single panel per year, nationally.

The same field manual, portable data recorder, edit

system, processing system, and estimation methods

can be used within and among FIA regions. Such use

will result in less duplication of effort and provide

national consistency. The FIA program can produce,

nationally, an annual database and annual estimates,

as well as periodic reports based on 5-year-measurement

requirements. Additional benefits will include the

means to adjust measurement resources quickly and

efficiently in order to measure resource availability by

State. Additionally, the true sampling precision per

fixed time-period is known, and intensification and

detensifications are easy.

Introduction

The 1998 Farm Bill requires the Forest Inventory and Analysis

(FIA) program of the U.S. Department of Agriculture (USDA)

Forest Service to measure and process field plots at the rate of

20 percent per year, and to produce reports for each State at 5-

year intervals. The legislation was designed to promote annual

inventories based on a 5-year remeasurement cycle. Although

the 20-percent per year requirement is explicit, the total number

of plots by State or region on which the requirement is based

was never specified—presumably to avoid micromanagement

of the FIA sampling process. Optimistic that historic precision

standards (3 percent per million acres of timberland and 5 percent

per billion ft3 of growing stock volume) could be retained while

implementing the new requirements, FIA established a systematic

national plot network with an overall sampling intensity of 1

plot per 6,000 acres. The legislation required establishment of a

database that could be used to produce annual or other estimates

and publication of reports based on plots visited during the 5-

year measurement periods. Also, advanced technologies such as

remote sensing are to be developed and integrated into the program.

The FIA national plot network has been divided into five

interpenetrating panels to accommodate the 20 percent per year

requirement. Each panel uses overlapping samples (i.e., repeated

observations on the same plots). Each panel of plots is charac-

terized by complete and systematic spatial coverage across the

population of interest (fig. 1). On completion of all panels, the

process is then repeated with the next cycle of panel measure-

ments. Ideally, all of the sample units in a panel are measured

in the same way, and all sample units in a panel have the same

revisit schedule. Panels can be divided into subpanels to

accommodate decreases and increases of sampling intensity.

When subpanels are selected systematically, such that each

subpanel represents full spatial coverage, they are considered

independent samples of the population, and population estimates

can be calculated from the completed subpanels of an incomplete

panel. Subpanels can be subdivided further into sub-subpanels,

and sub-sub-subpanels as needed to accommodate planning

and implementation of the survey program.
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Although the five-panel system was designed to fulfill require-

ments specified in the 1998 Farm Bill, the FIA program was

not adequately funded to measure the target number of plots

(1 per 6,000 acres) at the specified rate of 20 percent per year.

Even so, this seemed to have no serious negative effects,

because several strategies could be used to preserve the integrity

of the original design and still satisfy the legislated requirements.

This article discusses those strategies and their relationship to

the legislation, and it proposes other data-collection models that

adequately address the legal stipulations. 

Three Data Collection Strategies 

The Farm Bill directly or indirectly mandates annual data collec-

tion, compilation, and inventory updates. Because FIA always

has sought to retain the capacity for design-based estimation,

we maintain that the optimal way to satisfy these requirements

is by managing data collection efforts to produce temporally

consistent panels.

Three data-collection strategies are proposed to mitigate

the consequences of inability to measure plots at the rate of one

complete panel per year. Under all of the methodologies described

below, data collection rules are generally applied at the State

level and described as such. It is important, however, to note

this is not absolutely necessary. FIA populations of interest,

sometimes referred to as “estimation units,” usually are defined

by political boundaries, i.e., counties or national forests. These

estimation units are autonomous and additive, such that State-

level estimates of inventory attributes are produced by aggregating

data for all the estimation units that comprise a State. Complete

and uniform spatial coverage is used to spread the samples evenly

over the population to increase the likelihood of unbiased data

processing and estimation (Reams et al., in press). Because

processing proceeds at the estimation-unit level, the sampling

rules can be applied at this level. As long as the sampling rules

result in complete and systematic spatial coverage for each

estimation unit, there is no requirement that the sampling rules

be uniform across estimation units within or among States.

Model 1: Creeping Panels 

The creeping panel model removes the temporal restriction that

each panel must be associated with exactly 1 year. Panels are

started and finished based on the availability of funding and

personnel. The lack of temporal restrictions allows the time

required for panel completion to span several years, or it may

proceed in the opposite direction, such that more than one panel

is completed in a single year. Whatever the direction, any devia-

tion from the measurement of exactly one complete panel of

plots per year results in a situation that has been termed “panel

creep.” The FIA management team proposed using and has now

adapted the operational data-collection system known as the

creeping-panel sampling strategy. 

There are advantages to using this model. Of all the sampling

strategies, creeping panels are the easiest to implement from a

data-collection standpoint. Field logistics are simple because no

special planning is required. Field crews are rarely required to

backtrack over the same territory, except possibly to comply

with the requirement that Phase 3 plots be measured during the

growing season. 

The disadvantages of this model, however, are numerous

and inconsistent with the goals of an annual inventory. Because

sampling rules vary by State, the lack of temporal control also

implies a lack of spatial control such that no systematic annual

coverage of a State or county can be assured. At a given time,

different States may be measuring different panels, which com-

plicates data retrievals and analyses across multiple States. Lack

Figure 1.—National five panel design used by FIA. The national
base sample has 1 plot per approximately 6,000-acre hex cell.
All hexes labeled 1 are panel 1, hexes labeled 2 are panel 2,
etc. Each panel comprises 20 percent of the entire FIA national
base sample.
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of spatial and temporal controls create differences in sampling

protocols that are difficult to track and manage. Two key inventory

attributes, “panel number” and “manual version,” are allowed

to vary by year. As field protocols change and new manual

versions are released when field protocols change, there is no

guarantee of consistency among States, regions, panels, or

years regarding when specific manual versions are implemented.

Several versions of data recorder software and processing systems

must be maintained simultaneously.

Disparity between Phase 2 and Phase 3 sampling schedules

may compromise FIA’s ability to combine data. For example,

when panel creep is permitted for Phase 2 plots, but not for

Phase 3 plots within the same panel, differences in the timing

of panel measurements will be necessary. In some cases, field

crews may have to use two different manual versions at the same

time on a plot. These differences can quickly be exaggerated, as

illustrated by the scheduling of panel measurements for the

three data-collection models presented in table 1. For example,

if data-collection is only funded at 80 percent, each and every

Phase 2 panel is confounded with year after the first year, and

Phase 2 and Phase 3 schedules are no longer synchronized

(table 1).

Meeting significant Farm Bill standards cannot be guaranteed

with this model. For example, data cannot be compiled annually,

because panels are not scheduled for completion on an annual

basis. Systematic spatial coverage across the population of

interest, a prerequisite for standard processing, is not achieved

using the creeping panel model. Required reports must be based

on a variable number of panels if the data included represent a

fixed, 5-year time interval. The 5-year reports will not be based

on a 5-year interval if the data represent a complete set of panels.

We have additional concerns about this model. If required

5-year reports are not based on a synchronic (5-year) interval,

but instead include plots remeasured more than 5 years earlier,

then precision estimates can be deceptive because the older

data will artificially inflate the sample size. Old data are less

reliable, and if substantial change has occurred in the intervening

period lead to unknown bias in the inventory estimates. Usually

such bias will not be reflected in the standard errors. The longer

it takes to complete a panel, the greater the chance of spatially

correlated measurement bias. Field crews usually start at one

corner of the State, proceed until the field season ends, and then

begin data collection where they finished in the next season.

Figure 2 illustrates this “clumpy” approach to data collection.

If a catastrophic event occurs between the first and second

Year P3 P2 Data model

Model 1 Model 2 Model 3

1 1.1 begin 1 1.2, 1.3, 1.4, 1.5 1.2, 1.3, 1.4, 1.5

2 2.1 finish 1, begin 2 1.6, 2.2, 2.3, 2.4 2.2, 2.3, 2.4, 2.5

3 3.1 finish 2, begin 3 2.5, 2.6, 3.2, 3.3 3.2, 3.3, 3.4, 3.5

4 4.1 finish 3, begin 4 3.4, 3.5, 2.6, 4.2 4.2, 4.3, 4.4, 4.5

5 5.1 continue 4 4.3, 4.4, 4.5, 4.6 5.2, 5.3, 5.4, 5.5

6 1.1 begin 5 5.2, 5.3, 5.4, 5.5 1.2, 1.3, 1.4, 1.5

7 2.1 finish 5, begin 1 5.6, 1.2, 1.3, 1.4 2.2, 2.3, 2.4, 2.5

8 3.1 finish 1, begin 2 1.5, 1.6, 2.2, 2.3 3.2, 3.3, 3.4, 3.5

9 4.1 finish 2, begin 3 2.4, 2.5, 2.6, 3.2 4.2, 4.3, 4.4, 4.5

10 5.1 finish 3 3.3, 3.4, 3.5, 3.6 5.2, 5.3, 5.4, 5.5

11 1.1 begin 4 4.2, 4.3, 4.4, 4.5 1.2, 1.3, 1.4, 1.5

12 2.1 finish 4, begin 5 4.6, 5.2, 5.3, 5.4 2.2, 2.3, 2.4, 2.5

Table 1.—Hypothetical data collection schedule for each of the three models. If about 80 percent can be measured, edited, and
processed for an annual database, then measure P3 as subpanel 1 and P2 subpanels 2, 3, 4, and 5. Subpanel 1 is of size 1/16th and
subpanels 2 through 5 are of size 3/16th. This results in measuring 13/16th or 81.25 percent of the entire full annual panel. For
more exact matching of resources and data production, the P2 subpanels could be further subpaneled by size 1/16th . 
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field seasons, population estimates derived from this panel

would not accurately reflect the location or extent of resource

damage. Remeasurement intervals may vary widely among pan-

els and cycles. In the creeping panel example provided in table

1, panel 2 is measured during years 2 and 3. It is then remeasured

in years 8 and 9. Thus, change will have to be computed using

as many as 4 different intervals – years 2–8, 2–9, 3–8, 3–9.

Because the data may have been collected in a spatially uneven

manner, each interval could be associated with different envi-

ronmental or cultural effects, yielding inaccurate or intractable

trends for the panel as a whole. 

Model 2: Spatial Control

The spatial control model is an adaptation of the creeping panel

model and was originally proposed by the FIA Statistics Band

members and later advocated by the subteam (D-Team) of the

FIA Information Band that is responsible for developing national

data processing software. This model relies on subpanels to

achieve systematic spatial coverage for the portion of a panel that

can be measured in 1 year (Van Deusen 2003). A sufficiently

large number of subpanels, each with systematic coverage of

the population, are defined a priori. Phase 3 plots may be simply

one of these subpanels, which would satisfy the requirement that

a Phase 3 subpanel not be allowed to creep. Crews are assigned

as many subpanels as can be measured in a field season.

Measurement of the rest is postponed until the following year.

Figure 3 illustrates a situation where five of seven subpanels are

completed in year 1, the remaining two subpanels are done in

year 2, and the result is systematic spatial coverage for both years.

This model offers significant improvements over the creeping

panel. There is some guarantee that all States will have at least

some subpanels measured and completed the same way in any

given year, thus guaranteeing systematic coverage and simplifying

data retrievals and analyses across multiple States. Differences

in sampling protocols can be managed by establishing a rule

that manual versions are linked specifically to year, to be

implemented only at the beginning of a year. 

More significantly, for meeting Farm Bill standards, data

can be compiled on an annual basis, and required 5-year reports

can be based on a fixed, 5-year interval. Also, precision is more

accurately bound to sample size and less influenced by panel

creep. The loss of precision caused by inadequate resources is

immediately apparent and measurable, so that estimates of pre-

cision are not confounded by outdated, unreliable data. Also,

annual data compilations reduce the potential for bias caused by

catastrophic events. The matching of subpanels to the year in

which a catastrophic event occurs eliminates the influence to an

entire panel previously measured over a 2-year period. 

Nonetheless, Model 2 does have drawbacks. More planning

is required, which could complicate field logistics. Without

careful prior planning, crews may not complete the prescribed

number of subpanels or may have to make an additional pass

through the State—if there is time to complete more subpanels.

Inability to complete the prescribed number of subpanels might

be overcome by revising the number of subpanels in the

remaining estimation units to accommodate the shortage of

resources. However, this complicates the tracking of which

subpanels have been completed, and in which estimation units.

Figure 2.—Collecting data from Panel 1 over 2 years—a spatially
clumpy approach.

Figure 3.—Using subpanels to collect 5/7ths of Panel 1 in year
1 and 2/7ths in year 2.
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Further, a less serious form of panel creep is still permitted.

Although there is some guarantee that all States will have at

least some subpanels completed the same way in a given year,

the tracking of which panels and subpanels are measured when

and where, is not straight forward. Although manual versions

can be linked to years, the version used can still vary within a

specific panel. Thus, disparities between Phase 2 and Phase 3

sampling schedules still exist (table 1). Assuming an 80 percent

funding of data collection, as with Model 1, each and every

panel is confounded with year after the initial year (table 1).

Remeasurement intervals still may vary widely among panels,

subpanels, and cycles. Remeasurement is not subject to any

temporal control, so change estimation is not based on any

fixed interval, thus complicating change analyses. Also, FIA

may vary the sample size from year to year, which offers an

advantage because it allows for annual database production.

Model 3: Spatial and Temporal Control

Model 3 has been proposed by members of the Statistics Band

and advocated by members of the D-Team. It incorporates all

of the spatial controls available in Model 2, but uses additional

subpaneling to establish temporal limits as well, such that panel

and year are perfectly coordinated. Model 3 differs from Model

2 in that the unfinished subpanels are simply skipped and will

not be measured until the next cycle. Only plots in a single panel

are measured in a given year, and the same panel is measured

nationally. If a lack of resources makes it impossible to measure

an entire panel for a given State, then the number of measured

subpanels is adjusted accordingly. For example, the 2/7 subpanel

scheduled for year 2 is postponed until the next-scheduled

measurement of that panel during the next cycle (fig. 4).

Use of Model 3 reduces sampling intensity to more effi-

ciently use limited resources. For example, the current Federal

base intensity for FIA is 1 plot per 6,000 acres. If only 80 percent

of that funding were available, then use of Model 3 would tem-

porarily reduce plot intensity to one plot per 7,500 acres. When

additional resources become available, the sample intensity can

be increased. Intensification might be done with two strategies,

or using a combination of those strategies: 

1. The plot network for a given State is increased above the 

base sampling intensity of 1 plot per 6,000 acres.

2. Plots from future panels are temporarily assigned to the 

current panel.

Strategy 2 has the advantage of accelerating change analysis.

Suppose that a State had a short-term budget increase to measure

plots in two panels for each of the next 3 years. Table 2 shows

how panel 4 might be temporarily combined with panel 1,

panel 5 with panel 2, and panel 1 with panel 3. This allows FIA

to use the maximum number of plots for estimation of current

inventory parameters, and makes change analyses possible in

year 3. Choosing strategy 1 increases sample size and therefore

is favored by those desiring more spatial information and preci-

sion, especially if the increased intensity can be maintained. 

Model 3 has profound advantages with regard to fulfilling

the Farm Bill standards. First, there is some guarantee that all

States will have at least some subpanels measured and completed

the same way in any given year, thus guaranteeing systematic

coverage of the population and simplifying data retrievals and

analyses across multiple States. Differences in sampling proto-

cols can be managed by establishing a rule that manual versions

are linked specifically to year, which automatically ties them to

a specific panel. Disparities between Phase 2 and Phase 3 sampling

Figure 4.—Using subpanels to collect 5/7ths of Panel 1 in year 1
and 5/7ths of Panel 2 in year 2.

Year Panel

1 1, 4

2 2, 5

3 3, 1

4 4

5 5

Table 2.—Hypothetical data collection schedule for panel
acceleration under Model 3.
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schedules are eliminated. Phase 3 plots are simply one of the

subpanels scheduled for measurement in a given year. Most sig-

nificantly, data can be compiled annually and 5-year reports can

be based on a fixed, 5-year interval. Precision is more accurately

bound to sample size and less influenced by panel creep. The

reduced precision resulting from inadequate resources is imme-

diately apparent and measurable; it is not confounded by outdated,

unreliable data. Annual data compilations reduce the potential

for bias introduced by the occurrence of catastrophic events.

The catastrophic events are restricted to the year(s) in which

such events occur, as opposed to influencing an entire panel over

multiple years. No panel creep is permitted and no confounding

of panel and year occur (table 1). Panels, subpanels, and manual

versions are always linked to specific years. Remeasurement

intervals are always based on a fixed interval (e.g., 5 or 10 years),

if no borrowing of plots from future panels occurs. This model

can readily accommodate the borrowing of plots from future

panels to accelerate change analysis. The only accounting

mechanism needed would be one code to designate temporary

panel assignment.

The disadvantages of using Model 3 are fewer than for

Model 2, but the two models share the following: More planning

is necessary, which could complicate field logistics. In the absence

of proper planning, crews may not complete the prescribed

number of subpanels or may have to make an additional pass

through the State, if there is time to complete additional subpanels.

Inability to complete the prescribed number of subpanels could

be overcome by revising the number of subpanels in the

remaining estimation units to accommodate the shortage of

resources. However, this complicates the accounting required to

track which subpanels have been completed in which estimation

units. Sample size is permitted to vary by year and panel,

although this could be considered an advantage. 

An FIA Precedent for Subpaneling

Within FIA the precedent for subpaneling, which is required

when using Models 2 and 3, already has been established. To

date, FIA has used Model 3 to create a Phase 3 subpanel

(Subpanel 1) that is always measured annually—without creep.

To accommodate the Farm Bill’s requirements of annual surveys,

using Model 3 we only need to decide on a reasonable Phase 2

subpaneling strategy. To illustrate, consider defining six subpanels

per panel. The Phase 3 subpanel is of size 1/16th, and is labeled

Subpanel 1. Subpanels 2 through 6 are of size 3/16th each and

are labeled as Phase 2, Subpanels 2 through 6. If full funding

for all six subpanels is available, FIA measures all six subpanels.

If full funding is not available, it measures the Phase 3 Subpanel

1 and as many of the Phase 2 Subpanels 2 through 6 as possible.

For example, if data from only about 40 percent of the plots can

be measured, edited, and processed for an annual database, then

the crew could measure all of Phase 3 (Subpanel 1), and two-

fifths of Phase 2 (Subpanels 2 and 3). This results in measuring

7/16th or 43 percent of the entire panel. If data from about 80

percent can be measured, edited, and processed for an annual

database, crews could measure all of Phase 3 (Subpanel 1) and

four-fifths of Phase 2 (Subpanels 2, 3, 4, and 5). This results in

measuring 13/16th or 81.25 percent of the entire annual panel.

For more exact matching of resources and data production, the

Phase 2 subpanels could be further subpaneled by size 1/16th

(table 1). Subpaneling in this manner guarantees production of

annual databases, as well as spatially and temporally unbiased,

design-based inventory estimates. 

Conclusions

The FIA program is now using Model 1 in various regions,

clearly in violation of the Farm Bill mandate. Moreover, Model

1 represents the worst possible compromise between annual and

periodic inventories. It is not an annual inventory because annual

databases and annual design-based estimates are not possible

when panel creep occurs. When panel creep occurs, Model 1 is

an inefficient periodic inventory where the only advantage

gained from requiring crews to backtrack over the same area

five or more times during an inventory cycle is the pretense of

an annual inventory. Costs for plot production, training, and

multiple versions of portable data recorders, as well as editing,

processing, and estimation, are excessive.

Model 2 more closely meets requirements of the Farm Bill,

although it creates numerous unnecessary challenges for data

management and inventory estimation. By using spatial control,

Model 2 results in a less serious form of panel creep, annual
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databases are possible, and systematic coverage is assured, as well

as annual and 5-year estimates. Although manual versions are

linked to year, they can still vary by panel, and that will lead to

a lack of national consistency. Also, disparities between Phase

2 and Phase 3 sampling schedules remain when using this

model. Remeasurement intervals can vary widely among pan-

els, subpanels, and cycles.

Model 3 is the only model that ensures full compliance with

the Farm Bill. Subpaneling with spatial and temporal controls

means one panel per year. The same panel is measured nationally.

The same field manual, portable data recorder, edit system,

processing system, and estimation methods can be used within

and among FIA regions. This results in less duplication of effort

and provides national consistency. The FIA program can produce

an annual database nationally, annual estimates nationally, and

periodic reports based on the required 5-year measurement period.

Additional benefits of Model 3 include the ability it gives

FIA to quickly and efficiently adjust available measurement

resources by State. Also, the true sampling precision per fixed

time period of time is known, and intensification and detensifi-

cations are easy. 

Recommendations

Data collection Model 3 is the only strategy that meets the

requirements of the 1998 Farm Bill. The model provides for the

greatest national consistency for sampling, database production,

and inventory estimation. It will go a long way in helping FIA

do its job.
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Establishment of Canada’s National Forest
Inventory: Approach and Issues 

A.Y. Omule1 and Mark D. Gillis2

Abstract.—This paper describes Canada’s National

Forest Inventory (NFI) sampling design and implemen-

tation. It also describes issues related to annualizing

the NFI using the approach of the U.S. Department of

Agriculture Forest Service Enhanced Forest Inventory

and Analysis program as a model. It concludes with an

outline of plans to address the inventory annualization

issues.

Canada’s 10 Provinces and 3 Territories have a forest cover of

approximately 418 million hectares, or nearly 50 percent of the

country’s total land mass. The forests are owned by the 10

Provinces (71 percent), the Federal Government and three

Territories (23 percent), and private owners (6 percent). The

Provinces and Territories are responsible for forest management,

including management inventories. The Federal Government is

responsible for the management and inventory of Federally

administered forest lands and the compilation and reporting of

the National Forest Inventory (NFI). 

A new NFI has been designed (Gillis 2001) and is in vari-

ous stages of implementation in partnership with the Provinces

and Territories. The NFI provides accurate and timely national

statistics on the extent, state, and changes over time of Canada’s

forests. This information is expected to support policy development,

national and international reporting, and other emerging needs.

Sampling Design

The NFI sampling design is described in detail in the NFI doc-

uments available at the web site http://www.nfi.cfs.nrcan.gc.ca

and published elsewhere (Gillis 2001, Wulder et al. 2002).

Only a summary is provided here. The target population for the

NFI is Canada’s land mass, whether vegetated or not. This target

population, and thus the list of sampling units, is assumed to

consist of infinitesimal points that are stratified for reporting

purposes into 15 terrestrial ecozones (Ecological Stratification

Working Group 1996). Ecozones are partitioned into subpopu-

lations called NFI units for estimation purposes. An NFI unit is

defined as an ecozone within the boundaries of a Province or a

Territory. The partitioning of an ecozone into units is necessitated

by differences in sampling schemes and different data collection

methods that may otherwise occur within an ecozone. 

The overall NFI sampling design is a probability sample of

points in Canada, consisting of the following two components: 

1. A single systematic sample of points across Canada, with a

photo plot installed at each sample point (remote sensing).

2. A simple random subsample of the systematic sample

within selected ecozones, with a ground plot established at

or adjacent each subsample point (ground sampling).

The photo plots provide the primary source of the NFI

data, and the ground plots provide additional information.

Local variations in sampling design and data collection methods

among the Provinces and Territories are permitted.

The remote sensing component involves a single systematic

sample of locations (sampling points) located at the nodes of a

national 20 km x 20 km fixed grid over the entire land mass. The

grid sample locations are then grouped into ecozones (strata). A

2 km x 2 km permanent photo plot is installed at each sample

location (fig. 1). The photo plot is partitioned into polygons or

pixels using various classifiers (domains) based on aerial photo

interpretation, other remotely sensed data such as the data from

the Earth Observation for Sustainable Development (EOSD)

project (Wulder 2002) , and other data sources. Photo plots are

the primary source of the NFI data. Attributes include area, bio-

mass, carbon content, and volume by land cover class in a plot. 

About 18,864 planned photo-plot locations exist in the

country (table 1). Photo plot data are obtained from aerial photos

in about one-half of these locations and from the EOSD data in
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the remaining areas. In the three arctic ecozones and the prairies,

only overall area totals (not broken down by classifier) will be

obtained. The EOSD data may also be used as auxiliary infor-

mation in the estimation of areas where both aerial photos and

EOSD data exist.

Figure 1.—Example of a 2 km x 2 km NFI photo plot (1:20,000
midscale aerial photograph).

Photo plots

Province or Ground plots Aerial photos Satellite imagery

Territory Design Outstanding Design Outstanding Design Outstanding 
total (03/04) total (03/04) total (03/04)

Alberta 166 166 1,656 1,656 0 0

British Columbia 268 50 2,414 100 0 0

Manitoba 96 28 950 698 665 482

New Brunswick 19 0 194 0 0 0

Newfoundland and Labrador 40 23 391 234 588 398

Northwest Territory 136 104 0 0 1,945 1,500

Nova Scotia 14 4 141 0 0 0

Nunuvut 0 0 0 0 287 287

Ontario 203 193 1,523 1,123 970 237

Prince Edward Island 2 0 12 0 0 0

Quebec 150 150 1,494 1,494 1,781 1,781

Saskatchewan 45 30 561 219 1,067 600

Yukon 0 0 0 0 1,225 225

Total 1,139 748 9,336 5,524 9,528 5,510

Table 1.—Number of planned and outstanding (to March 2004) NFI photo and ground plots by province and territory. 

The ground-sampling component involves a simple random

subsample of photo plot locations over a Province or a Territory

or within an NFI unit. The nominal ratio of forested ground plots

to photo plots is 1:10, with a minimum of 50 forested locations

per ecozone, and no sampling in the three arctic ecozones. A

permanent ground plot is established at or adjacent to the photo

plot center, consisting of a cluster of nested circular plots, line

transects, and a soil pit (fig. 2). The variables of interest include

measurements or descriptions of trees, shrubs and herbs, woody

debris, soils, and site. The nominal number of forested ground

plots range from 0 to 163 per ecozone and from 0 to 268 per

Province/Territory, for a national total of about 1,139 (table 1).

Ground plots are only established in forested locations that

are classified as either “Vegetated Treed,” as locations with the

potential to be classified as Vegetated Treed, or as locations that

have been harvested. Nonforested ground plot locations are tracked

over time and plots will be established when these locations

become forested. Inaccessible plot locations are replaced with

suitable subjectively selected matches, and difficult-access plot

locations are subsampled.
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Implementation

The NFI is an interagency partnership project with decentralized

implementation. The Provinces and Territories define the number

and distribution of photo plots and ground plots in their juris-

dictions, and collect and provide data to the Canadian Forest

Service (CFS). The plots are installed and assessed following

national photo interpretation and ground sampling guidelines.

The program is implemented through bilateral agreements

between the Federal Government and the Provincial/Territorial

Governments. The Federal Government develops and maintains

standards, procedures, and data infrastructure; provides data on

Federal land; and conducts data analysis and reporting. The NFI

project is coordinated by the CFS with guidance from Canadian

Forest Inventory Committee (CFIC), a grouping of forest inventory

managers and experts representing the Provinces, Territories, and

the Federal Government (CFS, Parks, Agriculture and Agri-foods,

and Environment). 

To date, approximately 40 percent and 34 percent of the

photo plots and ground plots, respectively, covering eight

Provinces and one Territory, have been established. A pilot project

is underway in one Province, and planning activities are ongoing

in two Territories. The NFI plot establishment phase is expected

to be completed by December 2006, allowing for a remeasurement

to start in 2007.

The NFI plot establishment activities (over 5 years),

including design, data collection, and systems development and

management, are estimated to cost CAN$13.7 million. The annual

maintenance, including remeasurement, systems management,

compilation, analysis, and reporting, is estimated to cost

CAN$2.4 million. 

Annualization

The first NFI report based on the new design should be completed

in 2006. It will include statistical tables and maps for key

attributes by terrestrial ecozone. The key attributes include those

identified by the CFIC and related to the Canadian Council of

Forest Ministers Criteria and Indicators reporting. To meet the

NFI objective of providing information in a timely fashion,

annual NFI reports will be produced that also include estimates

of change over time. The following issues related to annualizing

Canada’s NFI in a cost-effective and statistically defensible way

must be addressed: 

1. Re-inventory sampling strategy. How applicable to the

NFI is a rotating panel model, such as that of the Enhanced

Forest Inventory and Analysis (FIA) program of the U.S.

Department of Agriculture Forest Service? What are the

implications of adding more plots or variables at a later

time? How do we capture changes due to disturbances in

the population over time?

2. Plot remeasurement. Can remeasurement intervals be

varied by geographic areas (e.g., North versus South)? Is it

acceptable to measure only some attributes in only some

plots? How will remeasurement of destructively sampled

plots (e.g., microplots clipped for shrub/herb biomass

measurement) be performed?

3. Change estimation. How applicable is FIA’s moving average

estimator to our NFI? Should growth models, the Kalman

filter, or other mode-based estimation be incorporated into

the estimation? What is the impact of changes in strata

definitions and boundaries over time on the estimation?

What is the best procedure for estimation in NFI units with

few plots or no plots?

Figure 2.—Layout of the NFI ground plot (the dimensions refer
to plot radius or transect length).
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These and other questions were discussed at a 2-day CFS

workshop in Victoria, British Columbia, in March 2004.

Workshop participants included biometricians from the FIA

program, the CFS scientists and NFI staff, and representatives

from the Provinces and Territories. The workshop concluded

with several options and recommendations for consideration by

the CFIC at its next meeting in June 2004 in Dawson City,

Yukon. Methods for photo plot and ground plot remeasurements

will then be developed in the light of the recommendations

from the CFIC.
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Northeastern Regional Forest Fragmentation
Assessment: Rationale, Methods, and
Comparisons With Other Studies

Andrew Lister, Rachel Riemann, Tonya Lister, and Will

McWilliams1

Abstract.—Forest fragmentation is thought to impact

many biotic and abiotic processes important to ecosystem

function. We assessed forest fragmentation in 13

Northeastern States to gain a greater understanding of

the trends in and status of this region’s forests. We

reclassified and then statistically filtered and updated

classified Landsat imagery from the early 1990s, and

devised analysis routines that allowed for automated

processing of large areas. We discuss the rationale for

the study and the choices made in data set preparation

and analysis routines, describe the methods used, and

compare our methods with those of other coarse-scale

fragmentation studies. 

Introduction

The U.S. Department of Agriculture Forest Service’s Northeastern

Forest Inventory and Analysis unit (NE-FIA) collects data

relating to quantity, quality, distribution, and health of forests

from a network of ground plots distributed uniformly across 13

Northeastern States. These data are summarized and used to

produce annual reports of the trends in and status of the region’s

forest resources. In addition to tabular summaries (e.g.,

McWilliams et al. 2002), analytical reports are produced that

integrate contextual information, social data, and historical

perspectives to help users interpret the numerical data. Data on

fragmentation provide contextual information. For example,

two counties with similar forest-area percentages can have

different landscape configurations. Interpreting tabular data

within the context of landscape configuration will help us gain

a better understanding of the status of the forest resource and

aid regional planners and decisionmakers. 

1 Research Forester, Research Forester, Research Forester, and Project Leader, respectively, U.S. Department of Agriculture, Forest Service, Northeastern Research
Station, FIA, 11 Campus Blvd., Ste. 200, Newtown Square, PA 19073. Phone: 610–557–4038; e-mail: alister@fs.fed.us.

Forest fragmentation also is an important issue in the ecology

community. The partitioning of large, homogeneous landscape

units into smaller patches by human activities and other processes

influences animal behavior, plant-seed dispersal, hydrological

processes, and local weather conditions (Forman 1995), all of

which affect our forests. Analyzing NE-FIA forestry data

through the prism of forest fragmentation can help ecologists

understand regional ecological patterns.

Our objective was to design an efficient, scalable process

that would produce contextual data on forest fragmentation.

Specifically, we wanted to (1) provide a rationale for assessing

regional forest fragmentation, (2) describe the methods used in

the assessment, and (3) compare our methods with those of

other coarse-scale fragmentation studies. 

The protocol we developed was tailored to NE-FIA’s

reporting needs. Past efforts entailed manually interpreting

points on a grid superimposed over aerial photography. At each

point location, fragmentation metrics were recorded (Riemann

and Tillman 1999). Disadvantages of this approach include high

labor and materials costs and a great dependence on the quality

of the photointerpreter. With the completion of the National

Land Cover Data (NLCD) (Vogelmann et al. 2001), a 30-m

Landsat-based land use/land cover classification, and the devel-

opment of APACK, an efficient software application for calculating

fragmentation metrics (Mladenoff and DeZonia 2001), new

opportunities have emerged for measuring landscape patterns

over large areas.

Before designing the procedures used in the assessment,

we developed the following rationale for the analysis: to provide

information for analysts and others interested in interpreting

NE-FIA data with respect to patch features that are commonly

reported as having a direct or indirect influence on biological

systems, e.g., the average size of contiguous forest patches,

their degree of isolation from other patches, shape characteristics,

and length of interface between the patches and other land

cover types (Forman 1995). 
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We also developed a definition of forest patch that matched

as closely as possible NE-FIA’s definitions of “forest.” For land

use on an NE-FIA plot to be classified as forest, it must be at

least 0.4 ha (1 acre) in extent and nearly devoid of human

development (except for silvicultural treatments). For example,

agricultural fields with trees or recreation areas with paths and

undergrowth control would not be considered forest. On the basis

of these criteria, a forest patch was defined as a contiguous area

of forest cover that is at least 0.4 ha in size and differs sharply

from its surroundings due to land use change, bisection by a

road, or interface with a water feature such as a large river or

lake. Including characteristics of forest structure in our definition

might be preferable, but the data do not allow for finer distinctions

beyond broad land use/land cover categories.

We are aware of only two other regional or superregional

forest fragmentation assessments in the landscape ecology liter-

ature: studies by Riitters et al. (2002) and Heilman et al. (2002).

Both used raster data from NLCD and devised algorithms for

segmenting large images and calculating metrics. After reviewing

their methods, we chose a different analytical approach, primarily

because of the manner in which the NLCD data were preprocessed.

Riitters et al. excluded roads in their analysis, and Heilman et

al. included only major roads. We believe that the ecological

effects of all road sizes are too important to ignore. Also, we

wanted to correct the situation in which NLCD forest is over-

predicted in areas with high tree cover but a nonforest land use,

for example, a residential area with an extensive tree canopy.

Because any metrics calculated depend on the accuracy of the

source data set used (e.g., Riemann et al. 2003), we believe that

this correction was critical. Finally, both Heilman et al. and Riitters

et al. used subcounty-scale analysis units. NE-FIA produces

statistical summaries at the county or multicounty scale, which

requires different procedures than those used in the other two

studies. We partitioned the landscape into political units (counties)

to more closely match the reporting needs of NE-FIA.

Methods

Combining Imagery and Roads

We obtained NLCD data from the U.S. Geological Survey for

the 13 Northeastern States under the purview of NE-FIA (fig. 1)

and then merged these data to create a contiguous, regional

raster data set. We collapsed the original 21 NLCD classes into

six new classes representing the land uses we were willing to

consider together as a single patch (table 1) to create a new

mosaic (M). We combined Geographic Information System

(GIS) coverages of roads from the U.S. Census Bureau’s

TIGER/Line Files (U.S. Department of Commerce 2002) with

M to create a new data set (M+R) in which each pixel of M that

co-occurred with a road became a background or “no data”

pixel in M+R (fig. 2a). In addition to boundaries created by

roads, water and the edges of analysis units did not contribute

to the edge measurements. We did encounter registration errors

in various areas between M and the roads’ data, but ignored

them, assuming that the false patches created by these errors

generally represent a marginal proportion of the total area and

number of patches. 

Updating and “Correcting” the NLCD Data Set for Missing

Development

We had previously noted that NLCD overrepresented forest pix-

els in areas that include both development and high levels of

Figure 1.—The States that make up the study region: Ohio,
West Virginia, Maryland, Pennsylvania, Delaware, New York,
New Jersey, Connecticut, Rhode Island, Massachusetts,
Vermont, New Hampshire, and Maine.
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tree canopy cover (Riemann et al. 2003). For these forested

areas with higher road density, we applied a convolution filter

(moving window) with a circular, seven-pixel-radius kernel to

M+R so that the count of road pixels within the kernel was cal-

culated and attached to each pixel in the output (RD) (fig. 2b).

This output was then evaluated using Boolean logic of the form

“If a pixel in M+R is forest, and the co-occurring pixel in RD

has a value greater than 35, then update that pixel with the class

‘developed’ (table 1); otherwise, leave it with the original value

of M+R.” We decided on a threshold of pixel values greater

than 35 in RD as indicative of high road density through a

heuristic approach using different thresholds and different areas

of the study region.

Approximating NE-FIA’s Minimum Area Definition for

Forest Land

To approximate NE-FIA’s area requirements for forest classifi-

cation, we eliminated all isolated patches of pixels from the map

updated in the previous step (M+R+F) (fig. 2c) that contained

Our class NLCD or derived class

Developed Residential, commercial, high road 
density forested

Barren Quarries, gravel, bare earth, transitional

Forest Deciduous, conifer, mixed, woody wetlands

Natural vegetation Shrubs, grasslands, herbaceous wetlands

Agriculture Pasture, row crops, grains, orchards

Background Water, roads, areas outside of the 
analysis region

Table 1.—Collapsing scheme used to convert NLCD or derived
classes into our classification scheme (see text); background
classes form patch boundaries but do not form patches.

fewer than four pixels of the same land cover type and replaced

them with the majority land cover surrounding each updated

pixel. This, in effect, defined the minimum mapping unit of

M+R+F as 3,600 m2 (0.9 acres) (fig. 2d).

Analysis of Reporting Units and Automation

We defined several scales of reporting unit based on the interests

of NE-FIA analysts and data consumers: county, watershed,

ecoregion, and State. We obtained GIS layers for county and

State boundaries from the U.S. Census Bureau (U.S. Department

of Commerce 2002). We designed a series of GIS-based software

programs that used these GIS layers to clip M+R+F and process

each resulting analysis unit using APACK software, as well as

Environmental Systems Research Institute’s ArcInfo GIS.

Fragmentation metrics for each land use class from table 1 and

the landscape as a whole were compiled in tabular form for

each analysis unit (table 2). We do not address our choice of

metrics in this article.

Discussion of Methods

Riitters et al. (2002) did not preprocess the NLCD data other

than recoding them to forest/nonforest. This approach did not

meet our objectives. During our initial analyses, we determined

that a single string of pixels can connect two isolated forest

patches, creating a “super patch” that constitutes a large por-

tion of the land area of the analysis unit. The methods of

Riitters et al. (2002) are based on a sliding window and were

not meant to produce patch-based measurements, whereas our

requirements dictated a patch-based approach. Also, we wanted

Figure 2.—(a) roads overlaid on the NLCD image in a simplified
region that includes two classes (forest and developed) (M+R);
(b) results of a convolution filter that provides an index of road
density (RD); (c) results of a Boolean expression that replaces
forest with high road density with developed (M+R+F); (d) the
final map in which patches smaller than 0.4 ha have been
removed, and roads have been converted to background.
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to retain information on different categories of nonforest land

because the nonforest land use type bordering forests is

believed to affect the ecology of that forest (Forman 1995).

Heilman et al. (2002) preprocessed the NLCD data using a

subset of the TIGER/Line roads data—U.S. interstates and

routes and State and county highways—to account for the super

patch problem and in recognition of the ecological impacts of

roads on terrestrial ecosystems (Trombulak and Frissell 2000).

They also recoded the NLCD data to forest/nonforest, and, like

Riitters et al., lost information by grouping all nonforest land

use types in a single category. 

The work of Heilman et al. (2002) did not meet our objectives

because they omitted road classes such as rural, neighborhood,

and vehicular trails, and because the boundaries of their analysis

units were formed by roads rather than by political boundaries.

We believed that including all available roads was important

because even unpaved forest roads strongly affect the local

ecology (Haskell 2000). Further, Heilman et al. eliminated

urban areas from their analysis. We included these areas because

some urban areas have significant tree cover or marginal forest

(Riemann 2003).

Our methods and those of Riitters et al. and Heilman et al.

(2002) share several weaknesses. First, the NLCD data have

varying accuracies (Yang et al. 2001). By collapsing the 21 NLCD

classes (table 1), we no doubt raised the overall accuracy of the

data set, although measuring this directly would be difficult. At

best, the NLCD forest/nonforest accuracy rates tend to range

from 80–95 percent across the study region (Yang et al. 2001). 

Second, the spatial mismatch between the TIGER/Line roads

data and the NLCD image can be substantial. We experimented

with several ways to address this, e.g., buffering the roads, but

believed that the additional inaccuracy introduced by using the

roads was offset by the ability to delineate meaningful forest

patches in a way that met our definitions.

Third, the NLCD classification is driven by land cover. If

an area is completely covered with tree canopy but is mowed

beneath the tree canopy, e.g., in a town park, the NLCD might

classify that area as forest, while the NE-FIA classification

would be nonforest. This definitional mismatch is inherent in

most satellite-based land cover classifications of vegetation. In

our analysis, we assumed that all tree-covered areas greater than

0.4 ha are forest, although this supposition is not true. We made

this assumption because no other consistently classified, national,

land use/land cover maps exist at relatively fine scales. Provided

that these deficiencies are recognized and understood, we believe

that our method can effectively assess forest fragmentation at

the regional scale.

Conclusions

One strength of our approach is the type of automation we

developed. We were able to quickly and efficiently use a combi-

nation of GIS, spreadsheets, and C (programming language)

programs to partition, preprocess, calculate metrics for, and

compile tabular summaries of data in our analysis units. This

flexibility allows us to generate metrics for any attribute of

interest for which a GIS data source exists. Also, our prepro-

cessing of the NLCD data adds an indicator of below-canopy

fragmentation to areas that are tree covered on the NLCD

image but replete with roads below the canopy. By including all

available roads as patch-creating entities, we are in agreement

with the prevailing view that any road size affects forests in

numerous ways (Trombulak and Frissell 2000). Finally, by

Percent land use in Shared edge between forest and  Other metrics

Developed Developed Forest edge density

Barren Barren Avg. corrected patch perimeter-area ratio 

Forest Natural vegetation Avg. normalized patch area

Natural vegetation Agriculture Patch size summary statistics

Agriculture Patch size histograms

Patch connectivity metrics

Table 2.—Examples of fragmentation metrics calculated for each analysis unit.
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eliminating patches that do not approximate NE-FIA’s forest

definition, we arrive closer to the point where we can mitigate

the distinction between tree cover and NE-FIA’s definition of

forest.
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Southwestern Oregon’s Biscuit Fire: An
Analysis of Forest Resources, Fire Severity,
and Fire Hazard

David L. Azuma and Glenn A. Christensen1

Abstract.—This study compares pre-fire field inventory

data (collected from 1993 to 1997) in relation to post-fire

mapped fire severity classes and the Fire and Fuels

Extension of the Forest Vegetation Simulator growth

and yield model measures of fire hazard for the portion

of the Siskiyou National Forest in the 2002 Biscuit

fire perimeter of southwestern Oregon. Post-fire

severity classes are related to pre-fire torching indexes,

and torching indexes seem to be correlated with the

pre-fire volume of stands. Our analysis represents an

initial look at fire severity, hazard, and forest attributes.

Fire is one of the most serious disturbances to occur on western

landscapes (Agee 1993), and the 2002 fire season was one of

the worst in recorded history in Oregon. Total acreage burned

exceeded 800,000 acres. The largest fire was the Biscuit fire,

which burned for 55 days before being contained. The Biscuit

fire perimeter encompassed more than 500,000 acres in Oregon

and California, with 460,000 acres in Oregon. Suppression

costs in 2002 for southwestern Oregon, including the Apple,

Tiller, Timber Rock, and Biscuit fires, were estimated to be

more than $200 million, with approximately $150 million spent

on the Biscuit fire alone. 

The Biscuit fire offers a unique opportunity to study the

effects of and recovery from a major wildfire on reserved and

nonreserved lands. The reserved area includes the 180,000-acre

Kalmiopsis Wilderness Area, which is entirely within the fire

boundary. Nonreserved lands are all other areas and are consid-

ered potentially available for active forest management such as

timber harvest. Forest types range from moist coastal Douglas

fir to knobcone pine to a variety of hardwood types. 

In the aftermath of the fire, land managers at the Siskiyou

National Forest have had to deal with policy debates concerning

salvage logging and whether or how to implement reforestation

measures. The size of the Biscuit fire has focused public attention

on fire risk, forest health impacts, and salvage logging. 

The U.S. Department of Agriculture Forest Service’s Forest

Inventory and Analysis (FIA) program collects and analyzes

data that directly contribute information to the debate on post-fire

recovery options. Our report describes the Biscuit fire study,

presents several inventory results from analyzing the pre-fire

data, and explains the data collection that occurred during the

2003 field season. We used the pre-fire information to describe

each plot’s characteristics, and then related these to post-fire

severity estimates derived from the Burn Area Emergency

Recovery (BAER) team’s severity map. To evaluate how well

post-fire severity related to pre-fire measures of fire hazard, we

used the Fire and Fuels (FFE) (Reinhardt and Crookston 2003)

of the Forest Vegetation Simulator (FVS). 

Methods

For the Biscuit fire, we arranged the remeasurement in 2003 of

all the Continuous Vegetation Survey (CVS) plots (Max et al.

1996) installed by the national forest system in the mid to late

1990s. Along with the standard plot remeasure, we added various

post-fire descriptive parameters to help us make inferences

about fire severity and its effects on trees and soils. Post-fire

tree parameters included percent crown colors (percent of crown

that was brown, green, and black), two scorch heights and

azimuths, percent stem black, and cause of death. Additional

ground variables included percent cover of new litter and depth,

previous litter and depth, previous humus and depth, and percent

charring levels on previous litter, humus, soil, rock, moss, brown

cubical rot, liverworts, and lichens. 

The pre-fire data set consists of a systematic grid of 180

field plots in the fire perimeter (fig. 1). Tree parameters include,

but are not limited to diameter at breast height (d.b.h.), height,

age, species, compacted crown ratio, and insect and damage

1 Research Forester and Forester, respectively, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, P.O. Box 3890, Portland, OR
97208-3890; e-mail: dazuma@fs.fed.us.
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information. Plot variables include standard site descriptors and

coarse woody debris and understory vegetation cover transects.

Some variables are used as inputs to the FFE model to estimate

fire-related plot attributes such as torching index, crowning

index, canopy bulk density, and canopy base height. 

We used the BAER team’s severity map and compared pre-

fire data among four severity classes: very low or unburned, low,

moderate, and high (Parsons and Orlemann 2002) (table 1). The

map (fig. 1) was based on automated classification of 30-meter

pixel Landsat 7 satellite imagery and was field-validated and

Figure 1.—Map of Biscuit fire by BAER burn severity class.
Continuous vegetation survey (CVS) inventory plots included in
the fire boundary are on a 3.4-mile grid for reserved lands and
a 1.7-mile grid for nonreserved lands. 

Collapsed class BAER burn severity Description of fire effects

Low/unburned Very low or unburned Mosaic of unburned and very low severity ground fire. 

Consumption of ground cover and vegetation mortality is

minimal. Canopy remains vigorous and green. Mortality of

trees and shrubs is slight.

Low Vegetation is lightly scorched, large trees are mostly not killed,

and very small diameter fuels consumed.

High/moderate Moderate Much of the litter has been consumed. Fine fuels close to the 

ground may be all consumed, and trees may exhibit 40- to 

80% mortality.

High Complete consumption of tree crowns has occurred, few to no 

leaves or needles remain on trees, and mortality can be 

assumed to be close to 100%.

Table 1.—Description of Burn Area Emergency Recovery (BAER) severity classes.

calibrated using ground crew and helicopter reconnaissance. The

minimum mapping size for the severity classes was 50 acres.

Using a geographic information system (GIS), the FIA field plot

centers were overlaid on the severity map to assign a severity

class to each plot.

We used the southcentral Oregon and northeastern California

(SORNEC) FVS variant to estimate pre-fire conditions. The

SORNEC variant includes the FFE fire model used to calculate

canopy base height, torching, and crowning index for each plot.

Torching index (TI), representing the wind speed at which fire

could be expected to move from surface fuels into crown fuels,

is highly influenced by vertical stand structure (ladder fuels).

The higher TI values indicate that a higher wind speed is required

to move the fire into the crowns, giving these TI values a reduced

fire hazard compared with plots that have a lower TI. Crowning

index (CI), the wind speed at which a crown fire could be

expected to be sustained, is heavily influenced by crown bulk

density (Van Wagner 1977). Both TI and CI are used as indexes

of potential fire hazard. FFE model defaults are used for pre-fire

estimates of all plots. These defaults include these assumptions:

70o Fahrenheit temperature, a 20-foot wind speed of 6 miles

per hour, and moisture assumptions that depend on predicted

fuel loadings. Fuel loading predictions are estimated from cover

type and structural stage. After fuel loading was determined for

a particular plot, the plot was assigned one of 13 stylized fuel

models dependent on the specific FFE variant. Potential fire

estimate calculations were done using Rothermel’s 1972 fire

behavior prediction system (Reinhardt and Crookston 2003).
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Forest type
Nonreserved area Reserved area

Acres Percent Acres Percent

Douglas fir 132,000 46 72,800 42

Jeffery pine 14,400 5 — —

Sugar pine 6,100 2 12,600 7

Western white pine 28,000 10 23,900 14

Canyon live oak 15,500 5 10,100 6

Tanoak 43,200 15 33,300 19

Nonstocked 14,800 5 7,500 4

Others 31,500 11 14,400 5

Total 285,500 100 174,600 100

Table 2.—Estimated pre-fire area and percent by reserved status by forest type for the Oregon portion of the 2002 Biscuit fire,
Siskiyou National Forest.

Site Description

The Siskiyou is one of the most florally diverse national

forests. The complex geology, transverse nature of the Siskiyou

Range, and extreme climate conditions combine to provide a

variety of niches. The inventory plots contained 14 coniferous

and 12 hardwood species. The Forest has 100 different sensitive

species and 15 different plant series that can be divided into 92

different plant associations.

Inventory Overview

Within the Biscuit fire perimeter, six major forest types comprised

more than 85 percent of the land area. Nonstocked area and

forest types with less than 5 percent of the area accounted for

the remaining land area. Douglas fir was the most prevalent

forest type inside and outside the reserved area, followed by

tanoak and western white pine. Generally, few differences

existed between the percentage of area by forest type when

comparing the reserved and nonreserved areas (table 2).

We estimated pre-fire volume to be 7.02 billion board feet,

of which 2.4 billion occurred in the Kalmiopsis Wilderness

Area and 4.6 billion on nonreserved lands. The proportion of

the total volume by species is constant between the reserved

and nonreserved areas and is presented as a combined statistic

in table 3. The major species regardless of land status is Douglas

fir, with around 70 percent of the volume, followed by sugar

pine and tanoak. The average torching index, crowning index,

and canopy base height are also presented as a combined statistic

for reserved and nonreserved lands by forest type in table 3. 

Results

Although the fire area is divided by reserved and nonreserved

status, the forest statistics are similar. The percentage of area in

the four major softwood types (Douglas fir, sugar pine, western

white pine, and Jeffery pine) is the same for the reserved and

nonreserved (table 2). The greatest discrepancy appears in the

age class distribution, in which the reserved and nonreserved

have 53 percent versus 37 percent of the area in the 100–200-

year age class. Surprisingly, the nonreserved area has a greater

percentage of area in the 200 and older year age class, with 29

percent, versus 15 percent in the reserved (table 4). 

The relationship between burn severity and land status is

presented in table 5 by area and percentage. The percent of

acres burned in the various severity classes are relatively close

between the reserved (45 percent) and nonreserved (35 percent)

areas in the high and moderate severity classes combined. 

The plots that have higher TI tend to be in areas classed as

low or very low severity and to have more volume per acre

than in areas classed as high severity (table 6). Figure 2 shows

a similar relationship between TI wind speed and average plot

volume by graphing the average TI by average volume per acre

for both the high/moderately burned stands and the low/unburned

stands. TI tends to be highest for plots with more volume per

acre than those with less volume. Also, as figure 2 shows, the

TI tends to be lower for the plots that were most severely

burned when compared to those with little or no burn damage.
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Total Torching    Crowning   Canopy base
Forest type volume index index height

Million board feet,   Average Average Average (feet) 
Scribner rule (m.p.h.) (m.p.h.)

Douglas fir 4,971 7.9 42.2 13.9

Jeffrey pine 113 4.4 105.1 13.4

Sugar pine 804 4.7 71.4 11.5

Western white pine 163 2.3 50.8 6.5

Canyon live oak 18 8.5 104.5 21.9

Tanoak 335 12.0 76.3 25.8

Others 614 5.9 84.5 16.2

All species 7,018 6.9 60.6 14.5

Table 3.—Estimated pre-fire gross board foot volume, torching index, crowning index, and canopy base height by forest type, 2002
Biscuit fire, Siskiyou National Forest.

Age class Nonreserved area Reserved area

Years Acres Percent Acres Percent

20–39 7,500 3 0 0

40–59 9,600 3 — 0

60–79 32,600 11 17,000 10

80–99 28,800 10 32,500 19

100–119 25,400 9 23,400 13

120–139 12,500 4 24,500 14

140–159 30,700 11 6,300 4

160–179 18,600 6 31,400 18

180–199 20,800 7 6,300 4

200–299 68,600 24 25,800 15

300 and older 14,000 5 0 0

Nonstocked 14,400 5 0 0

Totala 283,600 100 174,600 100

Table 4.—Estimated pre-fire area and percent of total fire area by reserved status and stand age class for the 2002 Biscuit fire,
Siskiyou National Forest. 

a One plot was not assigned an age class, accounting for the discrepancy in area totals. 
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a Standard errors for the totals are presented.

a Computed as the number of nonsawtimber trees to sawtimber trees.

BAER burn severity

High Moderate Low Very low

Volume per acre 

(1,000 board feet, Scribner rule) 10.6 7.8 17.6 24.7

Standard error 2.5 1.7 1.8 2.6

Small tree to large tree ratioa

(number of trees) 94.5 102.6 76.8 30.0

Standard error 24.1 26.3 13.3 4.6

Down woody material > 5 inches in diameter 4.23 4.46 9.14 5.58
(tons/acre)

Standard error 1.84 1.27 1.97 1.45

Cover in 1–5-foot height class (%) 43 43 31 23

Standard error 5 3 4 4

Torching index (miles/hour) 4.2 4.2 7.0 10.2

Standard error 1.0 1.2 1.4 1.6

Crowning index (miles/hour) 74.8 66.6 48.3 59.6

Standard error 12.2 7.9 4.2 5.1

Canopy base height (feet) 11.2 9.2 14.2 20.9

Standard error 2.2 1.5 2.1 3.2

Table 6.—Average volume, large to small tree ratio, down woody material volume, percent understory cover, torching index,
crowning index, and canopy base height with standard errors by BAER burn severity class.

Burn severity
Nonreserved area Reserved area

Acres Percent Acres Percent

High 38,000 13 33,000 19

Moderate 62,000 22 46,000 26

Low 117,000 41 56,000 32

Very low 68,000 24 39,000 22

Totala 285,000 (4) 100 175,000 (5) 100

Table 5.—Estimated pre-fire area, standard error, and percent by reserved status and BAER burn severity class for the 2002
Biscuit fire, Siskiyou National Forest.
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In a chart of average TI by burn severity and site class (fig.

3), two important trends become apparent. The average torching

index tends to decrease (representing an increased hazard) as

site class declines, regardless of burn severity, and the most

severely burned areas tended to have lower torching indexes

than areas burned only slightly or not at all. Because a positive

correlation between a stand’s potential volume per acre and site

quality exists, figures 2 and 3 both show a decrease in torching

index with declining site quality or stand volume. The areas in

the Biscuit fire that had more standing volume, and which also

tended to be on the more productive sites, suffered less fire

impact as measured by BAER burn severity. 

The relationship between severity class and crowning index

is not as strong. The smallest mean crowning indexes were in

the low and very low severity classes, but the difference in

crowning indexes between low/very low and moderate/high

burn severity is small. Perhaps one explanation for this result is

that when the fire is in the crowns, it takes about the same wind

to move it through the crowns. These data suggest that the plots

that burned the most severely are those that had lower torching

indexes, as indicated by the FFE estimates. The results listed in

table 3 show how TI, CI, and canopy base height differ by the

major forest types in the burn area. The average CI for all forest

types is high and indicates a lower probability of a fire moving

through the crowns than the chance of it moving from a ground

fire up into the canopy. 

Some interesting differences in torching index were found

among forest types. Pine forest types (Jeffery pine, sugar pine,

and western white pine) tended to be more susceptible to torch-

ing than the other major forest types (fig. 4). We found that the

forest types with the highest pre-fire TI (lowest hazard) are the

two major hardwood types, canyon live oak and tanoak. The

percentage of BAER severity by forest type results support the

TI by forest type results. As with TI, the three pine types tended

to have the greatest percentage of area in the two highest severity

categories, moderate and high (fig. 5). The BAER mapping also

showed that the two major hardwood types, canyon live oak and

tanoak, had the least percentage of burn in the two most severe

classifications. 

Discussion

Data from the FIA plots in the Biscuit fire boundary enable

exploring how pre-fire plot characteristics relate to post-fire

severity estimates based on the BAER map. One of our most

important findings is that plots with a higher timber volume and

on more productive sites appear to have lower torching hazard;

as the trees increase in size, they tend to dominant the stand,

excluding the brush component and smaller trees (table 6),

thereby reducing the ladder fuels and reducing the incidence of

torching. The low and very low severity plots also had the highest

canopy base heights, although only the very low severity plot

base height was significantly different. The generally higher

canopy base heights and lower ladder fuels appear to be related

to the lower burn severity. After the ground-based measurements

of severity are analyzed, this hypothesis can be further explored.

Figure 2.—Average torching index by BAER burn severity and
stand volume class. As average volume 1,000 board feet/acre
increases, torching index tends to also increase suggesting the
possibility of decreased torching potential in the stand. 

Figure 3.—Average torching index by BAER burn severity by
average torching index and site class. High productivity is
indicated by lower site classes. High probability of torching is
indicated by a lower average torching index. 
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For our analysis, we found that using FFE to provide pre-fire

estimates of torching index appears to be a useful approach to

identify areas that may be severely impacted by wildfire. Further

analysis of post-fire ground-based measurements of severity,

however, will provide better estimates of the nature and strength

of this relationship. Crowning index did not provide the same

utility in terms of predicting burn severity, but this may be due

to factors specific to this fire, such as forest types and stand

structures, topography, and the intensity of this fire.

The differences in average torching index by forest type is

another important finding from this analysis. A clear difference

exists between the torching index prevalent for the three major

pine types (Jeffery, western white, and sugar) and the high TI

prevalent for the two major hardwood types (fig. 4). Like our

findings of the relationship between torching index and burn

severity, these results can only be confirmed definitively with

ground-based measurements. 

Our study is the first analysis relating various fire modeling

parameters to burn severity and pre-fire stand characteristics.

The reserved and nonreserved areas are similar in terms of area

burned by BAER severity class but differ by stand age class

distribution. The nonreserved acres had the largest area in the

oldest age class. We found that the plots classed as low or very-

low burn severity tended to have more volume per acre than the

more severely burned plots. These plots also tended to have less

cover in the stand’s small tree and brush component and have a

higher average canopy base height. Using the FFE model to
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estimate specific fire related parameters such as torching and

crowning index, we found BAER burn severity was closely

related to torching index, but much less related to crowning

index. Torching index was less for those plots that were the most

severely burned, suggesting that this may be a useful variable

to assess current fire hazard. Torching index also tended to drop

when volumes per acre and site quality decline. Azuma et al.
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and the relationships between pre-fire stand characters (topo-

graphic and vegetative) and fire weather.
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Assessment and Mapping of Forest Parcel
Sizes

Brett J. Butler and Susan L. King1

Abstract.—A method for analyzing and mapping for-

est parcel sizes in the Northeastern United States is

presented. A decision tree model was created that

predicts forest parcel size from spatially explicit pre-

dictor variables: population density, State, percentage

forest land cover, and road density. The model correctly

predicted parcel size for 60 percent of the observations

in a validation data set (weighted kappa = 0.45). This

decision tree model was used to create a map represent-

ing the average forest parcel size across the region. 

Introduction

Our Nation’s forest resources are becoming increasingly con-

strained by social factors. Wear et al. (1999) found a negative

relationship between population density and harvesting probability,

with harvesting probabilities approaching zero as population

densities approached 58 people/km2 (150 people/mi2). One fac-

tor correlated with harvesting activity is the area of forest land

owned by individual forest landowners. Preliminary results from

the National Woodland Owner Survey (NWOS) (Butler and

Leatherberry 2003) suggest that parcel size also is correlated

with ownership objectives, management activities, and future

land use intentions.

Over the past 25 years, the number of private forest

landowners in the United States increased from 7.8 million to

10.6 million (Birch et al. 1982, Butler and Leatherberry 2003).

Most of this increase comes from landowners who own less

than 20 ha (50 ac) of forest land (fig. 1). This increase in the

number of landowners with smaller parcels is known as forest

parcelization. As Sampson and DeCoster (2000) stated, forest

parcelization is a major factor leading to “a growing crisis in

maintaining sustainable private forests” (Samson and DeCoster

2000, 6). The financial difficulties of managing smaller parcels

of forest land (i.e., economies of scale) (Row 1978) are partially

responsible for the loss of working forest lands; the changing

characteristics of the landowners (Egan and Luloff 2000),

including changing ownership objectives and management

practices, is another contributing factor. 

To date, most information about forest parcel size across

broad geographic regions has been produced in a tabular format

(e.g., Birch 1996). Information about forest parcel size could

be improved by providing the data in a spatially explicit (i.e.,

map) format to enable visual inspection of spatial patterns and

combining with other spatial data sources to conduct further

analyses. Estimation techniques must be employed because no

nationally available spatially explicit data sources on forest

parcel size exist.

1 Research Forester and Operations Research Analyst, respectively, U.S. Department of Agriculture, Forest Service, Northeastern Research Station, 11 Campus
Boulevard, Suite 200, Newtown Square, PA 19073. Phone: 610–557–4045; fax: 610–557-4250; e-mail: bbutler01@fs.fed.us.

Figure 1.—Size of forest landholdings as a function of (a) num-
ber of owners and (b) area of forest land owned in the United
States in 1978, 1994, and 2002.

(a)

(b)
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By combining point-based estimates of forest parcel size

with spatially explicit ancillary data, we model forest parcel

size across the Northeastern United States and generate a forest

parcel map. In previous research (King and Butler, in press), we

explored linear regression, neural network, and decision tree

techniques for generating this model. We found the linear

regression models had low predictive power (i.e., poor R2 values)

and required transformations of multiple variables, including

the dependent variable. The model building process associated

with the neural networks was complex and difficult to repeat,

and the results were difficult to interpret. The decision tree

models were easy to implement, produced results that were

easy to interpret, and appeared to have relatively high predictive

power. Because of these factors, we opted to use decision tree

models for this study. The accuracy and goodness-of-fit of the

decision tree modeling technique are tested using a validation

data set and quantified using a confusion matrix and a weighted

kappa statistic. Potential to improve these methods and future

research directions also are discussed.

Methods

To generate a forest parcel map for the Northeastern United

States, we created a decision tree model that predicted parcel size

as a function of a set of independent variables. The Northeastern

United States was selected because of data accessibility. Similar

data have been collected for all the contiguous States, and the

methods employed in this study can be expanded to this broader

area. 

The dependent variable was derived from the U.S. Department

of Agriculture Forest Service’s Forest Inventory and Analysis

program’s NWOS program (Butler and Leatherberry 2003). The

NWOS randomly selects private forest landowners from across

the United States and collects information, including size of

landholding. The landowners were selected by assessing the

forest cover at a random set of points across the United States;

for those points determined to be located in forested areas, the

ownership of record was determined through tax records. For

this study, we used 764 points representing landowners surveyed

in 2002 in the Northeastern United States.

The sizes of the forested landholdings were grouped into

three categories: 0.5–19 ha (1–49 ac), 20–399 ha (50–999 ac),

and greater than or equal to 400 ha (≥ 1,000 ac). These categories

are a simplified version of the categories used in previously

published research (e.g., Birch et al. 1982, Birch 1996, Butler

and Leatherberry 2003). The more detailed groups reported in

earlier reports are collapsed to aid in producing results that are

more accurate, more consistent, and easier to interpret.

Predictor variables needed to have a theoretical relationship

to forest parcel size, be spatially explicit, and be publicly avail-

able. The independent variables were percentage forest land

cover, percentage urban land cover, percentage agricultural land

cover, population density, housing density, change in population

levels, distance to roads, distance to U.S. Census-defined cities

and places, road density, a population gravity model, and State.

Land cover data were summarized over 6.25 ha (15.5 ac) areas

based on the Multi-Resolution Land Characteristics Consortium’s

National Land Cover Data (Vogelmann et al. 2001). Population,

housing, city, and place data were derived from U.S. Census data

(U.S. Commerce Department 2000). Population and housing

density were summarized for each U.S. Census-defined block

group. Road data were obtained from Bureau of Transportation

Statistics (U.S. Department of Transportation 1998). Parcels

closer to urban areas are more likely to be influenced by urban

land use processes; we included a gravity model that quantifies

the “influence” of these population centers across the landscape

(equation 1) (Kline and Alig 2001). 

(1)

where:

i = sample point; and

j = the three cities having the largest influences, as defined

by this equation.

Due to high Pearson correlation coefficient values with

other predictor variables, the percentage agricultural land cover

and housing density variables were excluded in favor of other

variables that had higher predictive powers and more direct

interpretations.

Each independent variable not in the proper format was

converted into a surface or grid layer and reprojected to an

Albers projection using Geographic Information System (GIS)

software (Environmental Systems Research Institute 2001). The

value for each independent variable at each sample point with
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Figure 2.—Decision tree model of forest parcel sizes in the Northeastern United States. Population density is in units of
people/km2, and road distance is measured in meters. 

known forest parcel size was extracted using the GIS software.

The resulting data set formed the basis for building and validating

the decision tree model. 

The decision tree was generated using the Chi-squared

Automatic Interaction Detector algorithm (Kass 1980; SPSS

2002). Seventy-five percent (573) of the data points were used

to develop the model; 25 percent (191) of the data points were

used to validate the model. The validation data were used to

create a confusion matrix and generate a weighted kappa statistic

(κ) (Congalton and Green 1999). The confusion matrix displays

the observed versus predicted parcel sizes for each point. The κ
statistic condenses the confusion matrix into a single statistic

and represents the proportion of agreement beyond chance with

1 representing perfect agreement, 0 representing no agreement,

and a negative value indicating agreement less than expected.

The decision tree model will vary depending on the data used

to train the model. We produced multiple models by randomly

dividing the data set into subsets of various training and validation

groups. Although population density was consistently selected

as the first variable to split the data set, and overall model

accuracy did not vary appreciably, subsequent splitting of variables

varied among models. The model presented herein was selected

because of its relatively high predictive power and the inclusion

of theoretically consistent variables. In subsequent efforts, we

will investigate techniques for producing a final model based

on the convergence of multiple models. 

The final decision tree model was used to generate a parcel

map by translating the model results into a series of if-else logic

statements. The logic statements were applied on a pixel-by-pixel

basis using a GIS software package. 

Results

The final decision tree model (fig. 2) included population density,

State, percentage forest, and road distance variables to predict

forest parcel size. At the highest level, population density was

the best predictor of forest parcel size, with areas of higher

population density more likely to have smaller forest parcels.

When the population level was between 6 and 18 people/km2,

the State variable was the best predictor of whether the forest

parcel would be large (≥ 400 ha) or medium (20–399 ha). At

population densities greater than 18 people/km2, the percentage

of the area covered by forest was indicative of whether the forest

parcel was medium or small (0.5–19 ha). 

The decision tree model was translated into a series of 13

if-else logic statements. By applying these statements to the

spatially explicit predictor variables, we produced a map (fig. 3). 

This decision tree model predicted 60 percent of the valida-

tion data correctly (table 1) yielding a weighted kappa statistic

of 0.45 [95-percent interval = (0.35, 0.55)]. Of the misclassifi-

cation errors made, 88 percent were misclassification of points

to one of the adjacent categories.
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Conclusions

The final decision tree model (fig. 2) makes sense intuitively.

This model found population density to be the most powerful

predictor of parcel size and shows the expected negative rela-

tionship. Having larger parcel sizes predicted in Maine and

Pennsylvania versus the other States is logical considering the

strong forest industries in those States and the States’ develop-

ment and population patterns. Percentage forest had the expected

relationship with parcel size with areas of more forest being

more likely to have larger forested parcels at a given population

level. Road distance, although only of tertiary importance in the

model, also exhibited the expected relationship to parcel size;

areas of higher road density were more likely to have smaller

forested parcels.

The resulting forest parcel size map (fig. 3) also seems

reasonable. The areas with the highest probabilities of having

larger forested parcels are located in areas with higher concen-

trations of forest industry or large public landholdings.

Figure 3.—Average size of forest parcels in the Northeastern
United States as predicted by a decision tree model.

Predicted
Observed

Federal State Local Forest industry Other corporate Family Total

Federal 42 3 2 1 7 23 78

(56.8) (1.0) (2.7) (0.2) (1.5) (1.1) (2.3)

State 0 139 3 20 26 102 290

(0.0) (45.1) (4.1) (4.9) (5.7) (4.9) (8.5)

Local 1 8 6 4 11 25 55

(1.4) (2.6) (8.1) (1.0) (2.4) (1.2) (1.6)

Forest industry 0 13 3 251 36 65 368

(0.0) (4.2) (4.1) (61.5) (7.9) (3.1) (10.8)

Other corporate 2 21 11 40 157 204 435

(2.7) (6.8) (14.9) (9.8) (34.6) (9.7) (12.7)

Family 21 111 35 80 183 1391 1821

(28.4) (36.0) (47.3) (19.6) (40.3) (66.1) (53.2)

Nonforest 8 13 14 12 34 293 374

(10.8) (4.2) (18.9) (2.9) (7.5) (13.9) (10.9)

Total 74 308 74 408 454 2103 3421

Table 1.—Confusion matrix representing observed and predicted ownership categories based on a closest-neighbor estimation
technique (numbers in parentheses represent column percentages).
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Northern Maine is an example of the former, and north-central

Pennsylvania and the Adirondack region of New York are exam-

ples of the latter. 

In addition to refining the decision tree model, we want to

explore some geospatial modeling techniques, such as indicator

kriging, before we attempt to implement this study on a broader

geographic scale. Further refinement of accuracy assessment

techniques will also be explored, including error/probability

mapping.

Forest parcel size is an omnipresent factor influencing how

and why land is used. Modeling of forest parcel size will yield

more insight into the forest parcelization phenomenon and the

impact of these trends on forest fragmentation, harvesting prac-

tices, and other trends. 
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Incorporation of Precipitation Data Into FIA
Analyses: A Case Study of Factors
Influencing Susceptibility to Oak Decline in
Southern Missouri, U.S.A.

W. Keith Moser1, Greg Liknes2, Mark Hansen3, and Kevin

Nimerfro4

Abstract.—The Forest Inventory and Analysis program

at the North Central Research Station focuses on

understanding the forested ecosystems in the North

Central and Northern Great Plains States through ana-

lyzing the results of annual inventories. The program

also researches techniques for data collection and

analysis. The FIA process measures the above-ground

vegetation and the site (soils) factors, but not climatic

data. This pilot study, centered around three inventory

units in southern Missouri, assigned weather data

obtained from the National Oceanic and Atmospheric

Administration to particular forest inventory plots, based

on nearest distance. We incorporated precipitation and

maximum and minimum temperatures into a temporary

database, then analyzed the growth and forest health data

for the plots for any relationships among the climate

data. We found an apparent relationship between pre-

cipitation and the hypothesized relationship between

the variables believed to predispose the stand toward

oak decline and mortality variables, particularly in

larger, older trees. Adding precipitation as an inde-

pendent variable helped increase the quality of the

predictions of the mortality models in situations where

we concentrate on size/age groups more prone to forest

health problems. Finally, we found evidence of spatial

patterns of precipitation across the Ozark Plateau in

southern Missouri that appear to be correlated with

landscape-level patterns of mortality. Management

activities need to address the role of the predisposing

variables in influencing susceptibility to oak decline.

As the level of precipitation seems to exacerbate the

predisposing variables’ effects, historical patterns of

rainfall and soil moisture retention need to be taken

into account when regenerating and managing oak

forests in the Missouri Ozarks.

The Central Hardwood forest ranges from eastern Oklahoma

northeast to southern New England (Hicks 1998). Oak-hickory

forests constitute the vast majority of acreage in the Eastern

United States (Powell 1993) and in the Central Hardwood forest

region. In the State of Missouri, oak-hickory forests constituted

almost three-fourths of the total forest land area, and oaks made

up 66 percent of all growing stock removals on timberland

between 1999 and 2002 (Moser et al. 2004). Forest health

problems affecting oak growth and survival could have a sig-

nificant impact on Missouri’s forest ecosystem and economy.

Oak decline is considered a “complex”: a suite of pathogens

and insects that together contribute to reduced growth, quality

defects, and mortality (Manion 1981) for trees species in the

red oak (Erythrobalanus) group, particularly black oak (Quercus

velutina Lam.) and scarlet oak (Quercus coccinea Muenchh.).

Consisting of the two-lined chestnut borer, the red oak borer,

Armillaria fungus, and Hypoxylon canker (with additional

impacts caused by four other insects [Wargo et al. 1983]), oak

decline is native to the Central Hardwoods region and has long

been endemic to oak forests (Starkey et al. 1989). Although

evidence of oak decline has been observed in the Eastern United

States since the 19th century (Millers et al. 1989), the complex

has had an increasing impact on the forests of the Ozark Plateau

of Missouri and Arkansas with evidence of crown dieback,

growth reduction, and mortality in oak forests since the 1980s

far exceeding historic levels. The severe drought of the late

1990s, combined with the advancing age of the Ozark forests,

1 Research Forester, U.S. Department of Agriculture, Forest Service, North Central Research Station, 1992 Folwell Avenue, St. Paul, MN 55108. Phone:
651–649–5155; e-mail: wkmoser@fs.fed.us.
2 Research Forester, U.S. Department of Agriculture, Forest Service, North Central Research Station, 1992 Folwell Avenue, St. Paul, MN 55108.
3 GIS Specialist, U.S. Department of Agriculture, Forest Service, North Central Research Station, 1992 Folwell Avenue, St. Paul, MN 55108.
4 Programmer, U.S. Department of Agriculture, Forest Service, North Central Research Station, 1992 Folwell Avenue, St. Paul, MN 55108.



34 2003 Proceedings of the Fifth Annual Forest Inventory and Analysis Symposium

has intensified the spread and severity of the effects (Lawrence

et al. 2002). Most red oaks in the Ozarks are at least 70 to 80

years old, and grow in rocky soil on broad ridges or south- and

west-facing slopes. Typical oak decline symptoms include branch

dieback from the tips, sparse foliage, and reduced growth. Mature

red oaks with more than 30 percent dead limbs and branches

are considered to have a high mortality rate.

This study on oak decline uses data from Forest Inventory

and Analysis (FIA) plots, Forest Health Monitoring (FHM) plots,

and other sources to describe the past, present, and future condi-

tion of oak forests on the Mark Twain National Forest (MTNF)

and other forest land in southern Missouri.

Missouri Oaks: Many Potential Victims

Oak species dominate Missouri forests (Moser et al. 2004),

particularly those in the Ozark region. Oak-hickory and oak-pine

forests constitute 78 percent of the forest land of the State. Of

the 16.3 billion cubic feet of volume of all live trees on forest

land that are in hardwood species groups, 36.2 percent were in

white oak species groups and 31.1 percent were in red oak species

groups (Moser et al. 2004). Forest health problems have long

been identified for Missouri oaks (Missouri Conservation

Commission 1976). According to Kathy Kromroy of the North

Central Research Station, the percentage of dead oaks is

increasing, from 1.3 percent in 1972 to 9.6 percent in 1989).

Mortality has reached epidemic proportions in Arkansas and

Missouri (Lawrence et al. 2002) and has severely affected parts

of the Mark Twain National Forest. While planning for the

future, the MTNF asked the U.S. Department of Agriculture,

Forest Service, North Central Research Station FIA, and

Northeastern Area State and Private Forestry for data and trends

based on the FIA data. In response, both units formed the Mark

Twain Oak Decline (MTOD) collaborative study. The investiga-

tion sought to provide the answers the MTNF needed for their

planning process, and to present the results of the research so

that other interested groups may benefit from the effort.

In the process of putting together their forest plan, MTNF

managers identified the following specific objectives for the

study group: 

• Determine if any changes occurred in growth and mortality

between the inventories in 1989 and 1999–2002 attributable

to oak decline.

• Determine the relevant indications of oak decline and which

species, age class, crown closure, and/or crown position is

most affected.

• Determine the distribution of these oak decline effects.

Five Factors Influencing Susceptibility to Oak Decline

Previous work developed interim management guidelines for

forests susceptible to oak decline (Moser and Melick 2002).

Underlying the recommendations were assumptions, based on

personal observations and input from many field managers and

other researchers, about the impact of five stand and site factors

present in all susceptible forests (Millers et al. 1989, Moser and

Melick 2002, Starkey et al. 1989, Nebeker et al. 1992). Moser

and Melick postulated that the five site factors influenced the

likelihood of attack by oak decline in the following ways:

1. Site. Ridgetops and south-west aspects frequently have

poor nutrients and/or water availability.

2. Age. Stands more than 70 years old are susceptible.

3. Species. Scarlet and black oaks are the most prone to oak

decline, particularly on poor sites.

4. Density. Trees in stands with higher densities are more

stressed than those in lower density stands.

5. Lack of diversity. Stands with high proportions of suscep-

tible oaks are more prone to oak decline.

Local climate, particularly precipitation, impacts productivity

and stand dynamics, and unfavorable weather can exacerbate

the effects of the five factors on already stressed trees. Many

references describe the importance of climate to vegetation.

Water is a source of oxygen used in photosynthesis (Nobel 1991).

Zimmerman and Brown (1980, p. 162) state “the availability of

water is the most singly important environmental factor limiting

growth and distribution in trees.” After light, water is the most

prominent limit to growth (Oliver and Larson 1995).

This paper attempts to determine the following:

• If weather, particularly precipitation, significantly influenced

mortality.

• If adding precipitation as an independent variable increases

the quality of predictions of mortality models.

• If spatial patterns of precipitation exist, and, if so, to determine

if they show any relationship with landscape-level patterns

of mortality.
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Management Implications

Given the widespread nature of oak decline on the Ozark Plateau,

not enough foresters, loggers, or markets are available to deal

with all the areas potentially requiring management action. As

an intermediate measure, Moser and Melick (2002) suggest

some management guidelines focused on manipulating the five

factors to avoid or reduce the opportunity for oak decline, or to

at least mitigate its effects. The guidelines suggest increasing

diversity, both in species and tree size (age), before oak decline

is present. Species should be matched to the most appropriate

sites: pines on south- and west-facing slopes and ridgetops,

white oaks on midslopes, northeast slopes for northern red oaks,

and dryer (north and east aspect) sites for scarlet and black oaks.

Species that are especially susceptible, such as scarlet and black

oaks, would be aggressively thinned to increase vigor and har-

vested by the time they reach 70 to 80 years of age.

Methodology

Incorporating Rainfall

We obtained daily precipitation records, generally dating back

to 1948, for all National Weather Service weather stations in

southern and central Missouri. We assigned a weather station to

the nearest FIA inventory plot. The distance from plots to the

nearest weather station varied from a few hundred yards to 17

miles. We then parsed and transferred these files into temporary

tables in the North Central FIA database, with assignment values

(such as State, county, plot) that we joined with standard plot

data. In some cases, many plots were assigned to a particular

weather station. Because oak decline events appear to be influ-

enced by recent patterns of drought (Starkey et al. 1989), for

the purposes of this study we limited our use of the climatic

data to the average annual rainfall from 1990 to 1999.

Data Analysis

Table 1 lists the independent variables we examined and each

corresponding factor. We used 1989 and 2002 data collected on

FIA plots on the Mark Twain National Forest. In this case, the

independent variables were 1989 FIA variables, except for the

1990–99 average annual rainfall; the dependent variables were

the six mortality values for 2002, the remeasurement period. In

Results

Correlations Between the Five Factors and Mortality

The hypothesis that the five factors and rainfall influence tree

mortality, particularly that of oaks, is supported by the data in

the correlation table (table 2). All mortality variables were neg-

atively correlated with average annual rainfall. Most the variables

Category FIA dataset variable

Age Stand age 1989

Density Total BA 1989

Oak BA 1989

Site Site Condition 1989

Aspect 1989

Slope 1989

Species mix BA 802 (white oak) 1989

and diversity BA 806 (scarlet oak) 1989

BA 833 (northern red oak) 1989

BA 837 (black oak) 1989

Weather Average Annual Rainfall 1990–99

Table 1.—Hypothetical factors and the Forest Inventory
Analysis (FIA) dataset variables (“factor variables”) examined
in the overall oak decline study.

addition to the basal areas of scarlet oak (species code 806) and

black oak (species code 837), we also examined northern red

oak (Quercus rubra L., species code 833) and white oak (Q. alba

L., species code 802). We evaluated the correlations between

the independent variables representing the five factors, average

annual rainfall, and mortality and estimated the significance of

adding precipitation to the model using equation 1. 

Equation 1 is the formula for appraising the “value” of

adding a variable to evaluate certain weather data as increasing

model predictability. SS1 = the sum of squares residual without

the rainfall variable; SS2 = the sum of squares residual with

rainfall; p1 = number of coefficients estimated without rainfall

variable; p2 = number of coefficients estimated with rainfall; n

= total number of observations. We refer to this statistic as the

“value” F-statistic, to distinguish it from the “model” F-statistic

in Draper and Smith (1981).

(1)
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representing the five factors (table 1) were positively correlated

with the mortality variables, except for aspect. This last result

probably is caused by the cardinal nature of aspect, with north

and east (315° to 135°) sites, all other things being equal, being

less susceptible to oak decline and the south and west aspects

(135° to 315°) being more prone to oak decline. An ordinal or

binary variable might have been a better choice for evaluation.

Using equation 1, we calculated the F-statistic, examining the

statistical significance of adding average annual precipitation

from 1990–99 to the 10 site-specific variables.

We focused on mortality as evidence of forest decline.

Several measures of per acre mortality reside in the FIA database,

so we concentrated on measures of total biomass, numbers of

trees, and growing stock volume. Total biomass mortality

(expressed as dry weight) more closely mirrors the total site

productivity. Mortality trees per acre represents the product of

the number of trees found dead since the last inventory and the

tree expansion factor. The minimum diameter of this category is

5 inches, probably representing middle-aged and older trees.

Mortality trees per acre, combined with basal area, give some

indication of density-dependent mortality. Finally, growing

stock mortality focuses more on larger trees and separates those

segments of the total tree population less likely to suffer from

normal competitive pressures than trees 1 to 2 inches in diameter,

for example. This last category would have to have a higher

proportion of mortality resulting from oak decline than trees

less than 5 inches in diameter.

Mortality variable Average Stand Total Oak Site Aspect Slope BA BA BA BA

rainfall age BA BA condition 802 806 833 837

2002 1990–99 1989 1989 1989 1989 1989 1989 1989 1989 1989 1989

Mortality trees
per acre - - + + + - + + - + -

Mortality trees
per acre—oaks - - + + - + - - - - +

Growing stock mortality
per acre - + + + + - + + + + +

Growing stock mortality
per acre—oaks - + + + + - + + + + +

Dry biomass mortality
per acre - + + + + - + + + + +

Dry biomass mortality
per acre—oaks - + + + + + + + + + +

Table 2.—Direction of correlation (sign) between the factor variables and rainfall vs. three mortality variables.

Was Precipitation a Significant Addition to the Model?

We calculated F = 4.215, greater than the 95-percent threshold

value of 3.92 which was therefore statistically significant.

Mortality trees per acre (oak species only) exhibit F = 5.880,

again indicated that precipitation significantly improved the

quality of fit of the model to the data.

Biomass mortality per acre for all species and for oak

species alone was evaluated in the same manner. With F = 2.127

and F = 3.505, adding precipitation had no significant impact

on estimating either mortality variable. Inserting precipitation

into the model for growing stock mortality per acre for all

species resulted in F = 4.460, indicating a significant addition.

For growing stock mortality for oaks only, F = 3.307 suggested

that the precipitation did not significantly improve the quality

of fit of the model to the data.

How Much Did Including Precipitation Add to the

Quality of Model Prediction? Table 3 also lists the model R2

and F statistics with and without precipitation. For all six vari-

ables, R2 decreased when precipitation was removed from the

model. Mortality trees per acre for all species had R2 = 0.0678

and R2 = 0.0579 with and without average annual rainfall from

1990 to 1999. Mortality trees per acre, oak species only, had

similar results, with R2 = 0.1113 and R2 = 0.09813 with and

without rainfall. Dry biomass mortality per acre for all species

had R2 =0.1745 with and R2 = 0.1701 without the precipitation

variable. Dry biomass mortality per acre, oaks, had R2 = 0.2481

with rainfall and R2 = 0.2443 without. Rainfall was not a signif-
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icant addition to the variable mix for dry biomass for all

species or oaks only. Dry biomass mortality per acre for all

species and for oaks had R2 of 0.1745 and 0.2481, respectively,

with precipitation and 0.1701 and 0.2443 without precipitation.

Finally, growing stock mortality per acre for all species had an

R2 = 0.1503 with and R2 = 0.1407 without rainfall, whereas

growing stock mortality per acre, oaks, had an R2 = 0.1697

with and R2 = 0.1628 without.

As a measure of the increase in quality of fit of the model

to the data when including precipitation, the F-statistic was sig-

nificant for mortality trees per acre and growing stock mortality

per acre, but was not significant for dry biomass mortality per

acre. Yet, dry biomass mortality exhibited the highest quality of

model prediction. One conclusion might be that dry biomass more

completely represents the accumulated total site productivity

and is perhaps less sensitive to minor fluctuations in rainfall.

The other two measures, mortality trees per acre and growing

stock mortality per acre, focused on trees 5 inches in diameter

and greater, and perhaps have higher percentages of trees in

stressed situations and thus more sensitivity to fluctuations in

precipitation. On the other hand, growing stock mortality does

not include rough and rotten trees, so the demise of these sup-

posedly healthy trees might be a more profound indicator of

the effects of a lack of precipitation.

Why Is R2 Not Approaching 100 Percent? Statistical

models of biological systems rarely achieve perfection in their

predictive ability. The more complex the system, the more

opportunity for influence by unforeseen or nonsystematic vari-

ables such as individual land owner management, site-specific

edaphic and microclimatic influence, or a host of potential

interactions among trees and other biota or among the trees

themselves. Has oak decline really kicked in? Much evidence

exists of oak decline, such as growth reduction, crown dieback,

evidence of pathogens and insects, but, unlike in earlier periods,

mortality has not yet responded. Finally, while our weather data

is more precise than regional assessments, the relatively few

number of stations vis-à-vis our plots still leaves us with some

landscape-level generalizations.

“Optimal” Number of Variables

As a further test of the value of rainfall in understanding mor-

tality data on FIA plots, we constructed an algorithm to evaluate

all combinations of independent variables with mortality trees

per acre in 2002 as the dependent variable. The results of this

run (Ron McRoberts, North Central Research Station, pers.

comm.) show that the fewest number of variables that were still

statistically significant as predictors of mortality trees per acre

(F > 3.92, n = 408) were the following:

• Total basal area 1989.

• Basal area of scarlet oak 1989.

• Basal area of black oak 1989.

• Site condition 1989.

• Annual rainfall 1990–99.

Spatial Arrangement of Rainfall and Mortality Across the

Landscape

Finally, we examined the spatial arrangement of rainfall and

mortality across the landscape. Although the study is ongoing,

early indications suggest some interesting patterns. Figure 1

shows a bubble plot of average annual rainfall across all plots

Mortality Measure

Model Value
R2

F-statistic R2 Model F-statistic Significant
(all (all (no pre- (no pre- for annual at 95

variables) variables) cipitation) cipitation) precipitation percent? 
variable

Mortality trees per acre .0678 2.625 .0579 2.446 4.215 Yes

Mortality trees per acre—oaks .1113 4.520 .09813 4.330 5.880 Yes

Dry biomass mortality per acre .1745 7.630 .1701 8.158 2.127 No

Dry biomass mortality per acre—oaks .2481 11.91 .2443 12.86 3.505 No

Growing stock mortality per acre .1503 6.382 .1407 6.516 4.460 Yes

Growing stock mortality per acre—oaks .1697 7.375 .1628 8.305 3.307 No

Table 3.—Analysis of mortality measurements as a function of independent factor variables.



38 2003 Proceedings of the Fifth Annual Forest Inventory and Analysis Symposium

in the three Ozark units. Larger circles represent higher levels

of precipitation. Note the band of low-rainfall plots across the

center of the map. This figure should be compared to figure 2,

where we graphed mortality over roughly the same area, illus-

trating mortality with shading (light for high mortality and dark

for low mortality). Note that many of the areas of high mortality

in figure 2 occur in the same locations as areas of low rainfall

in figure 1, suggesting that the areas of high mortality might be

influenced by the relative lack of rain. Of course, other factors

such as site and age demand investigation, but these early

results are promising.

Conclusions

The first question addressed in this study was whether precipitation

significantly improved the estimated relationship between the

five factors variables and the mortality variables. The answer

appears to be yes, particularly in situations where the trees were

potentially stressed to begin with, such as larger, older trees.

We also sought to discover if, by adding precipitation as an

independent variable, we increased our understanding and the

quality of the predictions of the mortality models. Here again,

the answer is yes, in situations where we are able to concentrate

on size/age groups prone to forest health problems, as opposed

to smaller/younger trees where normal competition-induced

mortality played a role.

Finally, we were curious whether spatial patterns of precip-

itation existed across the Ozark Plateau in southern Missouri

and if they might show any relationship with landscape-level

patterns of mortality? The answer is yes, but we need more

detailed further investigations to confirm it.

Management activities need to take into account the role of

the five factors in influencing susceptibility to oak decline. As

low levels of precipitation seems to exacerbate the five factor’s

effects, historical patterns of rainfall and soil moisture retention

need to be taken into account when regenerating and managing

oak forests in the Missouri Ozarks.

Figure 1.—Bubble plot of average annual rainfall, in inches,
attributed to each FIA plot; larger circles represent higher levels
of precipitation. Inset shows location of study area in southern
Missouri, U.S.A.

Figure 2.—Two-dimensional interpolation of tree mortality,
where the x-y axes denote location and the shading represents
annual mortality, with white or light gray being higher mortality
and the darker gray representing less mortality.
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Impact of Stream Management Zones and
Road Beautifying Buffers on Long-Term
Fiber Supply in Georgia

Michal Zasada1, Chris J. Cieszewski2, and Roger C. Lowe3

Abstract.—Streamside management zones (SMZs)

and road beautifying buffers (RBBs) in Georgia have

had an unknown impact on the available wood supply

in the state. We used Forest Inventory and Analysis

data, Landsat Thematic Mapper imagery, Gap Analysis

Program and other geographic information system data

to estimate the potential impact of SMZs and RBBs

in the current and future Georgia forest inventories.

The analyzed scenarios are based on long-term simu-

lations of wood supply in the State under various

assumptions of regulatory constraints, expected har-

vesting, and intensities of management practices. The

results are expressed in the form of affected areas and

volumes. Obtained results suggest that introducing

only some of the harvesting constraints would not

drastically affect sustainable fiber supply in the State,

even in the presence of increased future harvesting.

The cumulative impact of obligatory SMZs, RBBs,

and other anticipated factors, such as potential loss of

forested land to urban expansion, could have a strong

negative impact on the level of sustainable harvesting,

reducing the future fiber supply in Georgia.

A streamside management zone (SMZ) is a mandated protection

zone around a stream, lake, or other water body, usually con-

taining the bank vegetation and strip of forest. This zone must

be protected because of its special importance for water quality.

Riparian zones help maintain water quality, buffer rivers from

adjacent pollution sources, filter sediments, absorb nutrients,

stabilize stream banks, provide habitat and food for some animals

and plants, and moderate stream temperature (Welsch 1991).

In 1976, the U.S. Environmental Protection Agency recom-

mended using Best Management Practices (BMPs) as a primary

method for controlling nonpoint source pollution (NPSP). The

State of Georgia chose a nonregulatory system of voluntary

compliance, which now is based on “Georgia’s Best Management

Practices for Forestry” issued by the Georgia Forestry

Commission in 1999.

Although a large number of studies on riparian/streamside

management zones have been conducted in the South (Wenger

1999, for example), the literature on their extent assessment and

other statistics is scarce. For perennial streams, BMPs currently

recommend leaving evenly distributed 50 square feet of basal

area per acre or at least 50 percent of the canopy cover after a

harvest. If the stream is classified as a trout stream, BMPs rec-

ommend creating an additional no-harvest zone around the

stream’s bank. For intermittent streams, requirements include

leaving 25 square feet of basal area per acre or at least 25 percent

of canopy cover after a harvest (GFC 1999). The impact of

these potential harvesting limitations on long-term wood supply

in the State remained unknown. In the future, Georgia may face

the possibility of introducing mandatory BMPs for all forested

areas. The current standards for BMPs may also change to more

closely meet demands of environmental organizations calling

for widening of the required buffers around streams and further

restricting the forest management inside of them (Wenger 1999),

having an unknown impact on the State’s wood production

capability. 

Objectives

The primary objective of this study was to evaluate, based on

available data, the impact of harvest constraints in the protective

zones on long-term wood supply in Georgia. We used large-

1 Postdoctoral Fellow, D.B. Warnell School of Forest Resources, University of Georgia, Athens, GA; Assistant Professor at Division of Dendrometry and Forest
Productivity, Faculty of Forestry, Warsaw Agricultural University, 02-776 Warsaw, Poland, and Corresponding Author. E-mail: mzasada@dendro.sggw.waw.pl.
2 Associate Professor, D.B. Warnell School of Forest Resources, University of Georgia, Athens, GA.
3 GIS Analyst, D.B. Warnell School of Forest Resources, University of Georgia, Athens, GA.
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scale estate simulation software and a spatially explicit Georgia

forest inventory database developed from the Forest Inventory

and Analysis (FIA) inventory data, Landsat Thematic Mapper

(LTM) images, and various geographic information system

(GIS) data available for the State. 

Methods and Assumptions

Zasada et al. (2005) provided a detailed review of the literature

on SMZs and RBBs, as well as a preliminary assessment of the

potential extent of the SMZs and RBBs in Georgia using 1997

FIA inventory data, various GIS data, and Landsat TM images.

They used LTM-image-based polygons populated using forest

industry ground inventories to create a detailed spatial database

with forest types, species groups, basal areas, volumes, and site

productivities. The resulting spatially explicit database was used

together with an estate management simulation model ( OPTIONS

from D.R. Systems, Inc.). Because this research was a continuation

of the studies described in Zasada et al. (2005), we applied the

assumptions described there to define the current simulation

scenarios. 

OPTIONS can be used to examine different forest manage-

ment scenarios including financial, industrial, and policy-related

decisions and sustainability analysis. The simulator is based on

forecasting information for individual polygons (without opti-

mization). All the records used by the program (including spatial

data) are processed annually. 

A detailed setup of OPTIONS runs was similar to that

described by Cieszewski et al. (2003). Because of the focus on

stream and road buffers in this study, we added additional man-

agement regimes attributed to species groups occupying the

analyzed buffers. The major difference between management of

various species within and outside of the buffers was that selective

harvesting was performed in buffer stands with minimum required

residual basal area defined by the BMPs, while clearcutting was

allowed only on the nonbuffer areas. 

We defined “primary stream buffers” as those created

according to BMPs, with widths depending on stream classification

and slope. “Primary road buffers” were assumed to have a width

of 40 feet, and “secondary stream and road buffers” a width of

the widest buffer anticipated in BMPs (100 feet). We followed

the BMP recommendations, allowing buffers to be selectively

cut with appropriate minimum residual basal area left after har-

vesting. We considered the following three options of buffer

combinations and widths showing various levels of regulatory

restrictions: 

• Only primary stream buffers.

• Primary stream and road buffers together. 

• Secondary stream and road buffers together. 

Next, we supplemented all above-mentioned assumptions

by two harvesting levels at the State scale. First, we assumed

that harvesting in Georgia would remain unchanged in the

future, and we set it at 1.5 billion cubic feet per year according

to the most recent FIA report on the State’s forest resources

(Thompson 1998). Because it is likely that wood utilization may

increase in the future (e.g., Wear and Greis 2002) we considered

also an increasing statewide harvesting level. We assumed that

from the current level of 1.5 billion cubic feet per year, harvesting

would gradually increase to 2.25 billion cubic feet per /year in

2040, which means that we expect harvesting in the near future

to increase by 50 percent over the 1997 harvesting level. 

We also considered various intensities of management on

the State level. The first variant assumed that about 30 percent

of all pine plantations in the State are managed intensively, and

no additional intensively managed plantations will be established

in the future (Zasada et al. 2003). In the second variant we

assumed that the intensity of management will increase, and

that half of newly established plantations will be managed

intensively, which means a transition rate to intensive manage-

ment plantations of 50 percent. 

We ran all the simulations for a 200-year prediction period.

By using such a long simulation period we achieved a certain

equilibrium between the forest productivity and its harvesting,

which changes with forest age structure and regeneration practices

and is likely to require more than two rotation periods. In most

scenarios, the 200-year simulation period was sufficient to stabilize

wood availability on a certain level, which could be assumed to

reflect the resource production versus harvesting balance in the

distant future. We do not believe that we can predict the state of

forests into such a remote future, but instead we intend to determine

the impact of different actions on forest resources in the State. 
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Results

Detailed assessment of the stream and road buffers is summarized

in table 1. Narrow stream buffers (40 feet) established according

to Georgia’s BMPs occupy about 980,000 acres, which makes

up 4.01 percent of total forested area of the state. Assuming all

buffer widths of 100 feet, the stream buffers would occupy

8.65 percent of forested land. Forests in the determined stream

buffers maintain 4.32 and 9.27 percent of total inventoried

Georgia’s wood volume, respectively. Similar results were

obtained for road buffers. Primary (40 feet) road buffers occupy

almost 890,000 acres, which makes up 3.64 percent of forested

area and 3.52 percent of total volume. Secondary (100 feet)

buffers would occupy 2,120,000 acres of forests (8.68 percent

of area and 8.40 percent of total volume). These results reveal

reasonable proportions. For example, the share of broadleaf

species in stream buffers is 2 to 3 times higher than in road

buffers. This can be attributed to specific forest types usually

occupying riparian area. 

We present the results of the simulations graphically by

means of changes in inventory volume, and changes in volume

available for harvesting. Figure 1 demonstrates results for the

conservative scenario assuming no changes in harvesting and

intensive management of southern pine stands. In this scenario,

even combined wide (100 feet) stream and road buffers do not

seem to have a dramatically negative impact on wood availability

in the future, allowing for sustainable harvesting in the considered

timeframe. 

Forest Buffer Area % Volume %
type regime [x10^3 ac] [x10^6 ft3]

Evergreen Primary 226 0.93 272 0.81
Secondary 542 2.15 631 1.88

Mixed Primary 141 0.58 166 0.49
Secondary 291 1.19 344 1.02

Deciduous Primary 613 2.51 1,015 3.01
Secondary 1,296 5.31 2,147 6.38

Total Primary 980 4.01 1,453 4.32
Secondary 2,112 8.65 3,122 9.27

Table 1.—Detailed summary of primary (according to BMP) and secondary (100-feet wide) stream buffers (left) and primary (40
feet) and secondary (100-feet wide) road buffers (right) in Georgia.

Forest Buffer Area % Volume %
type regime [x10^3 ac] [x10^6 ft3]

Evergreen Primary 401 1.64 482 1.43
Secondary 964 3.95 1,160 3.45

Mixed Primary 225 0.92 265 0.79
Secondary 521 2.13 615 1.83

Deciduous Primary 264 1.08 436 1.30
Secondary 635 2.60 1,052 3.12

Total Primary 889 3.64 1,184 3.52
Secondary 2,120 8.68 2,827 8.40

Figure 2 demonstrates results based on the assumption of

harvesting in the State gradually increasing during the next 40

years to 150 percent of its current level. In this scenario, it is

impossible to maintain sustainable harvesting without increased

intensive management, which could compensate for increased

demand on wood (fig. 3). 

Discussion and Conclusions

Our results showed that introduction of SMZs and RBBs could

affect wood supply in the future by excluding more than 17

percent of forest areas from harvesting. The magnitude of this

impact depends on the extent of potential buffers, future wood

demand, and intensity of management. Considering “the most

probable” scenario, however, this impact should be moderate.

Other elements of introduction of stream and road buffers also

could affect forestry operations, such as an increased cost of

management in the protective buffers as suggested by Cubbage

and Woodman (1993). 

We performed our study using the most commonly available

data on streams and roads. Yet, the available data on streams

omit many small intermittent and ephemeral streams. According

to various researchers in different regions of the country, espe-

cially in the west, riparian zones were identified on as much as

60 percent of forested area, and in some cases in Georgia we

suspect that stream lengths can be as much as double that

reported (mapped) in available sources. Clearly, the knowledge

in this area is incomplete and we recommend that the issue be

further studied. 
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Figure 1.—Changes in inventory volume (left) and volume available for harvesting (right) for scenarios assuming steady harvesting
of 1.5 billion cf/year and the current level of intensive management (30 percent of pine plantations). First row: no buffers; second:
BMP stream buffers; third: both narrow buffers; and fourth: both wide buffers.
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Figure 2.—Changes in inventory volume (left) and volume available for harvesting (right) for scenarios assuming harvesting
increased from 1.5 billion cf/year in 1997 to 2.25 billion cf/year in 2040 and the current level of intensive management (30 percent
of pine plantations). First row: no buffers; second: BMP stream buffers; third: both narrow buffers; and fourth: both wide buffers.
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Figure 3.—Changes in inventory volume (left) and volume available for harvesting (right) for scenarios assuming harvesting
increased from 1.5 billion cf/year in 1997 to 2.25 billion cf/year in 2040 and an increased intensity of management (50 percent
newly established pine plantations are to be managed intensively). First row: no buffers; second: BMP stream buffers; third: both
narrow buffers; and fourth: both wide buffers.
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Increased wood demand, together with a large area of land

reserved for protective uses, could significantly decrease volume

available for harvesting in the future. Our results showed that

allowing for protection of natural areas of special interest and

maintaining the region’s competitive status in the world market

might require other supplementary measures, such as increasing

the extent of intensive management practices in commercial

forests (Sedjo and Botkin 1997). 

In this study we have not considered any analyses of impact

of urban expansion on long-term fiber supply in the State. In

all probability, progressive urbanization will further contribute

negatively to availability of forest areas and volumes available

for harvesting. 
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Generating Broad-Scale Forest Ownership
Maps: A Closest-Neighbor Approach

Brett J. Butler1

Abstract.—A closest-neighbor method for producing

a forest ownership map using remotely sensed imagery

and point-based ownership information is presented for

the Northeastern United States. Based on a validation

data set, this method had an accuracy rate of 58 percent.

Introduction

The ownership of America’s forest resources can be divided

into Federal, State, and local governments; forest industry;

other corporate; and family and individual ownerships. Although

large variability can exist in these categories, they have proven

effective in understanding how forest land is used (e.g., Haynes

2003), who receives the goods and services produced, and how

private or public entities influence these trends (e.g., Sampson

and DeCoster 1997). Owners are the critical link between

forests and society, and a full understanding of forest resources

necessitates an understanding of forest ownership patterns. 

The distribution of forest owners across the country is far

from uniform. Eastern forests are dominated by private owners,

while western forests are dominated by public owners (Smith et

al. 2001). The distribution of forest owners at finer scales also

varies greatly due to historic land distribution policies and local

economic and social forces. Most data on forest ownership

have been summarized in tabular format by geographic unit,

e.g., State (Smith et al. 2001) or county (Griffith and Widmann

2003). Although these data constitute important information,

they are limited with respect to geographic resolution, do not

allow for visual examination of subcounty spatial patterns, and

are not conducive for combining with other spatially explicit

information. A forest ownership map can overcome many of

these shortcomings. 

Ownerships maps (i.e., plat books) are available from

county or municipal tax offices. Ideally, these maps would be

accurate, publicly accessible, and in compatible digital formats.

Combined with a forest map, the ownership map should depict

forest ownership throughout the Nation. Unfortunately, detailed

ownership records have not been assembled in electronic format

for multistate regions. An exception is the Managed Area Database

(McGhie 1996) that provides boundaries for major Federal and

State ownerships in the United States. Other ownership maps

are available at finer scales (e.g., counties) or at the State level

with specific limitations, for example, only holdings greater

than 200 ha (500 ac). Also, such maps are often proprietary.

Because no national maps or data sources exist for forest

ownership patterns, estimation procedures are necessary. In this

article, I describe a method for producing a forest ownership

map for the Northeastern United States. Data from remotely

sensed imagery and ground-based forest inventories are com-

bined using a closest-neighbor approach. The accuracy of this

technique is assessed using validation data, and directions for

future research are discussed.

Methods

The study area for this project is the 13 Northeastern States

stretching south from Maine to Delaware and west to Ohio.

This area was selected because forest inventory data were readily

accessible. Geographic information system layers for this study

were derived from Moderate Resolution Imaging

Spectroradiometer imagery (MODIS) (Hansen et al. 2002) and

U.S. Department of Agriculture, Forest Service, Forest Inventory

and Analysis (FIA) plots. MODIS is satellite-based imagery.

For the data used herein, the spatial resolution or pixel size is

500 m (1,640 ft) with 2000 and 2001 acquisition dates. The

MODIS product used is Vegetation Continuous Fields percent

forest cover data, which is produced and distributed by the

Global Land Cover Facility at the University of Maryland. This

information represents the percentage of each 25-ha (62-ac)

pixel that is covered by tree canopies. A forest/nonforest map

1 Research Forester, U.S. Department of Agriculture, Forest Service, Northeastern Research Station, 11 Campus Boulevard, Suite 200, Newtown Square, PA 19073.
Phone: 610–557–4045; fax: 610–557–4250; e-mail: bbutler01@fs.fed.us.
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was generated by assigning a value of 1 (forest land) to all pixels

with a tree cover of at least 55 percent and a value of 0 (nonforest

land) to all other pixels. The 55-percent minimum was selected

because it generated the same regional forest percentage (61) as

an independent data source (Smith et al. 2001).

From the FIA data, 13,686 forested plots or sample points

were identified in the Northeast. The footprint of these plots

covers less than 1/10 of 1 percent of the region’s forest area, but

the random selection procedure and large sample size ensures

that the sample is representative of the broader region. For each

identified plot, data on ownership of record were obtained from

tax records, and each ownership was categorized as Federal,

State, or local government; forest industry; other corporate; or

family and individual. Forest industry includes all private holders

who own a primary wood-processing facility. Other corporate

includes all other businesses, associations, and tribal lands with

no primary processing facilities. Family ownership includes all

forest land owned by individuals or families that are not incor-

porated. 

The coordinates of the plot locations were fuzzed to mask

exact plot coordinates and prevent disclosure of landowners’

identities. For each coordinate at each point, a randomly selected

value of + 3,250 to – 3,250m (+/– 10,663 ft) was added. 

The FIA sample points were divided into training and vali-

dation sets. One in four randomly selected sample points were

reserved for the validation set. For every forested pixel on the

forest/nonforest map, an ownership category was assigned

based on the ownership of the closest FIA plot in the training

set to generate the forest ownership map. Euclidean distances

were used to find the closest plots (Environmental Systems

Research Institute 2001).

For each plot in the validation set, the modeled or estimated

ownership category was obtained from the forest/ownership map

generated. Observed and predicted values for each validation

point were used to create a confusion matrix and assess model

accuracy. Although the 25 percent of plots used for validation

were selected at random, the effect of this specific subset of the

points on the accuracy estimate is unknown. In future efforts,

we will use multiple iterations of the validation selection

process to assess accuracy variability.

Results

The resulting ownership map (fig. 1) is a fair approximation of

the forest ownership pattern in the Northeastern United States.

The most striking feature is the vast amount of family and indi-

vidual forest land in the region. As would be expected, this feature

is supported by FIA tabular estimates (Smith et al. 2001). The

map shows the major holdings by the forest industry in Maine,

northern New Hampshire and northern Vermont, north-central

Pennsylvania, the Adirondack region of New York, and south-

central West Virginia. Large State-owned forest holdings are

evident in Pennsylvania.

Of the 3,421 validation points, 58 percent were classified

correctly (table 1). The most common category for a misclassified

plot was family and individual ownership. This error was related

to the fact that family and individual ownerships represent a

plurality of forest owners in the Northeast. Part of the misclas-

sification was due to the use of fuzzed coordinates; 26 percent

of the errors were forested plots being assigned to areas classified

as nonforest on the map. Other errors were attributable to the

degree of accuracy and resolution of the forest/nonforest map. 

Figure 1.—This forest ownership map for the Northeastern
United States was generated using a closest-neighbor approach.
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Data disclosure is a concern with the spatial display of FIA

plot data. Because this method produces a relatively high rate of

misclassification, data disclosure likely is not a significant issue. 

Conclusions

The map resulting from the closest-neighbor approach is useful

for displaying broad forest ownership patterns. This type of

product would be appropriate for inclusion in a State forest

inventory report or other reports concerned with forest resources

across wide-ranging areas.

Our accuracy assessment, however, highlighted several

underlying shortcomings. Although the general location and

distribution of forest ownership may be correct, the exact loca-

tions of specific ownerships are not modeled accurately, in part

because fuzzed coordinates were used to generate the map.

This shortcoming limits the utility of the map for inclusion in

spatial modeling projects. Thus, a percentage-based method

may be more appropriate, although such a product might be

inferior to a discrete map that is easier to display and interpret.

In addition to using actual coordinates, one can test other

techniques for improving the accuracy of the map. The first

step should be to include ancillary information, for example,

data from the Managed Area Database (McGhie 1996) that

depict the actual boundaries of forest owners. These data would

be particularly useful for increasing accuracy in the depiction

of large public ownerships. Incorporating other ancillary data

and using spatial and/or nonspatial modeling techniques also

could increase accuracy.

The method presented here is a relatively simple approach

to generating a forest ownership map using the best available

data. After additional methods are tested, this project should be

expanded to include the entire Nation.

Observed

Predicted Federal State Local Forest Other Family Total
industry corporate

Federal 42 3 2 1 7 23 78
(56.8) (1.0) (2.7) (0.2) (1.5) (1.1) (2.3)

State 0 139 3 20 26 102 290
(0.0) (45.1) (4.1) (4.9) (5.7) (4.9) (8.5)

Local 1 8 6 4 11 25 55
(1.4) (2.6) (8.1) (1.0) (2.4) (1.2) (1.6)

Forest industry 0 13 3 251 36 65 368
(0.0) (4.2) (4.1) (61.5) (7.9) (3.1) (10.8)

Other corporate 2 21 11 40 157 204 435
(2.7) (6.8) (14.9) (9.8) (34.6) (9.7) (12.7)

Family 21 111 35 80 183 1,391 1,821
(28.4) (36.0) (47.3) (19.6) (40.3) (66.1) (53.2)

Nonforest 8 13 14 12 34 293 374
(10.8) (4.2) (18.9) (2.9) (7.5) (13.9) (10.9)

Total 74 308 74 408 454 2,103 3,421

Table 1.—Confusion matrix representing observed and predicted ownership categories based on a closest-neighbor estimation
technique (numbers in parentheses represent column percentages).
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Impact of Definitions of FIA Variables and
Compilation Procedures on Inventory
Compilation Results in Georgia

Brock Stewart1, Chris J. Cieszewski2, and Michal Zasada3,4

Abstract.—This paper presents a sensitivity analysis

of the impact of various definitions and inclusions of

different variables in the Forest Inventory and Analysis

(FIA) inventory on data compilation results. FIA

manuals have been changing recently to make the

inventory consistent between all the States. Our analysis

demonstrates the importance (or insignificance) of

different variations of the compilation procedures on

the statistical summaries regarding volume and area

distributions. 

The U.S. Department of Agriculture Forest Service Forest

Inventory and Analysis (FIA) program, providing nationwide

information about forest resources, has changed rapidly during

the past several years. Following the recommendations of the

second Blue Ribbon Panel and the Agricultural Research, Extension,

and Education Reform Act of 1998 (Section 253c), the periodic

inventory system, providing information for individual States

every 5 to 10 years, has switched to an annual system in which

20 percent of the total number of sample plots (a “panel”) is

measured annually. The FIA also has emphasized eliminating

differences between inventory systems and database designs in

the program regions and introducing a consistent system using

the same database format.

During the transition from a periodic to annual system and

the adaptation of the regional systems, many changes were made

to the inventory design, manuals, and definitions. The process

of the database conversion from Eastwide Forest Inventory

database (Hansen et al. 1992) to the common FIA database

introduced additional inconsistencies in data, causing a few

changes in the calculation algorithms (Miles et al. 2001).

Georgia was one of the first southern States to introduce

the annual forest inventory system. In 1997 FIA finished the

last periodic inventory in the State (Thompson 1998), and then

reorganized its inventory grid to match the national scheme,

measuring single panels on an annual basis. 

Problem Definition and Objective

Between 1998 and 2004, three panels were measured in Georgia,

and data were made publicly available on the FIA server (see

table 1). Because data were collected over a few years, the official

manual changed during measurements of the particular panel.

This project sought to identify and describe the consequences

of differences in definitions of several variables collected by

the inventory crews in the field on results obtained during the

data processing. We chose the following variables:

• Timberland area.

• Volume of all live trees on timberland.

• Growing stock volume on timberland.

For each variable, we show the definition according to the FIA

manuals, present equations used for data compilation, and provide

requirements (filters) used in the data processing algorithms. We

compared results and validated them, if possible, using values

in the official FIA publications or on FIA Web sites.

Definitions

Timberland

Timberland is defined as “forest land capable of producing 20

cubic feet of industrial wood per acre per year and not withdrawn

from timber utilization” (Thompson 1998, p.10). 

1 Graduate Student Assistant, D.B. Warnell School of Forest Resources, University of Georgia, Athens, GA 30602. 
2 Associate Professor, D.B. Warnell School of Forest Resources, University of Georgia, Athens, GA 30602. Phone: 706–542–8169; fax: 706–542–8356; home page:
www.growthandyield.com/chris.
3 Postdoctoral Fellow, D.B. Warnell School of Forest Resources, University of Georgia, Athens, GA 30602. 
4 Assistant Professor, Department of Dendrometry and Forest Productivity, Faculty of Forestry, Warsaw Agricultural University, Nowoursynowska 159, 02-776,
Warsaw, Poland. 
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To calculate the estimate of total timberland acreage for a

State from the FIA data, the number of acres that each condition

represents is calculated and these values are summed over all

conditions meeting the definition of being a timberland condition

(Miles et al. 2001, p.104). 

The number of acres that a condition represents is calculated

as the product of the following variables:

• expcurr; “The number of acres the sample plot represents

for making current estimates of area” (Miles et al. 2001,

p.30).

• condprop; “Proportion of the plot that is in the condition”

(Miles et al. 2001, p.42).

A condition is a timberland condition if it meets the following

requirements:

• landclcd=1; classified as accessible forest land— “Land at

least 10 percent stocked by forest trees of any size, or formerly

having had such tree cover, and not currently developed for

nonforest use. The minimum area considered for classification

is 1 acre. Forested strips must be at least 120 feet wide”

(Thompson 1998, p.43).

• reservcd=0; not “withdrawn by law(s) prohibiting the man-

agement of the land for the production of wood products”

(Miles et al. 2001, p.44).

• siteclcd in (1,2,3,4,5,6); capable of producing at least 20

cubic feet per acre per year (Miles et al. 2001).

Volume of All Live Trees

The volume of a live tree is “the cubic-foot volume of sound

wood” in a live tree that is “at least 5.0 inches d.b.h. [diameter

at breast height] from a 1-foot stump to a minimum 4.0-inch

Timberland area

Year Published estimate Source
(thousand acres)

1997 23,796.1 Miles, et al.

2000 23,893.6 http://66.147.25.28/publicweb/individual_states/html/ga_info_statement.htm

2001 23,890.7 http://66.147.25.28/html/Panel%202.doc

2002 23,894.8 http://66.147.25.28/html/Panel7.doc

Volume of all live trees on timberland

Year Published estimate Source
(million cubic feet)

1997 33,661.4 Miles, et al.

2000 35,001.9 http://66.147.25.28/publicweb/individual_states/html/ga_info_statement.htm

2001 34,659.6 http://66.147.25.28/html/Panel%202.doc

2002 35,649.6 http://66.147.25.28/html/Panel7.doc

Volume of growing stock trees on timberland

Year Published estimate Source
(million cubic feet)

1997 31,704.0 Miles, et al.

2000 31,206.5 http://66.147.25.28/publicweb/individual_states/html/ga_info_statement.htm

2001 31,151.8 http://66.147.25.28/html/Panel%202.doc

2002 32,185.3 http://66.147.25.28/html/Panel7.doc

Table 1.—Source of publication for the last periodic inventory and three annual panels in Georgia—the 1997, 2000, 2001, and
2002 data sets as of 2003. 

The raw data, originally downloaded from http://srsfia2.fs.fed.us/html/ga_data_disclaimer.htm, has been moved to http://66.147.25.28/publicweb/individual_states/
ga/ga_data_disclaimer.htm.
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top DOB [diameter outside bark] of the central stem”

(Thompson 1988, p.10). 

To calculate the estimate of volume of all live trees on

timberland for a State from the FIA data, each tree’s expanded

net cubic foot volume is calculated and these values are summed

over all live trees that are on timberland conditions (Miles et al.

2001). 

The expanded net cubic foot volume of a tree is calculated

as the product of the following variables:

• expvol; the number of acres the tree’s plot represents for

making volume estimates (Miles et al. 2001). 

• tpacurr; “Current number of trees per acre that the tree

represents for calculating number of trees on forest land”

(Miles et al. 2001, p.81).

• volcfnet; “The net volume of wood in the central stem of a

sample tree 5.0 inches diameter or larger, from a 1-foot stump

to a minimum 4-inch top DOB, or to where the central

stem breaks into limbs all of which are less than 4.0 inches

DOB” (Miles et al. 2001, p.82).

A tree is identified as a live tree from the data by statuscd=1;

“Identifies whether the sample tree is live, cut, or dead” (Miles

et al. 2001, p.69). 

Growing Stock Volume

Growing stock trees are defined as “living trees of commercial

species classified as sawtimber, poletimber, saplings, and

seedlings. Trees must contain at least one 12-foot or two 8-foot

logs in the saw-log portion, currently or potentially (if too small

to qualify), to be classed as growing stock. The log(s) must meet

dimension and merchantability standards to qualify. Trees must

also have, currently or potentially, one-third of the gross board-

foot volume in sound wood” (Thompson 1998, p.8). 

To calculate the estimate of volume of growing stock trees

on timberland for a State from the FIA data, each tree’s expanded

net cubic foot volume is calculated and these values are summed

over growing stock trees that are on a timberland conditions

(Miles et al. 2001). 

A tree is identified as a growing stock tree from the data

by treeclcd=2; “All trees of commercial species, except rough

or rotten cull trees” (Miles et al. 2001, p.73). 

For the three above variables, we developed the equations

below to make calculations on the condition-level (for area

estimates) or tree-level (for volume estimates) data sets and

summed over conditions or trees meeting the requirement filters

below. 

Equations

For TIMBERLAND, we used the following equation:

Equation 1: (Miles et al. 2001, table 2)

(The number of acres a condition represents) = 

expcurr*condprop = 

For VOLUME OF ALL LIVE TREES ON TIMBERLAND and

GROWING STOCK VOLUME ON TIMBERLAND, the equa-

tions were as follows:

Equation 1: (Miles et al. 2001, table 4) 

expvol*tpacurr*volcfnet =

Equation 2: Same as equation 1 except for the inclusion of

condprop in the multiplication. 

expvol*tpacurr*volcfnet*condprop 

= 

Requirements (Filters)

For TIMBERLAND area, we tested the following two filters:

Filter 1: This filter defines a timberland condition (Miles et al.

2001, Thompson 1998)

Condition-level requirements  

landclcd=1 Accessible forest  

reservcd=0 Not reserved land  

siteclcd in (1,2,3,4,5,6) Land capable of producing more
than 19 cubic feet/acre/year  

Filter 2: Same as Filter 1 except for summing over conditions

where siteclcd is 2 to 7 instead of 1 to 6, or for land capable of

producing no more than 224 cubic feet/acre/year. 

For VOLUME OF ALL LIVE TREES ON TIMBERLAND,

we tested the following three filters:
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Filter 3: Same as Filter 1 except for summing over trees in

conditions where siteclcd is 2 to 7 instead of 1 to 6, or for land

capable of producing no more than 224 cubic feet/acre/year.

Results

When we state in our report that a compiled estimate “is the

same as” or “matches” the published estimate, we mean that no

difference existed between the two at the precision of the pub-

lished estimate. For example, for timberland the difference was

less than 100 acres. 

Results obtained for the two TIMBERLAND algorithms

are presented in table 2.

When timberland area is compiled using the suggested

algorithm (equation 1 and filter 1 for timberland area) (Miles et

al. 2001, table 2), the compiled estimate is the same as the pub-

lished estimate for all 4 years except 2001, which is 17,900

acres less than the published estimate, and less than one-tenth

of a percent different (– 0.07 percent). 

The difference in compiled estimates of timberland area

for 2001 from algorithm 1 to algorithm 2 is explained in terms

of the number of conditions in site index classes in table 3, and

in terms of the number of acres represented by all conditions in

Georgia’s 2001 data in each siteclcd in table 4. The difference

between summing over siteclcd is 1 to 6 (algorithm 1) and siteclcd

is 2 to 7 (algorithm 2) is 17,000 acres (22,000 and 5,000 acres

with algorithms 1 and 2, respectively) (see tables 3 and 4).

Results obtained for various algorithms for the VOLUME

OF ALL LIVE TREES ON TIMBERLAND calculation are pre-

sented in table 5.

Difference between estimates compiled 
using the indicated algorithm and the published estimate

(1,000 acres)

Algorithm Equation Filter 1997 2000 2001 2002

1 1 1 0.0 0.0 -17.9 0.0

2 1 2 0.0 -11.4 -0.9 -3.8

Differences above expressed as a percent

Algorithm Equation Filter 1997 (%) 2000 (%) 2001 (%) 2002 (%)

1 1 1 0.0 0.0 -0.07 0.0

2 1 2 0.0 -0.04 -0.00 -0.02

Table 2.—Results obtained for various TIMBERLAND algorithms.

Filter 1: (Miles et al. 2001, table 4)

Condition-level requirements  

landclcd=1 Accessible forest  

reservcd=0 Not reserved land  

siteclcd in (1,2,3,4,5,6) Land capable of producing 
more than 19 cubic feet/acre/year 

Tree-level requirements

statuscd=1 Live trees  

Filter 2: Same as Filter 1 except for summing over trees where

statuscd = 1 or 4 instead of 1 only, or for trees having status as

live trees or missed live trees. 

Filter 3: Same as Filter 1 except for summing over trees in

conditions where siteclcd is 2 to 6 instead of 1 to 6, or for land

capable of producing between 19 and 224 cubic feet/acre/year.

Finally, for GROWING STOCK VOLUME ON TIMBERLAND

the three filters applied were as follows:

Filter 1: (Miles et al. 2001, table 4)

Condition-level requirements 

landclcd=1 Accessible forest  

reservcd=0 Not reserved land  

siteclcd in (1,2,3,4,5,6) Land capable of producing 
more than 19 cubic feet/acre/year

Tree-level requirements 

statuscd=1 Live trees

treeclcd=2 Tree class code  

Filter 2: Same as Filter 1 except for summing over trees where

statuscd = 1 or 4 instead of 1 only, or for trees having status as

live trees or missed live trees. 
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siteclcd Number of conditions 1,000 acres

1 1 5.0
2 15 107.9
3 138 1,072.6
4 664 5,584.9
5 1,451 12,225.8
6 585 4,876.7
7 2 22.0

Table 3.—Difference in compiled estimates of the timberland
area for 2001 from algorithm 1 to algorithm 2 (the number of
conditions in each site index class).

Number of acres represented by conditions where landclcd=1, reservcd=0 and
by the 7 siteclcd instances, from the 2001 data

Difference between the sum 
siteclcd in Sum and the 2001 published estimate

for timberland area

1 to 6 23,872.8 –17.9
1 to 7 23,894.8 4.1
2 to 6 23,867.9 –22.8
2 to 7 23,889.8 –0.9

Table 4.—Difference in compiled estimates of the timberland
area for 2001 from algorithm 1 to algorithm 2 (number of
acres represented by all conditions in Georgia’s 2001 data).

Sum of (expcurr*condprop) over conditions in 2001 data where landclcd=1 and
reservcd=0 and siteclcd instances

Difference between estimates compiled using the 
indicated algorithm and the published estimate

(million cubic feet)

Algorithm Equation Filter 1997 2000 2001 2002

1 1 1 0.0 23,404.0 24.0 59.2
2 1 3 0.0 23,385.6 20.4 56.4
3 2 2 –4,821.8 0.0 –6,233.9 –6,095.3

Differences above expressed as a percent

Algorithm Equation Filter 1997 (%) 2000 (%) 2001 (%) 2002 (%)

1 1 1 0.0 66.86 0.07 0.17
2 1 3 0.0 66.81 0.06 0.16
3 2 2 –14.32 0.0 –17.99 –17.10

Table 5.—Results obtained for various algorithms for the VOLUME OF ALL LIVE TREES ON TIMBERLAND calculation.

The suggested algorithm for volume of all live trees on

timberland (equation 1 and filter 1 for volume of all live trees

on timberland area) (Miles et al. 2001, table 4) resulted in the

compiled estimate equaling the published estimate for only the

1997 data. 

The compiled estimate of volume of all live trees on tim-

berland from the 2000 data matched the published estimate

when we modified the suggested algorithm by including the

condprop variable as a product in the equation and including

summing over missed live, as well as live, trees. 

No algorithms made the compiled estimate of volume of

all live trees on timberland match the published estimate for

2001 and 2002. Algorithm 2 resulted in the least difference for

these 2 years, which is the same as the suggested algorithm

with the modification of excluding trees on conditions where

siteclcd=1 (table 6). 

Results obtained for various algorithms for the calculations

of GROWING STOCK VOLUME ON TIMBERLAND are

presented in table 7.

As for VOLUME OF ALL TREES ON TIMBERLAND,

using the suggested algorithm for GROWING STOCK VOLUME

ON TIMBERLAND resulted in the compiled and published

estimates matching for only the 1997 data, although they are

close for 2001 (table 7). Similarly, when modifying the suggested

algorithm by including condprop as a product in the equation and

including summing over missed, as well as live trees, the compiled

estimate matched the published estimate for the 2000 data. 

No algorithms used for GROWING STOCK VOLUME

ON TIMBERLAND provide the published estimates for 2001

and 2002. The closest estimates came from using equation 1

and filter 3, the suggested algorithm with the modification of

excluding siteclcd=1 and including siteclcd=7. These differences

can be explained in terms of the volume represented by each

siteclcd (table 8). 
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Only combinations where volume is not equal to zero are shown.

2001
treeclcd statuscd siteclcd No. trees Million Cu Ft

2 1 1 15 3.6
2 1 2 250 307.6
2 1 3 2,410 2,362.6
2 1 4 12,681 8,230.7
2 1 5 23,201 12,519.2
2 1 6 8,233 7,730.1
2 1 7 7 1.3

2 4 3 42 11.2
2 4 4 140 101.7
2 4 5 303 141.9
2 4 6 129 85.9

Table 8.—Volume of growing stock trees represented by each treeclcd, statuscd, siteclcd combination from the data for 2001–02. 

2002
treeclcd statuscd siteclcd No. trees Million Cu Ft

2 1 1 15 2.8
2 1 2 1,442 1,169.4
2 1 3 6,033 4,797.5
2 1 4 19,471 9,940.2
2 1 5 30,828 12,723.2
2 1 6 5,437 3,590.6

2 4 2 11 5.4
2 4 3 71 39.5
2 4 4 184 108.2
2 4 5 355 138.4
2 4 6 76 34.8
4 4 6 8 0.6

Difference between estimates compiled using the indicated 
algorithm and the published estimate

(million cubic feet)

Algorithm Equation Filter 1997 2000 2001 2002

1 1 1 0.1 20,888.1 2.0 38.2
2 1 3 0.1 20,869.8 –0.3 35.4
3 2 2 –4,523.3 0.0 –5,554.5 –5,458.5

Differences above expressed as a percent
Algorithm Equation Filter

1997 (%) 2000 (%) 2001 (%) 2002 (%)

1 1 1 0.0 66.94 0.01 0.12
2 1 3 0.0 66.88 0.0 0.11
3 2 2 –14.27 0.0 –17.83 –16.96

Table 7.—Results obtained for various algorithms for GROWING STOCK VOLUME ON TIMBERLAND calculations.

2001
statuscd siteclcd No. trees Million Cu Ft

1 1 19 3.6
1 2 415 318.1
1 3 3,811 2,506.4
1 4 19,507 9,015.1
1 5 39,091 14,215.7
1 6 15,586 8,624.7
1 7 41 7.5

4 3 59 15.0
4 4 205 114.4
4 5 457 179.8
4 6 217 104.2

Table 6.—Volume of live trees represented by each statuscd, siteclcd combination from the data for 2001 and 2002. 

Only combinations where volume is not equal to zero are shown.

2002
statuscd siteclcd No. trees Million Cu Ft

1 1 19 2.8
1 2 2,262 1,244.9
1 3 9,259 5,125.9
1 4 30,233 10,833.9
1 5 51,324 14,338.2
1 6 10,538 4,163.1

4 2 16 5.6
4 3 111 47.2
4 4 284 124.8
4 5 523 171.9
4 6 130 44.8
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Discussion

Analysts working with the FIA data may want to replicate the

results published by the FIA. Users of FIA data must know

which algorithms can be used on which sets of data. In this

paper, we explain examples of potential problems and solutions

that may be experienced while working with the new annual

FIA forest inventory data. For instance, we used the data for

the “Forest Maps” and “SAFIS vs. FIA” sections of the Fiber

Supply Assessment about the forestry growth and yield Web

page at http://growthandyield.com/main/index.htm. These sec-

tions  contain compilations of area, volume, and other esti-

mates for Georgia and 13 other southern States and allow users

to compare data from the last periodic inventory and the three

annual panels. We used estimates published by the FIA as

points of reference for our compilation procedures. We were

not able to reproduce some of these estimates after several

attempts using various programs and software. 

In our analysis, we used identical compilation procedures

for all 4 years. All procedures were downloaded from FIA Web

sites (table 1) and were performed with the same program,

with the only difference in the program between years being an

identification of the year. Many different modifications of the

algorithms (i.e., different combinations of variables used in the

equations and different combinations of values of variables used

in the requirement filters) were tested; the ones that produced

the best results (compiled estimate closest to published estimate)

for at least one of the 4 years’ data are included in this report. 

The compiled condition-level estimate that we tested (tim-

berland area) differed from published estimates only for the

2001 data when the suggested algorithm was used. When the

suggested algorithms were used for the tree-level estimates,

volumes of all live and of growing stock trees, the largest dif-

ference between compiled and published estimates was from

the 2000 data. Results for the two tree-level estimates were

very similar in that using the suggested algorithm resulted in

compiled and published estimates matching for only the 1997

data, being much different for the 2000 data, and less different

for the 2001 and 2002 data. They were also similar because

modifying the suggested algorithms for the two tree-level esti-

mates by including the variable for condition proportion as a

product in the equation and summing over missed live trees as

well as live trees resulted in the compiled estimates equaling

the published estimates for the 2000 data. 

Also, from the 2001 and 2002 data, modifying which

conditions were included according to site productivity class

when compiling the two tree-level estimates resulted in the

algorithm giving compiled estimates most close to published

estimates. Modifying the algorithms in this way created an esti-

mate only 0.01 percent more precise. 

All differences between compiled and published estimates

when the suggested algorithms are used might be considered

small (less than 1 percent) except for both tree-level estimates

from the 2000 data, which were both just under 67 percent dif-

ferent. The causes of anomalies presented here are not known.

Compilations made from FIA data, however, could be made

more efficient and less error prone with the data revision history

knowledge, access to the code the FIA used to compile the

published estimates, and knowing when these compilations were

made; this would allow the published estimates to be matched

with the data revision history. Also, we recommend access to

data sets used for compiling published estimates before any

revisions or changes are made, so that users can compile the

unrevised data to check their procedures against the published

estimates. Such measures would help FIA data users to make

their own compilations by providing benchmarks for their own

routines and eliminating the possibility of their estimates not

matching those published by the FIA. 
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K-Nearest Neighbor Estimation of Forest
Attributes: Improving Mapping Efficiency

Andrew O. Finley, Alan R. Ek,Yun Bai, and Marvin E. Bauer1

Abstract.—This paper describes our efforts in refining

k-nearest neighbor forest attributes classification

using U.S. Department of Agriculture Forest Service

Forest Inventory and Analysis plot data and Landsat 7

Enhanced Thematic Mapper Plus imagery. The analysis

focuses on FIA-defined forest type classification

across St. Louis County in northeastern Minnesota.

We outline three steps in the classification process

that highlight improvements in mapping efficiency:

(1) using transformed divergence for spectral feature

selection, (2) applying a mathematical rule for reducing

the nearest neighbor search set, and (3) using a database

to reduce redundant nearest neighbor searches. Our

trials suggest that when combined, these approaches

can reduce mapping time by half without significant

loss of accuracy.

The k-nearest neighbor (kNN) multisource inventory has proved

timely, cost-efficient, and accurate in the Nordic countries and

initial U.S trials. (Franco-Lopez et al. 2001, Haapanen et al.

2004, McRoberts et al. 2002). This approach for extending

field point inventories is ideally suited to the estimation and

monitoring needs of Federal agencies, such as the U.S.

Department of Agriculture (USDA) Forest Service, that conduct

natural and agricultural resource inventories. It provides wall-to-

wall maps of forest attributes, retains the natural data variation

found in the field inventory (unlike many parametric algorithms),

and provides precise and localized estimates in common metrics

across large areas and various ownerships.

At a pixel-level classification, the kNN algorithm assigns

each unknown (target) pixel the field attributes of the most

similar reference pixels for which field data exists. Similarity is

defined in terms of the feature space, typically measured as

Euclidean or Mahalanobis distance between spectral features.

The kNN algorithm is not mathematically complex; however,

using multiple image dates and features from each date, along

with several thousand field reference observations, makes kNN

pixel-based mapping of large areas very inefficient. Specifically,

the kNN classification approximates to F·N distance calculations,

where F is the number of pixels to classify and N is the number

of references. For example, standard kNN mapping of a 1.3 x 106

ha area, with a pixel resolution of 30 m2, and approximately

1,500 FIA field reference observations requires about 22 bil-

lion distance calculations and around 16 hours to process on a

Pentium 4, single-processor computer.

Our study examined using USDA Forest Service Forest

Inventory and Analysis (FIA) plot data and Landsat 7 Enhanced

Thematic Mapper Plus (ETM+) imagery in kNN classification

of FIA-defined forest types. Specific emphasis is placed on

improving mapping efficiency by reducing classification feature

space, decreasing the number of distance calculations in the

nearest neighbor search, and eliminating redundancy in redundant

nearest neighbor searches by building a database of feature

patterns associated with different forest type classes.

Study Area and Data

Study Area

St. Louis County, in northeastern Minnesota, is located in the

FIA aspen-birch unit. For a detailed description of the study

area, see Bauer et al. (1994). 

FIA Plot Data

The FIA program began fieldwork for the sixth Minnesota forest

inventory in 1999. This effort also initiated a new annual inven-

tory or monitoring system. In this new system, approximately

one-fifth of the field plots in the State are measured each year.

The new inventory protocol collected field data on the four-subplot

cluster plot configuration (USDA Forest Service 2000). This plot

design consists of four 1/60-ha, fixed-radius, circular subplots

linked as a cluster, with each of the three outer subplots located

1 Department of Forest Resources, College of Natural Resources, University of Minnesota, 1530 Cleveland Ave. N., St. Paul, MN 55108. E-mail: afinley@gis.umn.edu
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36.6 m from the center subplot. FIA assigns each subplot to the

land use class recorded at the subplot center. The 2001 inventory

sampled 1,853 forested subplots in our study area. We removed

83 subplots because they fell under cloud-covered areas in the

Landsat imagery. We removed an additional 58 subplots because

the FIA field crew and FIA algorithm disagreed in the subplot

forest type. The subsequent analysis used the remaining 1,712

subplots.

Satellite Imagery

We used Landsat 7 ETM+ satellite images for the analysis. The

study area fell within two Landsat image scenes—path 27, rows

26 and 27. Bands 1 to 5 and 7 of three year 2000 dates were

used including a late winter scene from March 12, a spring

scene from April 29 and a late spring scene from May 31. 

The images were geo-referenced to the Universal Transverse

Mercator coordinate system using the following parameters:

spheroid GRS80, datum NAD83, and zone 15. The resampling

method was nearest neighbor using a 30-m by 30-m pixel size.

The geo-referencing reference map was road vectors from the

Minnesota Department of Transportation. For image portions

with few roads, we used the U.S. Geological Survey digital

orthophoto quads from the years 1991 to 1992 with 3-m resolution.

The number of control points used in geo-referencing was 38 to

46 per date in path 27, row 27 images and 20 to 22 in 27/26

images. A second order polynomial regression model was used

to fit the image. The root mean square error for all six images

was less than 8 m. The clouds were digitized by hand and a

cloud mask was created.

A forest/nonforest mask was generated using a kNN classi-

fication described in Haapanen et al. (2004). This mask was

used to define the area extent of our forest type classification. 

Methods

k-Nearest Neighbor Algorithm

For estimating with Euclidean distances, consider the spectral

distance , which is computed in the feature space from the

target pixel p to each reference pixel pi for which the forest type

class is known. For each pixel p, sort the k-nearest field plot

pixels (in the feature space) by                              . The

imputed value for the pixel p is then expressed as a function of

the closest units, each such unit weighted according to this dis-

tance decomposition function:

(1)

where t is a distance decomposition factor set equal to 1 for all

trials. To impute class variables such as forest type, the distance

decomposition function calculates a weighted mode value.

For a class variable, the error rate (Err) indicates the dis-

agreement between a predicted value     and the actual response   

in a dichotomous situation such that     does or does not

belong to class i (Efron and Tibshirani 1993). Thus, we used the

overall accuracy (OA) (Stehman 1997, Congalton 1991) defined

as follows:

(2)

where
(3)

This is a special case of the mean square error for an indicator

variable. These estimators were preferred over the usual Kappa

estimator for reasons given by Franco-Lopez et al. (2001).

Errors were estimated by leave-one-out cross-validation.

This technique omits training sample units one by one and mimics

the use of independent data (Gong 1986). For each omission,

we applied the kNN prediction rule to the remaining sample.

Subsequently, the errors from these predictions were summarized.

In total, we applied the prediction rule n times and predicted

the outcome for n units. Such estimates of prediction error are

nearly unbiased (Efron and Tibshirani 1993).

Spectral Feature Selection

As described by McRoberts et al. (2002), it is useful to select a

parsimonious set of image features to use in the nearest neighbor

search. Specifically, McRoberts et al. caution that including

features unrelated to the attribute being estimated can reduce

classification accuracy. When using a non-weighted Euclidian

measure for the minimum distance criterion, the inclusion of

these unrelated features directly reduces the class discriminating

power of the entire feature set.

Instead of testing all combinations of spectral features in

our analysis set, we used the statistical separability measure of

transformed divergence to find feature subsets that adequately
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discriminate among forest type classes. As described by Swain

and Davis (1978), measures of divergence can be used to select

a subset of feature axes that maximally separate class density

functions. The degree to which class density functions diverge,

or are separated in a multidimensional space, determines the

classification accuracy of parametric classifiers. This approach

to feature subsetting should also be effective with non-parametric

classifiers such as kNN.

We used the transformed divergence measure implemented

in ERDAS, Inc. Imagine® geospatial imaging software to derive

feature subsets. Then kNN classification accuracy statistics were

generated for each subset and judged against the classification

accuracy of the full set of 18 features (i.e., 6 bands from each of

3 Landsat images). The smallest feature subset that  performed

at least as well as the full feature set was then moved forward in

the analysis. 

Stratification

In a similar study using the kNN classifier to characterize

forested landscape in northeastern Minnesota, Franco-Lopez et

al. (2001) found that simply stratifying by upland and lowland

significantly improved forest type classification accuracy.

Based on these findings, we divided the study area into upland

and lowland strata as delineated by the U.S. Wildlife and Fish

Service (USWFS) National Wetland Inventory. These strata

were then classified separately using their respective subplots.

Nearest Neighbor Search Reduction

As previously noted, using minimum Euclidian distance as a

nearest neighbor criterion is not mathematically complex; how-

ever, mapping large areas computing F·N distance calculations

can take significant computer processing time. 

Ra and Kim (1993) proposed the mean-distance-ordered

partial codebook search (MPS) algorithm to reduce the number

of Euclidian distance calculations required in a nearest neigh-

bor search. The first component of the algorithm is the mini-

mum distance criterion, defined by Ra and Kim as the squared

Euclidian distance (SED):

(4)

where     and       are the jth component of the target and refer-

ence vector respectively, and m is the dimension of the vector

(i.e., number of features). The next element in the algorithm is

the squared mean distance (SMD), defined as follows:

(5)

The algorithm calculates and sorts the first k nearest

neighbor distances in the reference set. Then, the SMD is cal-

culated for the k + 1 vector in the reference set. This value is

then tested with this inequality:

(6)

where dE,max is the largest distance in the sorted set of k nearest

neighbors. If this inequality is true, the SED is calculated for

the dM,i and the set of k + 1 nearest neighbors is resorted and

the maximum value is discarded. If the inequality is false, the

dM,i reference vector is discarded. This procedure is repeated for

every subsequent vector in the reference set until each is either

included in the k nearest neighbor set or rejected. 

Depending on the amount of dispersion in the reference

set, the MPS algorithm can significantly reduce the number of

Euclidian distance calculations required to classify a given target

pixel. Specifically, a reference set that contains observations

that are highly dispersed in feature space will require fewer SED

calculations to find the k nearest neighbor set when compared

to a reference set that contains observations that are underdis-

persed. Further, as k increases, the number of observations that

pass the inequality will also increase and need to be considered

using a full Euclidian comparison. Therefore, analyses with

lower values of k will be more time efficient than analyses with

higher values of k. We evaluate the usefulness of the MPS algo-

rithm by its ability to reduce the average number of Euclidean

distance calculations for different levels of k in the classification

of our study area.

Database-Assisted Mapping

The use of the kNN classifier, or any classifier, relies on a cor-

relation between characteristics of the target pixel (e.g., spectral

features) and the characteristics of observations in a reference

set for which additional information is known. It is this correlation
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that allows for meaningful assignment of class-specific reference

pixel information to target pixels. In forest type classification,

for example, we hope for low variability of spectral features in

a forest type class and high variability of spectral features

among forest type classes. This desirable “within” relationship

versus “among” class variability can also help to increase map-

ping efficiency.

When implementing a typical kNN classification, the algo-

rithm discards the target/reference similarity information and

imputed value after each pixel is processed. If within class vari-

ability is low, the typically discarded information could be saved

and reused successfully to classify pixels elsewhere in the image.

Both the storage and subsequent retrieval of this information

would be more efficient than computing the kNN for a given

image pixel. Using this premise, we tested the marginal effi-

ciency of incorporating a database system into a kNN image

classification. 

Using the MySQL database system and the MySQL++ API,

we designed a program that would insert, search, and retrieve

records that hold pixel spectral features and the kNN imputed

values associated with each feature pattern. To allow the data-

base to efficiently search for a feature pattern, it was necessary

to discretize the 0–256 range of the Landsat bands into a smaller

number of units, referred to in this report as bins. 

Many methods are available to discretize continuous data

ranging from arbitrary bin assignments across the variable’s

distribution to using complex algorithms for deciding bin range

and placement (Chmielewski and Grzymala-Busse 1996). For

our study, we used a relatively simple approach based on the

normal probability density function. Each band in the image was

divided into the same number of bins. The range and placement

of the bins was contingent on the band’s mean and standard

deviation. This approach holds the area under the bands’ theoretical

distribution equal for each bin. That is, the bins that occurred

near the mean are narrow and the bins on the distribution’s tails

are proportionally wider. Bin counts of 6, 8, and 10 were tested

for database search and retrieval efficiency. 

Repeated discretization of a variable’s distribution will

ultimately result in information loss. A balance must be struck

between the amount of reduction in classification accuracy and

improved classification efficiency. For this reason, we compared

the information loss and efficiency gain through reducing the

bin counts.

Our database-assisted mapping program started by making

a connection with a predefined MySQL database. The database

contained one table with columns to hold the discretized image

features and a column to hold the kNN estimated imputation

value. For more efficient record insertion, search, and retrieval,

the database existed as a hash table in the main memory. 

For each image pixel, the feature pattern was extracted and

compared to all records in the database. If a match was found,

the pixel received the imputation from the matching database

record; otherwise, the kNN algorithm was used to assign the

value. Each time the kNN algorithm was implemented to assign

a classification value, the associated feature pattern and resulting

imputation value were inserted in the database.

As noted above, for this database-assisted mapping to be

useful, the information insertion, search, and retrieval process

must be more efficient than implementing a single kNN search

of the reference data set. Further, the discretization process

required to make pattern matching efficient must not significantly

degrade classification accuracy. Therefore, we evaluated the

utility of database-assisted mapping though a series of time

tests and classification accuracy comparisons.

Results and Discussion

Spectral Feature Selection

Using the transformed divergence measure implemented in

ERDAS Imagine, we derived optimal subsets of 16, 14, 12, 10,

8, and 6 spectral features. Subsets that contained fewer than 14

features produced suboptimal classification accuracy and

degraded confusion matrices. Therefore, the remainder of our

analysis was performed using the 14 spectral feature subset.

Stratification

Based on results from previous studies, we divided our study

area by upland and lowland strata. These areas were delineated

based on USWFS National Wetland Inventory classification

maps. Approximately 10 percent of the forested landscape in

the study area was designated as lowland and contained 149

FIA subplots. The upland portion of the study area contained

the remaining 1,563 FIA subplots. 
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Recognizing that most classification errors resulted from

within forest type group confusion, we collapsed the 12 forest

types into their respective base groups. Figure 1 shows stratified

and nonstratified classification accuracy for the four forest type

groups sampled in our study area. Table 1 presents the com-

bined classification confusion metrics for both strata. The

spruce-fir group (forest type code 120) and aspen-birch group

(forest type code 900) show satisfactory classification accura-

cy. Generalizing to the group level, however, does not address

poor classification of the maple-beech-birch group (forest type

code 800) or the aspen-birch group’s overclassification.

Nearest Neighbor Search Reduction

Substituting the brute force nearest neighbor search, which

considers the distance to all reference observations, with the

MPS algorithm significantly reduced the number of distance

calculations needed to classify each pixel. In leave-one-out

cross-validation trials of 1,712 observations, each consisting of

14 features, we recorded the average number of observations in

the n – l reference set that failed the inequality described in

Equation 6. The trial results were k = 1 (74.4 percent failed),

k = 3 (69.3 percent failed), k = 5 (66.4 percent failed), k = 7

(64.4 percent failed), k = 9 (62.6 percent failed), and k =11

(61.2 percent failed). 

As noted in the Methods section, as k increases, a higher prob-

ability exists that a reference observation will pass the inequali-

ty and require a full Euclidean distance comparison with the

target. Our trials confirmed this relationship between increas-

ing k and number of Euclidean distance measurements. Most

importantly, our research shows that using the MPS algorithm

can significantly improve mapping efficiency by reducing the

number of calculations needed to classify each target pixel. 

Database-Assisted Mapping

Time trials using our database-assisted mapping program were

conducted on a Pentium 4, 2 GHz, Linux OS-based- computer

with 1 GB of memory. Our kNN program was written in C++,

using the MySQL++ API to interact with a local MySQL version

4.0.14 server. Our program was compiled with g++ (GCC) 3.2.2.

The program was tested on the 3-date, 14-feature image of

St. Louis County, which contains 14.72 x 106 pixels. The kNN

reference set contained 1,712 subplot observations. Across all

bin counts, the average time required for our program to search

Table 1.—Forest type group classification confusion matrix for combined upland and lowland strata, using k = 7.

Figure 1.—Overall classification accuracy of four forest type
groups at increasing values of k for no stratification, upland
stratum, lowland stratum, and combined upland/lowland strata.
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the database for a given feature pattern and return a null or

imputed value was 372 milliseconds. If a null value was returned,

the kNN algorithm was initiated and took an average of 3,947

milliseconds to run. When a kNN instance was complete, the

program used an additional average of 196 milliseconds to

insert the feature pattern and imputed record in the database. 

For individual bin counts, the insert, search, and retrieval

time was contingent on the number of records in the table.

Figure 2 shows that the total interaction time with the database

increases with the database size. After processing completed,

the table held 10-bin = 10.6 x 106 records; 8-bin = 7.29 x 106

records; and 6-bin = 3.2 x 106 records. 

Figure 3 shows the frequency at which imputed values

were retrieved from the database as the image is processed. The

fewer bins in the image, the greater redundancy there was in

feature patterns. The greater the redundancy in feature patterns,

the greater dependence on the database was required to provide

imputed values. Figure 3 also shows a rough plateau starting at

about 6.5 x 105 processed pixels. This leveling off point describes

the percent redundancy in the image for the given bin count

(e.g., approximately 80-percent redundancy in the 6-bin image).

The brute force kNN procedure took 16.1 hours to process

the sample image. Incorporating the database with a bin count

of 10 decreased mapping time by 23.3 percent. Reducing the

bin count to 8 provided a 43.2 percent decrease in mapping

time. Generalizing the image further to a bin count of 6 reduces

mapping time by 67.1 percent.

This improvement in mapping efficiency must be balanced

against accuracy loss from the discretization process. Figure 4

compares the forest type group classification overall accuracy

of the binned images against the nonbinned image and shows

that minor loss of information occurred in the 10- and 8-bin

images. At the 6-bin image count of, accuracy declined more

substantially.

The reduction in overall accuracy does not appear to be

significant despite the severity of the image generalization.

Deciding on the level of acceptable loss of classification accuracy

in return for increased efficiency, however, is specific to the

mapping project. 

Our simple approach to imposing bin boundaries on each

feature appears to maintain a significant portion of information;

however, many other discretization procedures exist that may

more effectively preserve class discriminating information  con-

tained in the images. Because of high spectral similarity, it is

difficult to differentiate between forest types or forest type

groups. Using our database-assisted mapping may enjoy experi-

ence success if classes were more spectrally distinct.

Figure 2.—Total database interaction time versus number of
pixels processed for image bin counts of 10, 8, and 6.

Figure 3.—Percent of imputed values retrieved from the database
versus number of pixels processed for image bin counts of 10, 8,
and 6.
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Conclusions

Our study documented efforts to refine the process of kNN

forest attributes classification using FIA plot data and Landsat

7 ETM+ imagery. We outlined three steps in the classification

process that highlighted mapping efficiency improvements.

First, our analysis indicated that using transformed divergence

may provide an objective way to reduce the dimensionality of

the feature set without compromising classification accuracy.

Second, the MPS algorithm proved to significantly reduce the

number of distance calculations needed to classify each pixel.

Third, the proposed database-assisted mapping provides a way

to store and retrieve computationally expensive information. 

Unlike the MPS algorithm, the discretization step needed

for database-assisted mapping requires the analyst to compromise

between increased mapping efficiency and loss of classification

accuracy. Depending on the structure of the dataset and the

degree of discretization, the loss of classification accuracy can

be minimal.
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Proof of Concept for an Approach to a Finer
Resolution Inventory

Chris J. Cieszewski1, Kim Iles2, Roger C. Lowe3, and Michal

Zasada4

Abstract.—This report presents a proof of concept

for a statistical framework to develop a timely, accurate,

and unbiased fiber supply assessment in the State of

Georgia, U.S.A. The proposed approach is based on

using various data sources and modeling techniques

to calibrate satellite image-based statewide stand lists,

which provide initial estimates for a State inventory

on a common timeline. The system is based on using

Georgia ground inventory data from the forest products

industry, enhanced by various geographic information

system and remote sensing data, and applied with the

k-th “nearest neighbor” methods to time-series-stratified

satellite imagery. The initial estimates are then scaled

regionally to the Forest Inventory and Analysis (FIA)

summary totals to eliminate potential bias in the initial

estimates. The system enhances the FIA inventory

data in four significant ways. First, it removes the

need for the specific FIA plot coordinates; although,

the coordinates, if available, would probably enhance

the analysis. Second, it provides a current common

timeline of inventory estimates based on the Landsat

Thematic Mapper imagery for the given year and season.

Third, it provides currently accurate high-resolution

area estimates. Last, it uses various auxiliary data

available from private and public sources in the State

and can easily take advantage of other data as they

become available. 

The American Forest and Paper Association’s Second Blue

Ribbon Panel (BRP) on the Forest Inventory and Analysis

(FIA) program called for developing and implementing a plan

to conduct a national inventory to be coordinated with State

foresters, Federal land management agencies, forest industry,

nongovernmental organizations, and others. In response to the

second BRP’s recommendations, the Agricultural Research,

Extension, and Education Reform Act of 1998 (Section 253c)

mandated that the U.S. Department of Agriculture (USDA)

Forest Service conduct forest inventories in all States at the 20

percent annual rate of sample plots. The forest community is

expected to obtain timelier and more accurate estimates of

timber inventories and changes in fiber supply due to harvests,

urbanization/sub-urbanization, natural disasters, and reforestation

programs. Georgia was one of the first southern States to

participate in the Southern Annual Forest Inventory System

(SAFIS) in partnership with the USDA Forest Service FIA

program. Currently, the Georgia Forestry Commission (GFC)

provides 11 full-time equivalent positions, trucks, per diem travel,

and other supplies to collect FIA data in Georgia.

Full implementation of an annual system by FIA requires

reliable forested-area estimates, and standardized operating

procedures to maximize benefits from informational resources

such as satellite data.

Without locally accurate area estimates, the informational

value of an annual sample is greatly reduced. One option for

timely and accurate area estimation is to use remotely sensed

spatial data such as Landsat Thematic Mapper (TM) satellite

imagery, which has supplied reliable land cover area estimates

in many parts of the country (e.g., Evans 1994, Rack 2001,

Scrivani et al. 2001, Wynne et al. 2000).

Georgia is the third fastest growing State in the United

States, although 72 percent of its land is forest cover with 9.55

million hectares in commercial forests, more than any other State

(Smith et al. 2002). With more than two-thirds of that forest

owned by approximately 630,000 private landowners and forestry

contributing more than $30 billion to Georgia’s economy each

1 Associate Professor, D.B. Warnell School of Forest Resources, University of Georgia, Athens, GA 30602 USA; Corresponding Author. Phone: 706–542–8169;
fax: 706–542–8356; Web site: www.growthandyield.com/chris.
2 Consultant on Forest Inventory, Kim Iles and Associates Inc., 412 Valley Place, Nanaimo BC, V9R 6A6, Canada.
3 GIS Analyst.
4 Postdoctoral Fellow, D.B. Warnell School of Forest Resources, University of Georgia, Athens, GA 30602 USA; Assistant Professor, Department of Dendrometry
and Forest Productivity, Faculty of Forestry, Warsaw Agricultural University, Nowoursynowska 159, 02-776 Warsaw, Poland.
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year (Cieszewski et al. 2000), the results of this project will be

useful to many forest managers and the State’s economy. 

Objective

Although Georgia government and forest industry support many

forest activities and multiple sources of forestry data exist, the

State does not have a timely and accurate high-resolution, spatially

explicit forest inventory. The FIA-generated State inventory

produced a low-resolution statewide survey with reliable estimates

for very large areas, but does not provide accurate local, fine-scale

values. In addition, the FIA inventory estimates are not derived

for a common timeline and define a moving lagged average of

the resource availability that is delayed by 3 to several years. 

The objective of our project is to use the FIA and other

data to derive timely and accurate high-resolution estimates for

Georgia forests every year for the current year. 

Proposed Approach

A large-scale inventory is very precise at the overall level but

imprecise at the polygon level. More field plots will not solve

this problem; they may exacerbate the problem by adding cost

and delay. The objective of obtaining polygon-level precision,

therefore, must be sought without the benefit of any additional

fieldwork. The most promising approach to achieving this goal

is to estimate every polygon volume or other characteristic and

to ensure that these estimates add up to an appropriate total.

How to determine this total is a separate topic and is beyond

the scope of our study. The British Columbia Vegetation

Inventory and a number of private forest companies have

employed this approach. 

The large-scale inventory maintained by FIA assumes that

useful data and more precise results must come from statistical

samples. Any inventory’s design must, of course, be based on

certain properties, such as unbiased data and correct measurements.

The same problem arose during the design phase for the British

Columbia Vegetation inventory; our project will apply the solution

and approach used for that inventory. 

An inventory that adds up to the same total as any unbiased

estimate, regardless the source of that unbiased estimate, is itself

an unbiased estimate. Therefore, we can make an estimate for

every polygon on the land base, and then ensure that the sum of

these estimates is constrained to add up to the total provided by

an unbiased statistical process. The FIA is better equipped than

any other organization to provide such an unbiased total for

large areas in the United States. The FIA does not have the

resources to provide the fine scale resolution of this total in

individual polygon values. Other organizations, however, are

prepared to make the individual polygon estimates, which can

then be constrained by the FIA results. 

Polygon estimates can be made using several methods,

including “nearest neighbor” estimates, historical data, old

inventory data, projected past values, aerial photos, and personal

judgment, and any remote sensing technology. Inconsistent or

partially available data is not a problem. Currently, the only

advantage satellite methods offer is their ability to process large

amounts of data, which increases the refresh cycle frequency.

Satellite imagery, however, does not provide acceptable accuracy,

because of a self-imposed attempt to produce the estimates

automatically and because of insufficient resolution. One

important advantage of satellite information is its ability to

detect large-magnitude change.

Typically, the first objection made to using many estimates

of polygon values is that they are biased. Adjusting the estimated

parts to an unbiased overall total addresses this problem. A second

objection, that such estimates are only available for a portion of

the area or provide inconsistent precision, is not a serious constraint. 

Table 1 presents a simple example of a small group of

polygons that have been changed based on local knowledge of

some sort to provide a more precise polygon-level estimate. The

initial sample that the total of the polygon is based on was

unbiased and provided a set of statistics describing that total.

The absence of bias in the initial procedure and the value of

any statistics regarding that total or average also apply for the

revised polygon values. The difference is the improved polygon

level resolution. The process’s flexibility and inclusiveness are

evident because other groups can contribute to the process; a

“ground truth” visit, however, can verify any potential change.

Three significant changes in forest inventory data use and

maintenance have occurred during the past few decades:
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• Aerial photography and other methods enable areas and

forest value estimates to be made without fieldwork. 

• Fast and high capacity databases allow individual polygons

to have individual values; strata averages are not needed to

store and report data only. 

• Geographic information systems now function reliably,

after a long and frustrating wait. Field information can be

matched with information available from many sources. 

The FIA contributed to these changes with the following

actions: 

• Developed a sample process to cover the entire land base,

or at least make the grid extendable to all areas. 

• Performed the fieldwork and made a continual effort to

improve definitions, consistency, and data quality. 

FIA data offers rigorous, statistically valid data with good

quality control; other sources may offer only the ability to dis-

criminate on a relative basis, and for only a portion of the over-

all land base. 

The University of Georgia plans to combine these various

types of data to create a fine-resolution inventory with location-

specific information that is unbiased over some area to which it

has been balanced. Because this information can be further

refined, many specialist groups may be able to provide insight

into improving the distribution of individual values that sum to

a specific total. 

How can this data be maintained and improved? When a

newer or better estimate of the total is available, the individual

polygons can be adjusted. Some polygons may be adjusted more

than others, depending on how reliable the current estimate

may be. Over time, the polygons should be grown or depleted

according to the best information available. Although technically

any inventory is biased as soon as the stands age, this detail is

not expected to cause any serious errors. 

The Forest Service has been working on several projects

involving imputation and estimation that fit well with our project’s

approach. One closely associated method is the “most similar

neighbor” work by Melinda Moeur, Al Stage, and others in the

Forest Service (described in Moeur and Stage 1995).

Other Initial Estimation Aspects

The high-resolution inventory will be compiled in several

steps. This section briefly describes the general framework for

the unbiased, fine-resolution, spatially explicit estimation. First,

to improve the analysis’ accuracy, we will prestratify the

Landsat TM images using multi-image change tracking. 

Second, we will use various available inventory data provided

by the forest industry and private forest land owners to develop

models that stratify the satellite images to different species

groups and volume/basal area classes in the prestratified classes.

Although availability of the FIA exact coordinates would provide

Initial Final
Further Further

Polygon
estimate estimate

revised revision
estimate criteria

a 1,877 2,141.0 6,000 ecological guess 

b 1,836 2,094.2 1,000 actual cruise

c 1,941 2,214.0 2,000 field visit  

d 717 817.8 500 pure guess

e 1,584 1,806.8 2,200 10% more than c 

f 996 1,136.1 600 similar neighbor

g 1,580 1,802.2 500 same as d

h 866 987.8 200 1/10 of c

11,397 13,000 13,000

Table 1.—A simple example of a small group of polygons that have been changed based on local knowledge to provide a more
precise polygon level estimate.

Unbiased total = 13,000 Simple Correction Ratio = 1.141
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more reference points to calibrate the k-th nearest neighbor

models, it is not imperative because the FIA estimates are used

to adjust all high-resolution estimates to the unbiased total or

average. 

Third, we will remove any bias in the high-resolution esti-

mates by scaling them so that the sums of their volumes or

basal areas in each satellite image will be equal to the correspon-

ding sums in the FIA estimates for a corresponding timeframe.

For example, the corresponding classification can be applied to

scenes from the time of the inventory estimates and, after scaling,

the corrected estimates can be forwarded to the current time.

One challenge for us is to determine how to do the scaling. The

FIA estimates are not for any given time but for an average in a

5-year period. At any time during this period, we can expect

removals and growth that are intractable; ignoring the removals

and growth, however, can create a bias.

Fourth, the adjusted estimates for the k-th nearest-neighbor-

calibrated polygons will be used to compute the current inventory

for the given year. 

We expect satellite data to help quantify forested resource

areas. In addition, using consecutive images over the last 30

years, we will be able to identify when specific areas were

cleared and reestablished, so that we will be able to estimate

their current ages. Optimal success in this effort requires reliable

ground data on a large number of acres at different ages. Some

acres will be used for training sites (that is, sites to develop

classification algorithms); the remaining acres will be used to

test modeled sites (that is, sites to evaluate the efficacy of the

classification algorithms). We have industrial and private nonin-

dustrial cooperators willing to provide these data. 

Stand structure data from the Piedmont and Coastal Plain

regions of Georgia will be obtained from our cooperators and

supporters. Study location selections will be based on digital

data availability from our large industrial cooperators. Data from

neighboring nonindustrial private landowners who volunteer to

be partners in this project (through cooperation with GFA) will

fill in around these industrial land holdings. 

We will generate an urban mask to disregard areas within

city limits, such as parks, and the confusing satellite signatures

from suburban areas. Using data from U.S. Geological Survey

(USGS) paper maps and other available sources that show

remote building locations will ensure that most dwellings and

other structures are masked. 

Using the field data in conjunction with the TM data, we

will determine TM signatures for the forest types of interest.

We will evaluate the consistency of these signatures in each

satellite image. From the combination of the summer and winter

TM data, we will generate a hardwood mask to help prevent us

from confusing the signatures of pine at different ages with the

signatures of hardwoods and pasturelands. Ancillary elevation

and stream data will be used to help separate hardwoods in

riparian zones from upland hardwoods and help define buffers

along drainages where it may be difficult to distinguish

between hardwoods and pines.

For each polygon (delineated area) of data provided by our

cooperators and field crews, we will determine the “overriding”

land cover class in the TM signatures for that same area. We will

then evaluate the accuracy with which our list of the forest-types

and stand ages can be classified. We will verify the accuracy of

our forest/nonforest polygon classification and forest-type polygon

classification based on the match between polygon field class

and polygon satellite class. We will then reevaluate the TM

signatures and recheck some field locations before we report

which forest-types are most commonly confused in TM signatures

and why. 

The primary analyses will focus on investigating the

images’ changes over time, which mark the harvested polygons.

The change points will be examined with geostatistical methods,

such as variograms and cross-semivariograms (Zawadzki et al.,

2005) that define the cross-sectional changes consistently over

time, except for periods and locations of disturbances, which

this approach will attempt to identify. 

Data

In this analysis, we use FIA data, forest ground inventory data

obtained from the local forest industry, geographic information

system (GIS) data, and the Landsat TM imagery. The FIA data

came from the plot FIA database (Hansen et al. 1992, Miles et

al. 2001). The initial estimates of a high-resolution statewide

forest inventory will be based on various spatial data available

publicly and privately. Some examples of the publicly available

data, other than the USDA FIA data, are described below. 
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• The Georgia GIS Data Clearinghouse (GGDC)

(http://www.gis.state.ga.us/Clearinghouse/clearinghouse.ht

ml) provides access to numerous county-level GIS data for

the entire State. 

• Hydrology data in vector format are available at the

1:24,000 scale. These data sets were captured from the

USGS 1:24,000-scale topographic quadrangles and include

linear features such rivers and streams and polygonal features

like lakes and ponds. Most features are attributed by class

(e.g., perennial, intermittent) so that major and minor

rivers and streams can be determined. 

• Road and highway data are available at the GGDC at the

1:12,000 scale. These data were captured from the 1993

digital orthophoto quarter quadrangles. They contain public

roads including interstates, State highways, county roads,

and city streets. These vector data are well suited to incor-

porate in various distance-related analyses in which the

features are buffered to create polygons for further investi-

gation.

• The GGDC also serves raster data. Digital elevation models

(DEMs) are available at the 1:24,000 scale and a 30-meter

pixel size. 

• DEMs contain elevation information from which slope and

aspect data sets can be derived. 

• Land cover data are available at the 1:100,000 scale and a

30-meter pixel size. These data, developed using satellite

imagery from the late 1980s and the early 1990s, divide the

landscape into different classes such as conifer, deciduous,

agriculture, and urban. Though dated, they provide a

source for stratifying the landscape into broad cover types. 

• Aerial photographs, historical and recent, are available from

the GGDC in digital format and in paper format from the

University of Georgia’s Science Library and the GGDC.

The GGDC sells two sets of digital aerial photographs: 

• The 1993 black and white digital orthophoto quarter

quadrangles (DOQQs) have a 1-meter pixel and are

available for the entire State. 

• The 1999 color-infrared photos (1-meter pixel) are

available for select counties. 

• The University of Georgia’s Science Library maintains a

large set of historical paper aerial photographs from the

early to mid to late 1990s. 

• USGS sells recent paper aerial photographs from the

1980s through the current decade (http://edcsns17.cr.usgs.

gov/finder/finder_main.pl?dataset_name=NAPP). These

data provide a good model verification foundation.

• Satellite imagery is available from the USGS EROS Data

Center (http://edc.usgs.gov). 

• Landsat Multispectral Scanner (MSS), Landsat 5 TM, and

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) satellite

data are suitable for these types of landscape studies

(Note: Recent malfunctioning equipment for ETM+ has

yielded some suspect data in a scene). 

• Other satellite imagery available includes ASTER, MODIS,

and AVHRR, each of which can be used to discriminate

between land cover types.

Our industrial partners supplied various GIS data, including

boundaries and tabular data that may be the richest source of

forest information. The final inventory of Georgia’s forest

resources will be scaled to be consistent with the FIA inventory

regional and subregional statistical summaries (Thompson 1998). 

Summary

This report describes a proof of concept to develop a high-

resolution inventory based on pooling information from various

types and sources of data. Because the data do not originate in

a consistent statistical framework, they are likely to initially

generate a biased inventory. Therefore, the initial inventory

estimates are scaled to make the summary values equal to the

summary values of the FIA inventory estimates, which will

remove any existing bias in the final estimates of the high-

resolution inventory. The proposed approach should allow time-

lier and more accurate inventory estimate compiling than either

the initial remote-sensing-only based inventory or the moving

average FIA survey estimates. 
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Can a Forest/Nonforest Change Map Improve
the Precision of Forest Area, Volume, Growth,
Removals, and Mortality Estimates?

Dale D. Gormanson, Mark H. Hansen, and Ronald E.

McRoberts1

Abstract.—In an extensive forest inventory, stratifica-

tions that use dual-date forest/nonforest classifications

of Landsat Thematic Mapper data approximately 10

years apart are tested against similar classifications that

use data from only one date. Alternative stratifications

that further define edge strata as pixels adjacent to a

forest/nonforest boundary are included in the test. The

variance of stratified estimates of total forest area,

volume, growth, removals, and mortality are used to

compare results. The two classifications tested are the

1992 and 2001 National Land Cover Data (NLCD)

maps, referred to as NLCD-92 and NLCD-01, respec-

tively. The study area is the Minnesota portion of

Mapping Zone 41, an area that covers 60 percent of

Minnesota and contains 90 percent of the State’s forest.

Permanent plot data from nearly 6,500 samples measured

over the period 1999 to 2002 are used to compare the

alternatives that include four different edge stratifica-

tions at the forest/nonforest boundary: one 2-pixel

wide stratum, one 4-pixel wide stratum, two 1-pixel

wide strata, and two 2-pixel wide strata. Estimates

that use stratifications based only on the NLCD-92

were found to be more precise than estimates that

used only the more recent NLCD-01 for stratification.

Change-based stratifications (those that incorporated

the NLCD-92 and NLCD-01) produced estimates with

lower variances than estimates based on either single-date

stratification alone, with the largest differences observed

for the forest area estimates and smaller differences

observed for estimates of volume, mortality, growth,

and removals.

The Forest Inventory and Analysis (FIA) program of the U.S.

Department of Agriculture (USDA) Forest Service has imple-

mented an annual forest inventory system on a State-by-State

basis in which a proportion of plots are measured in each State

each year. The sampling design consists of rotating panels of

permanent sample plots; the intent is to measure one complete

panel each year. The time between inventories varies among

States because of funding limitations and varying information

needs. Population estimates and their sampling errors are cal-

culated using stratified estimation with strata derived from

classified satellite imagery. For the 11-State North Central

region, stratifications derived from the 1992 National Land

Cover Data data set (NLCD-92), developed by the Multi-

Resolution Land Characterization Consortium (MRLC), have

demonstrated that they can decrease forest area (FA) estimate

variances by a factor exceeding 3.5 and volume (V) estimates

by a smaller factor (Hansen and Wendt, 2000; McRoberts et al.

2002). 

If the above stratifications derived from forest/nonforest

classifications are effective in increasing the precision of estimates

of forest attributes such as FA and V, analogy stratifications

derived from forest change classifications may be effective in

increasing the precision of estimates of forest change attributes

such as growth (G), removals (R), and mortality (M).

Completion of a final draft of a new National Land Cover Data

data set (NLCD-01) by MRLC for most of Minnesota’s forested

area (fig. 1) provides the opportunity to construct such a land

cover change classification. Our study’s objective was to compare

the precision of stratified FA, V, G, R, and M estimates using

single-date stratifications derived from NLCD-92 and NLCD-01

and change-based classifications derived from NLCD-92 and

NLCD-01 combined.

1 Supervisory Forester, Research Forester, and Mathematical Statistician, respectively, U.S. Department of Agriculture, Forest Service, North Central Research
Station, 1992 Folwell Avenue, St. Paul, MN 55108.
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Data

Study Area

Our study was conducted for the Minnesota portion of the

MRLC Mapping Zone 41 (fig. 1) for which the final draft of

NLCD-01 is completed. Mapping Zone 41 encompasses

33,025,274 acres, including approximately 60 percent of

Minnesota’s total land area and about 90 percent of the State’s

forested land area. 

Land Cover Classifications

NLCD-92 is a 21-class land cover map of the conterminous

United States at 30 m x 30 m resolution. The U.S. Geological

Survey developed NLCD-92 under the auspices of MRLC using

nominal 1992 Landsat 5 Thematic Mapper (TM) imagery and

ancillary data (Vogelmann et al. 2001). NLCD-01 has similar

characteristics but is based on nominal year 2001 Landsat 7

Enhanced Thematic Mapper Plus (ETM+) images (Homer et al.

2002). 

FIA Plot Data

Inventory data were obtained from FIA plots in the study area

that were measured between 1999 and 2002. Each FIA plot

consists of a cluster of four 1/24-acre, fixed radius, circular

subplots distributed over approximately 1 acre. FA and V estimates

were based on observations of all 6,492 plots in the study area;

G, R, and M estimates were based on observations from the

3,535 plots measured for the 1990 periodic inventory and the

first four panels (1999–2002) of the annual inventory. Fewer plots

were available for estimating G, R, and M because estimates for

these change variables require measurements for two inventories;

FA and V estimates, however, require measurements for only

one inventory. The sample size decreased for two reasons: some

plots were removed from the inventory during the transition from

periodic to annual inventories, and other plots could not be

relocated during the annual inventory. Each FIA plot is linked

to the NLCD-92 and NLCD-01 pixels in which the plot center

is located. Most plot center locations were obtained using global

positioning system (GPS) receivers, although locations of plots

that digital orthophoto quad analysis determined had no acces-

sible forest land were obtained instead with digitization methods.

The accuracy standard for FIA plot locations is ± 140 feet (43.7

m) of the true location for 99 percent of the plots. A USDA

Forest Service study reported the accuracy of GPS receivers of

the kind used by FIA field crews to average approximately 7.9

m with maximum errors of approximately 20 m (Karsky et al.

2001). Therefore, we were certain that plot centers were linked

to the 30 m x 30 m TM pixel containing the plot center or an

adjacent pixel.

Methods

Stratifications

All stratifications were based on aggregations of NLCD classes

into two initial classes, forest and nonforest. For both NLCD

classifications, the forest class was constructed by aggregating

the three NLCD forest classes (41—deciduous forest, 42—

evergreen forest, and 43—mixed forest), the woody wetlands

class (91—woody wetlands), and the shrub land class (51—shrub

land for NLCD-92 and 52—short shrub land for NLCD-01). In

addition, the NLCD-92 transitional class representing land in

transition to forest was also grouped in the NLCD-92 forest

class. No comparable class was identified in NLCD-01. The

aggregated forest classes were constructed to be consistent with

Figure 1.—Mapping zones of the contiguous United States,
with Minnesota study area. 
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FIA forest land definitions. To conform to the FIA requirement

that forest land be at least 1 acre, a clump and eliminate algo-

rithm (ERDAS 1997) was applied to the initial forest/nonforest

classifications to eliminate 1-acre and smaller areas in each class.

Five stratifications were derived from each of the two

NLCD aggregated forest/nonforest classifications. Two single-

date forest/nonforest stratifications were constructed, one

obtained directly from the NLCD-92 aggregated forest/nonforest

classification and designated SDS2-92 and the other obtained

directly from the NLCD-01 aggregated forest/nonforest classi-

fication and designated SDS2-01. In stratification designations,

SDS is a single-date stratification, 2 means two strata [forest (F)

and nonforest (NF)], and 92 and 01 refer to the NLCD classifi-

cations the stratifications were based on. Two edge strata were

derived from each single-date forest/nonforest stratification based

on the recommendations of Hansen and Wendt (2002) and

McRoberts et al. (2002). The forest edge stratum (FE) consisted

of pixels in the F stratum within one pixel of a forest/nonforest

boundary, and the nonforest edge stratum (NFE) consisted of

pixels in the NF stratum within one pixel of a forest/nonforest

boundary. These stratifications are designated SDS4-92-1P and

SDS4-01-1P, where 4 refers to four strata and 1P to the one-pixel

edge strata width. Similar stratifications were constructed using

a two-pixel edge stratum width and were designated SDS4-92-2P

and SDS4-01-2P. The two edge strata, FE and NFE, were also

collapsed into a single transition (T) stratum. For stratifications

with one-pixel edge strata widths, the T stratum was two pixels

wide; for the stratifications with two-pixel edge strata widths,

the T stratum was four pixels wide. These stratifications were

designated SDS3-92-2T, SDS3-01-2T, SDS3-92-4T, and SDS3-

01-4T. The five SDS classifications based on NLCD-01 are

depicted in figure 2, where the white dot indicates an FIA plot

center. 

Five change-based stratifications were constructed by creating

two-way classifications of comparable single-date stratifications

derived from the NLCD-92 and NLCD-01 (fig. 3). The n main

diagonal cells of the two-way classifications are strata for which

the assignments of pixels to NLCD 92 and NLCD 01 strata are

identical; n2-n off diagonal cells are strata for which assignments

of pixels to NLCD 92 and NLCD 01 strata changed. Thus, NF-NF

defines the change-based stratum for which the NLCD 92 and

NLCD 01 strata pixel assignments were NF; F-NF defines the

change-based stratum for which the NLCD 92 and NLCD 01

strata pixels assignments changed from F to NF. However, we

exercise caution in attributing actual ground change to pixels

assigned to change strata, i.e., any strata off the diagonal in

figure 3. Classification errors in NLCD-92, NLCD-01, or both

will cause some erroneous pixel assignment to change strata

even though no actual ground change occurs. In addition, error

in image or NC-FIA plot registration will cause some erroneous

pixel assignment to change strata. Although image misclassifi-

cation and GPS plot location registration error reduces the

effectiveness of the strata derived from classification by

Figure 2.—GPS monumented FIA plot (white dot) that straddles
two land use conditions on a 1992 digital orthophotograph
subset (a). Also shown is the stratification mapping progression
of the 1992 digital orthophotograph compared to the (b) SDS2-01
(c), SDS3-01-2T (d), SDS4-01-1P (e) SDS3-01-4T, and (f)
SDS4-01-2P stratifications.
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decreasing precision, they will not produce bias in the estimates

as long as the misclassifications are independent of ground sample

plots. If using a consistent technique that does not incorporate

the ground plot classification used later for estimation, the

estimates will be unbiased.

The five change-based stratifications are designated using

change-based stratification (CBS). CBS2 is based on SDS2-92

and SDS2-01, CBS3-2T on SDS3-92-2T and SDS3-01-2T,

CBS3-4T on SDS3-92-4T and SDS3-01-4T, CBS4-1P on

SDS4-92-1P and SDS4-01-1P, and CBS4-2P on SDS4-92-2P

and SDS4-01-2P. Table 1 summarizes all stratifications.

Stratification Description Edge/transition strata No. strata

NO STRATIFICATION

SRS Simple random sample None 1

Single-date, NLCD-92

SDS2–92 NLCD 92 F/NF None 2

SDS3–92–2T NLCD 92 F/T/NF 2 pixel transition 3

SDS3–92–4T NLCD 92 F/T/NF 4 pixel transition 3

SDS4–92–1P NLCD 92 F/FE/NFE/NF 1 pixel edge 4

SDS4–92–2P NLCD 92 F/FE/NFE/NF 2 pixel edge 4

Single-date, NLCD-01

SDS2–01 NLCD 01 F/NF None 2

SDS3–01–2T NLCD 01 F/T/NF 2 pixel transition 3

SDS3–01–4T NLCD 01 F/T/NF 4 pixel transition 3

SDS4–01–1P NLCD 01 F/FE/NFE/NF 1 pixel edge 4

SDS4–01–2P NLCD 01 F/FE/NFE/NF 2 pixel edge 4

Change-based

CBS2 NLCD 92-01 F/NF change None 4

CBS3–2T NLCD 92-01 F/T/NF change 2 pixel transition 9

CBS3–4T NLCD 92-01 F/T/NF change 4 pixel transition 9

CBS4–1P NLCD 92-01 F/FE/NFE/NF change 1 pixel edge 16

CBS4–2P NLCD 92-01 F/FE/NFE/NF change 2 pixel edge 16

Table 1.—Stratification alternatives.

Figure 3.—CBS2, CBS3, and CBS4 change-based stratifications. For change-based stratifications, n2 classes are possible, where n
is the number of classes and (n2 - n) off-diagonal possible change classes. 
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Stratified Estimation

Stratified estimates and sampling errors were calculated using

post-stratification estimators (Cochran 1977) with finite popu-

lation correction ignored. Estimates of population totals were

calculated with this formula: 

(1)

Estimates of sampling errors were calculated as follows:

(2)

where h denotes stratum, L is the number of strata, n is the total

number of plot observations,      and       are the observed sample

mean and variance in stratum h,       is the weight for stratum h

calculated as the proportion of pixels assigned the stratum, and A

is the population area defined as the Minnesota portion of

Mapping Zone 41.

Analyses

FA, V, G, R, and M estimates were calculated using [1] and [2]

for the 15 stratifications and compared using two measures.

The first measure, relative efficiency (RE), was calculated with

this formula:

(3)

where          is the variance of the estimate obtained under the

assumption of simple random sampling (SRS) that uses no

stratification, and        is the variance obtained using stratified

estimation. RE values close to 1.0 indicate that the stratification

has little use in increasing precision; RE values greater than 1.0

indicate increasing utility. RE is equivalent to the factor by which

the sample size must be increased to obtain the same variance

under SRS obtained using stratified estimation. The second

measure was based on converting the observed sampling error

to a percent per specified area or volume (Hansen 2001). This

measure is reported in FIA publications as the sampling error

per million acres for FA estimates and the sampling error per

billion cubic feet for V, G, R, and M estimates. The percent

sampling error per S, where S is 1 million acres or 1 billion

cubic feet, is calculated as follows:

(4)

FIA guidelines are Es≤3.0 for FA and Es≤5.0 for V, G, and R.

Results

We noted several important results. First, the stratifications

generally improved the precision of estimates (table 2). For FA,

RE > 2.0 indicates that the stratifications were effective; however,

for V, G, M, and R, RE only slightly greater than 1.0 indicates

that the stratifications were less effective. 

Second, FIA precision guidelines were satisfied or nearly

satisfied for all variables except V. Es≈ 3.0 indicates that the

FIA precision guidelines were nearly satisfied for FA; Es < 5.0

indicates that the guidelines were satisfied for G and R estimates;

but Es near 7.0 indicates that the precision guidelines were not

satisfied for V. 

Third, generally, the most precise estimates were obtained

using one of the change-based stratifications, although RE with

the change-based stratifications was often only slightly greater

than with single-date stratifications. We attributed this result to

the increased precision from more strata with the change-based

stratifications. 

Fourth, estimates obtained with single-date stratifications

with three or four strata were more precise than estimates

obtained with single-date stratifications with only two strata,

although precision estimates for the stratifications with three

and four strata were similar. Nevertheless, adding edge and/or

transition strata increased precision. 

Fifth, estimates were more precise when using single-date

stratifications derived from NLCD-92 than those derived from

NLCD-01 for all variables except V, for which the results were

mixed. Although the differences were small, the trend is pro-

nounced. The only apparent explanation for this phenomenon is

that the aggregated forest and nonforest classes obtained from

NLCD-92 conformed better to FIA definitions of forest land

than did the classes obtained from NLCD-01, even with the nearly

10-year gap between the two sets of images. One possible reason

is including the transition class in the NLCD-92 aggregated

forest class. 
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Finally, stratified estimates of the mean were similar for

all variables, but SRS estimates differed from the stratified

estimates. This result is attributed to forested strata undersam-

pling for two reasons: first, some private land owners refused

to allow FIA crews to measure plots on their lands, and second,

some forested plots could not be relocated at the time of the

second inventory. The undersampling generally did not occur

for nonforested strata because plots determined to have no

accessible forest land based on digital orthophoto quad analyses

were not visited by field crews; hence, land owner permission

was not required, and plots did not have to be relocated. Stratified

estimation compensates for this phenomenon by producing

independent, within-stratum estimates. Although the SRS estimates

are biased, their precision estimates are still useful to compute

RE for comparison.

The observed values of                 and       for the CBS3-

2T stratification provide additional information on the effec-

tiveness of the change-based stratifications (table 3). Overall,

this nine-strata, change-based stratification produced estimates

with the same or higher precision than other strata. Precision

estimates for CBS4-2P were comparable but required nearly

twice as many strata. 

Three salient points are noted. First, more than 80 percent

of the population did not change stratum assignment from

NLCD-92 to NLCD-01. The changed portion of the population

was distributed over four strata with weights ranging from 0.004

to 0.042. The few plots in some strata corresponding to change

in strata assignments indicates that change-based stratifications

may not be useful for subpopulations such as counties. Second,

the general trend of smaller strata having large within-stratum

variances indicates that the stratifications are correctly grouping

high-variance plots into strata with small weights that contributes

to stratification effectiveness. Third, the within-stratum means

tend to conform to expectations that strata corresponding to F

for NLCD-01 have greater means. One exception is the estimate

of the FA mean in the F-NF stratum that, although expected to

be relatively small, was actually large. This result could be

attributed to the clump and eliminate procedure that reclassified

predicted forested areas of less than 1 acre into the nonforest

class. Thus, some forested plots in small, isolated patches of

forest land that were actually larger than 1 acre may have been

classified in error as nonforest and assigned to a nonforest stratum.

Table 3.—Observations and within-stratum estimates for CBS3-2T stratification.

pf =proportion of forest.
v=volume (ft3/acre).
g=growth (ft3/acre/yr).

m=mortality (ft3/acre/yr).
r =removals (ft3/acre/yr).

2 nh=sample size for stratum h.
Wh=weight for stratum h.

=sample mean for stratum h.
nh=sample standard deviation for stratum h.

NLCD-92 NLCD-01 stratum 
Attribute2

NF T FStratum
pf v g m r pf v g m r pf v g m r

NF nh 2261 2261 982 982 982 241 241 107 107 107 30 30 18 18 18

Wh 0.328 0.328 0.328 0.328 0.328 0.035 0.035 0.035 0.035 0.035 0.006 0.006 0.006 0.006 0.006

0.007 5.1 0.21 0.04 0.29 0.099 99.4 2.88 1.42 3.93 0.3275 149.5 2.46 3.39 0.00

sh 0.072 82.4 3.03 0.79 7.10 0.2630 354.4 12.33 7.57 40.68 0.4472 280.3 10.82 8.13 0.00

T nh 236 236 117 117 117 656 656 366 366 366 268 268 177 177 177

Wh 0.039 0.039 0.039 0.039 0.039 0.107 0.107 0.107 0.107 0.107 0.042 0.042 0.042 0.042 0.042

0.088 93.1 2.78 0.30 10.24 0.362 458.0 8.56 8.21 4.77 0.7139 697.5 10.15 12.63 8.81

sh 0.244 425.0 11.54 1.91 54.92 0.4071 740.0 30.92 22.94 20.75 0.3935 862.6 33.49 24.46 31.14

F nh 34 34 28 28 28 399 399 255 255 255 2367 2367 1485 1485 1485

Wh 0.004 0.004 0.004 0.004 0.004 0.061 0.061 0.061 0.061 0.061 0.378 0.378 0.378 0.378 0.378

0.632 277.6 5.85 10.41 64.31 0.753 821.8 12.15 17.05 24.98 0.8752 983.7 16.00 17.38 13.00

sh 0.466 468.4 25.33 23.67 85.45 0.3746 903.7 36.12 29.34 54.92 0.3008 886.2 38.82 29.37 43.47
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Conclusions

Our study confirms two previous findings. First, stratifications

derived from NLCD aggregated forest/nonforest classifications

are effective in increasing the precision of forest attribute estimates.

Second, creating transition or edge strata at forest/nonforest

boundaries enhances the effectiveness of the stratifications. 

Three primary conclusions can be drawn from our study:

(1) change-based stratifications improved the precision of forest

attribute estimates, even though increases in precision over sin-

gle-date stratifications were not great; (2) differences among

the precision estimates for stratifications using three and four

strata and two- and four-pixel widths for edge or transition strata

were minimal; and (3) stratifications were more effective in

increasing the precision of FA estimates than V, G, M, and R

estimates. A possible reason for the last conclusion is that the

classification of land as forest is based on the presence of forest

canopy, which is not necessarily a good indicator of below

canopy forest attributes such as volume, growth, removals, and

mortality. 
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Stratum Weight Determination Using
Shortest Path Algorithm

Susan L. King1

Abstract.—Forest Inventory and Analysis uses post-

stratification to calculate resource estimates. Each

county has a different stratification, and the stratification

may differ depending on the number of panels of data

available. A “5 by 5 sum” filter was passed over the

reclassified forest/nonforest Multi-Resolution

Landscape Characterization image used in Phase 1,

generating an image in which each pixel represents

the count of forested pixels inside a 5 by 5 window.

The forested pixel count ranges from 0 to 25 or 26

classes. In the next step, the ground plots are overlaid

on the class map generated by the 5 by 5 window. The

objective is to find the break points in the 26 classes

that minimize the difference in the number of acres/plot

between strata while simultaneously maximizing the

number of strata. These are conflicting goals. More

strata imply larger deviances between the strata. Also,

the stratum must have contiguous classes with at least

four plots. This is a nonlinear integer programming

problem. Because software is not readily available to

solve a nonlinear integer programming problem, the

problem was reformulated to finding the shortest path

through the network. For each county, the optimal one,

two, three, four, five, six, and seven strata are found,

and various heuristics for determining the final solution

are investigated and compared.

Introduction

The annual Forest Inventory and Analysis (FIA) sampling

design is composed of three phases. Phase 1 uses satellite

imagery to classify the land area in a State as forest or nonforest.

Phase 2 is the traditional ground sample. An interpenetrating

hexagonal grid is placed across a State with one ground plot

per grid cell. Each hexagonal grid represents 5,937 acres.

One-fifth of the ground plots spread uniformly across the State

are visited yearly. Each year’s plots/hexagonal grids are referred

to as a panel. On a subset of the Phase 2 plots, additional variables

are measured to determine forest health. This subset is the Phase

3 sample. This article focuses on finding an automated and

efficient procedure for determining the optimal number of strata

and, hence, the stratum weights for Phase 2 forest land estimates

or “on the fly” resource estimates of user-defined polygons.

The objective is to minimize the difference in the Phase 1-to-

Phase 2 ratio between the strata (deviance) while simultaneously

maximizing the number of strata.  Each stratum must have a

minimum of four ground plots. When the population is divided

into as many homogenous strata as possible, the variance of the

population estimates tends to be lower. As the number of strata

increase, it becomes more difficult to find break points in which

all the strata have approximately equal Phase 1-to-Phase 2 ratios. 

Methods

Phase 1 and Phase 2 Cost Information

The satellite imagery used for the Phase 1 sample was a forest/

nonforest map acquired from National Land Cover Data (formerly

Multi-Resolution Land Characterization [MRLC]). This vegetation

map was made by the U.S. Geological Survey Earth Resources

Observation Systems (EROS) Data Center (Vogelmann et al.

2001) and is based on 1992 Landsat 7 Thematic Mapper data;

other intermediate-scale spatial data were used as ancillary

data. For the forest/nonforest call, the MRLC was reclassified

so that the forest classes and woody wetland received a value of

1, and other pixels received a value of 0. A “5 by 5 sum” filter

was passed over the reclassified forest/nonforest MRLC image,

generating an image in which each pixel represents the count

of forested pixels inside a 5 by 5 window. The forested pixel

count ranges from 0 to 25, which creates 26 classes (bins). The

Phase 2 plots were overlaid on the filtered image to obtain a

1 Operations Research Analyst, U.S. Department of Agriculture, Forest Service, Northeastern Research Station, Newtown Square, PA, 19073. Phone: 610–557–4048;
fax: 610–557–4250; e-mail: sking01@fs.fed.us.
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forested class call for each plot. For the Phase 1 sample, both

the total number of pixels in a polygon of interest, such as a

county, and the number of pixels in each bin are known. This

information is used to develop a cost function, which is not

limited to a monetary function. A cost function also can be time,

distance, or another measure to be optimized. Again, the objective

is to break the 26 bins into strata that minimize the variance by

equalizing the Phase 1-to-Phase 2 stratum acres/plot costs while

simultaneously maximizing the number of strata. Each stratum

must have contiguous bins and at least four ground plots. The

bins must be contiguous so that similar forested and nonforested

bins are grouped together.

To mathematically formulate the cost information, let the

26 bins be numbered from 1 to 26. There are    strata, and b1,

b2,,…,        are the break points between strata. The first bin

(end point b0) is always in stratum 1, and the last bin (end point   

) is always in stratum . The Phase 1 area for each county or

polygon for bin i is:

(1)

On a per stratum basis for a county, the Phase 1 area for stratum

j is:

(2)

The Phase 2 county or polygon sample size for each bin is:

(3)

The Phase 1-to-Phase 2 ratio is the number of acres/plot, also

known as the stratum weight. This stratum weight will be used

as the “cost” for stratum j.

(4)

Objective Function

Two objective functions are defined. The deviance objective

function is the sum of the absolute value of the cost differences

between a stratum and the adjacent lower stratum. This is

expressed mathematically as:

(5)

The smoothed deviance is the sum of the absolute value of

the cost differences between a stratum and all the previous strata.

This is expressed mathematically as:

(6)

By including all possible pairs of strata, the smoothed

deviance should better reduce the cost difference between strata

over the deviance objective function. In each case, these objective

functions tend to result in proportional allocation to the strata,

which is the expectation from a systematic sample of plots.

Shortest Path

Mathematical optimization is a tool for finding the combination

of decision variables and their values that minimize or maximize

an objective function while simultaneously satisfying a set of

constraints on the decision variables. In this article, the deviance

or smoothed deviance function is the objective function, and the

constraints are the contiguous bin requirement and the lower

bound on the number of ground plots per stratum. One mathe-

matical optimization procedure to optimally determine the best

allocation of bins to a stratum is the shortest path algorithm.

The problem is formulated as a feed-forward network (fig.1). A

Figure 1.—Each stage in this three-stage network corresponds to
a stratum. Bin combinations are located at the node, and the cost
between bin combinations is located on the arcs.
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network has nodes joined by arcs, and, in this problem, the arcs

are directed in only one direction. The objective is to traverse

the network from the start node to the stop node with the least

cost. Each arc has an associated cost, which could be time,

money, distance, or another measure. In this case, cost is the

deviance or smoothed deviance objective function. The stages

in the network correspond to the strata. The network in figure 1

is a three-stage or three-strata network. The cost encountered

from the start node to stage 1 is 0, and the cost encountered

from stage 3 to the stop node is 0. The nodes in each stage cor-

respond to the number of bins. In stage 1, all the nodes include

the first bin, and, in stage 3, all the nodes contain bin 26. In

stage 1, if bins 1 through 24 are selected, in the three-stratum

case, bin 25 must be selected in stage 2, and bin 26 selected in

stage 3. If only bin 1 is in the first stratum, many combinations

exist for strata 2 and 3. If four plots are not in the bin combina-

tion at a node, the arc is assigned a large cost so that this path

never will be selected. Paths containing these infeasible arcs

are pruned from the network before solving for the shortest

path through the network. 

Many approaches and algorithms are available to solve a

shortest path problem. Dijkstra’s Algorithm (1959) is the classic

method for computing the shortest path from a single source

node to every other node in a weighted (stratum weight cost on

an arc is a weight) network. This algorithm, a simple and con-

sequently easily implemented algorithm for finding the shortest

routes, is the most widely used in GIS software packages.

Dijkstra’s Algorithm is used for solving problems that require

real-time solutions—for example, routing an ambulance to an

accident site and from there to the nearest hospital. Its perform-

ance depends on the data structures (for example, heaps or priority

queues) used to represent the network (Derekenaris et al. 2001).

Improving the data structure efficiency of Dijkstra’s Algorithm

and other approaches to solving the shortest path problem are

active areas of research. Nevertheless, shortest path algorithms

are used routinely to solve large-scale problems and are available

in most programming languages.

Almost any problem that can be formulated as a shortest

path through a network also can be solved using dynamic pro-

gramming, that is, the problem can be solved using recursive

equations without special software. The drawback of dynamic

programming is the “curse of dimensionality.” As both the

number of stages and nodes increase, so do the number of

recursions. Information for the recursions must be stored in a

lookup table. The feasibility of using dynamic programming

for solving the stratum weight problem was not investigated.

Another mathematical optimization approach to optimally

allocating bins to the strata is nonlinear integer programming.

If bin i is assigned to stratum j, the decision variable is 1; oth-

erwise, the decision variable is 0. In addition to the constraints

requiring at least four ground plots and consecutive bins, con-

straints are added to ensure that each bin is assigned to only

one stratum, and that each stratum has at least one bin. The

objective function is either equation (5) or (6). The objective

function is nonlinear because the denominator term, number of

ground plots in a stratum, is an integer variable. Commercial

software is not readily available to solve nonlinear integer pro-

gramming problems, but is readily available to solve a shortest

path problem.

Data

Three panels of annual inventory data from Pennsylvania

were used to evaluate the procedures for determining the stratum

weights for each county. From this information, estimates are

calculated for the number of acres of nonforest and forest for

each county and the State. The complete range of forested

conditions is found in Pennsylvania, from heavily nonforested

to heavily forested counties. Heavily forested or nonforested

counties may require only one stratum, whereas counties with a

mixture of forest conditions may require as many as seven strata. 

Table 1 shows the possible stratifications from the shortest

path algorithm for Mifflin County using the smoothed deviance

objective function and three annual panels. The shortest path

cost increases as the number of strata increases. The one-stratum

solution starts at the first bin and stops at the last bin. The cost

is 9,763 acres/plot. For the two-stratum solution, the first stratum

has bins 1 through 25, and the second stratum has bin 26. The

shortest path is the difference between the cost of 10,194 acres/

plot and 9,417 acres/plot, or 776.7 acres/plot. The shortest path

cost increases as the number of strata increases. This precludes

building one network and allowing the algorithm to select the

strata combination with the lowest cost. From the table, dividing

the 26 bins into two groups of equal cost is easier than three

groups of equal cost. Larger numbers of strata should have
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lower sampling errors, however. From a mathematical point of

view, stopping at bin 25 for the first of two strata makes sense,

but is it wise from a biological perspective? Bins may have no

or a sparse number of ground plots, and they are grouped with

the strata that best balances the cost.

Because the shortest path cost directly increases as the

number of strata increases, a single network cannot be built

because the smaller strata solutions would prevail. Therefore,

several heuristics were investigated for selecting the “optimal”

number of strata. (Optimal is in quotation marks because the

procedures are rules of thumb and not mathematically based

procedures that develop necessary and sufficient conditions for

optimality). One heuristic was to divide the shortest path by the

number of difference pairs and graph the new cost versus the

number of strata. The hypothesis was that the curve would

decrease, reach a minimum, and then increase. The solution

would be the number of strata at which the curve reached its

minimum. The curves for each county did not follow the expected

pattern, however; the cost per difference pair tended to increase

with an increasing number of strata. A second heuristic ties the

last bin in the first stratum and the first bin in the last stratum

to NLCD imagery classification break points developed by

Hoppus et al. (2001). Not all the counties could be classified

with NLCD imagery break points because the requirements are

too stringent or the county is essentially all forest or nonforest

and the only appropriate stratification is one stratum. The final

procedure is a series of relaxations on the NLCD imagery

requirement. The procedure is as follows.

Imagery-Based Heuristic for Selecting the “Optimal”

Number of Strata

Step 1. Create table 1 for each county. For each strata combi-

nation, calculate: 

Cost range = largest cost of a strata – smallest cost of

a strata

Next, sort by county and descending cost range. This

sorting guarantees that the solution with the largest

number of strata that meets the remaining criteria will

be selected first.

Step 2. Separate the counties that can be stratified only by

one stratum (group A) from the remaining counties.

From the remaining counties, select the counties with

a cost range of less than 6,000 acres/plot, a break point

between the first and second stratum at bin 7 or lower,

and the break point between the highest stratum and

its adjacent lower stratum at bin 24 or higher. (These

break points are the NLCD imagery classification break

points.) From the counties that meet these criteria,

select the solution with the largest number of strata

(group B). Remove group B counties from the remaining

data.

Step 3. Relax the standards on the remaining data (original

data set minus groups A and B). From the remaining

counties, select the counties with a cost range of less

than 6,000 acres/plot, fewer than 12 bins in the first

stratum, and the last stratum in bin 19 or higher. From

the counties that meet these criteria, select the solution

with the largest number of strata (group C). Remove

group C counties from the remaining data.

Step 4. Relax the standards on the remaining data (original data

set minus groups A, B, and C). From the remaining

counties, select those counties with a cost range of less

than 6,000 acres/plot. From the counties that meet these

criteria, select the solution with the largest number of

strata (group D). Remove group D counties from the

remaining data.

Step 5. Select any remaining counties based on the smallest

cost range. Place these counties in group E.

Step 6. Add groups A, B, C, D, and E to form the final solution. 

Strata
Start1 Stop1 Cost1 Start2 Stop2 Cost2 Start3 Stop3 Cost3 Start4 Stop4 Cost4

Shortest
number path

1 1 26 9,763

2 1 25 9,417 26 26 10,194 776.76

3 1 1 5,116 2 24 11,204 25 26 11,005 12,174.29

4 1 1 5,116 2 6 6,471 7 22 12,244 23 26 12,149 27,059.84

Table 1.—Possible stratifications for Mifflin County.
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Ratio Heuristic

Another heuristic is the ratio heuristic:

(7)

For the first panel, the ratio is approximately 30,000 acres/plot.

For the second and third panel, the ratio is approximately 15,000

and 10,000 acres/plot, respectively. Exact numbers for the ratio

heuristic could easily be calculated, but the approximations are

used in this study. 

To implement the ratio heuristic, apply Step 1 in the imagery-

based heuristic. For Step 2, find the solution with the highest

number of strata so that the cost range is less than the ratio in

equation (7).

Results

Currently, a human expert performs the stratification for the

annual inventory. From the number of plots in the county and

their distribution in the 26 classes, the expert can estimate the

number of strata. Using this information and a spreadsheet

macro, the expert can visually examine the impact of different

break points in the cost per stratum equation (4). The final

solution is achieved when the expert believes that the cost cannot

be further balanced among the strata. Table 2 shows the division

of land between nonforest (0) and forest (1) for the three panels

of annual inventory data in Pennsylvania.

The statistics in table 2 are calculated using FINSYS

(Born and Barnard 1983), the computer program used by the

Northeastern FIA unit to calculate sampling statistics. Because

the data must be in a special format for FINSYS, “what if ”

questioning is difficult. As a result, the remaining statistics were

calculated with a user-written SAS macro (SAS Institute 1999)

and benchmarked against FINSYS. The results for the three-

panel problem with a deviance objective function and a smoothed

deviance objective function are shown in tables 3 and 4,

respectively. According to the ratio rule, for three panels, the

maximum cost range should be 10,000 acres/plot. For evaluation

purposes, 6,000 acres/plot also was considered. The sampling

Forest land Area (acres) Mean area (%) Sampling 
error (%)

0 12,030,500 41.9 1.2

1 16,652,100 58.1 0.9

Table 2.—Human expert’s result for three-panel stratification in
Pennsylvania.

Procedure Forest land Area (acres) Mean area (%) Sampling error (%)

Imagery-based 0 11,767,610 41.03 1.179
1 16,915,021 58.97 0.820

Cost range <  6,000 acres/plot 0 11,794,962 41.12 1.164
1 16,887,670 58.88 0.813

Cost range < 10,000 acres/plot 0 11,769,360 41.03 1.172
1 16,913,272 58.97 0.816

Table 3.—Three-panel stratification using optimization and deviance objective function.

Procedure Forest land Area (acres) Mean area (%) Sampling error (%)

Imagery-based 0 11,760,770 41.00 1.175
1 16,921,862 59.00 0.817

Cost range <  6,000 acres/plot 0 11,794,956 41.12 1.169
1 16,887,675 58.88 0.817

Cost range < 10,000 acres/plot 0 11,736,291 40.92 1.165

Table 4.—Three-panel stratification using optimization and smoothed deviance objective function.

Total Land Area (acres) in State
Ratio=

Total Number of Plots Measured
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errors are lower for the optimization procedures. The mean area

percentages differ by approximately 1 percent between the expert

and the optimization. In the optimization groups, the imagery-

based procedure had slightly higher sampling errors. For the

optimization procedure, the lowest sampling errors were for the

smoothed deviance objective function and the ratio decision rule

using a cost range of less than 10,000 acres/plot. Consequently, in

the remaining statistics, the imagery-based decision rule is not

further investigated, and only the smoothed deviance objective

function is investigated.

Table 5 shows the results for two-panel combinations. Panels

1 and 2 are shaded light gray, panels 1 and 3 are shaded dark gray,

and panels 2 and 3 have a white background. For two panels,

each plot is worth approximately 15,000 acres. A decision rule

of cost range of less than 10,000 acres/plot is for comparison.

The sampling errors are close. The cost range of less than

10,000 acres/plot decision rule has slightly lower sampling

errors in two of the three cases. In the first and second panel

combination, the lowest sampling error for the forest land is for

the cost range of less than 10,000 acres/plot decision rule, and

the lowest sampling error for nonforest is the cost range of less

than 15,000 acres/plot decision rule.

Table 6 presents the results for the single panel. Panels 1

and 2 are shaded light gray, panels 1 and 3 are shaded dark gray,

and panels 2 and 3 have a white background. The ratio decision

rule would be to accept the stratification with the largest number

Procedure Forest land Area (acres) Mean area (%) Sampling error (%)

Cost range < 10,000 acres/plot 0 11,824,972 41.23 1.457
1 16,857,659 58.77 1.022

Cost range < 15,000 acres/plot 0 11,916,395 41.55 1.443
1 16,766,236 58.45 1.025

Cost range < 10,000 acres/plot 0 11,824,972 41.23 1.457
1 16,857,659 58.77 1.022

Cost range < 15,000 acres/plot 0 11,810,641 41.18 1.498
1 16,871,991 58.82 1.048

Cost range < 10,000 acres/plot 0 11,633,254 40.56 1.457
1 17,049,378 59.44 0.994

Cost range < 15,000 acres/plot 0 11,660,065 40.65 1.495
1 17,024,023 59.35 1.024

Table 5.—Two-panel stratification using optimization and smoothed deviance objective function.

Procedure Forest land Area (acres) Mean area (%) Sampling error (%)

Difference < 15,000 acres/plot 0 12,105,840 42.21 2.367
1 16,576,792 57.79 1.728

Difference < 30,000 acres/plot 0 12,215,132 42.59 2.289
1 16,467,500 57.79 1.698

Difference < 15,000 acres/plot 0 11,841,438 41.28 2.396
1 16,841,194 58.72 1.685

Difference < 30,000 acres/plot 0 11,632,008 40.55 2.344
1 17,050,624 49.45 1.599

Difference < 15,000 acres/plot 0 11,872,889 41.39 2.363
1 16,809,742 58.61 1.669

Difference < 30,000 acres/plot 0 11,871,364 41.39 2.338
1 16,811,268 58.61 1.651

Table 6.—One-panel stratification using optimization and smoothed deviance objective function.
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of strata so that the cost range between the stratum with the

largest and smallest cost is less than 30,000 acres/plot. These

results are contrasted with those obtained from using 15,000

acres/plot. The sampling errors are larger with fewer panels.

The sampling errors are lower for the difference of less than

30,000 acres/plot for all three panels.

Conclusions

The procedure described in this article is an automated

approach to determining the stratification for a county, State, or

other polygon. Using this procedure achieved lower sampling

errors than with the current human expert procedure. By for-

mulating the problem as a shortest path through the network,

fast and efficient computational procedures are available to

provide a real-time solution. Actual solution time depends on

the number of arcs in the network. Arcs increase with the num-

ber of polygons to be simultaneously processed and the number

of strata. Pruning of infeasible paths before optimization and a

fast computer processor reduce the solution time. Different

shortest path algorithms affect the solution speed. 

From the shortest path formulation, the optimal one-, two-,

three-, four-, five-, six-, and seven-strata solutions are found.

To find the “optimal” solution, several heuristics were investi-

gated. The ratio heuristic is easily implemented and provided

the smallest sampling errors. 
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A Three-Step Approach To Model 
Tree Mortality in the State of Georgia

Qingmin Meng1, Chris J. Cieszewski2, Roger C. Lowe3, and

Michal Zasada4

Abstract.—Tree mortality is one of the most complex

phenomena of forest growth and yield. Many types of

factors affect tree mortality, which is considered difficult

to predict. This study presents a new systematic approach

to simulate tree mortality based on the integration of

statistical models and geographical information sys-

tems. This method begins with variable preselection

using multiple linear regression models and logistic

models and employs spatial autocorrelation detection

and random sampling. Three random sampling methods

are applied and compared to reduce the effects of spa-

tial autocorrelation, and systematic random sampling

significantly reduces the spatial autocorrelation among

the observations and is used for the final variable

selection and model fitting. Using Forest Inventory

and Analysis (FIA) data for the State of Georgia, this

systematic approach provides significant implications

for future tree mortality studies and other spatial

analysis in forestry or geography.

Forest tree mortality is an important factor in nutrient cycling

as well as global climate warming because mortality and net

primary production are two critical processes of forest carbon

budgets (Brown and Schroeder 1999). In addition, a large portion

of the threatened forest species lives in dead wood (Rouvinen et

al. 2002). At the same time, forest tree mortality may reduce

the productivity of forests and increase the risk of wildfires.

Tree mortality, however, is considered difficult to predict.

The literature contains many reports from different studies

on tree mortality. For example, Greene et al. (1992) and Pedersen

and McCune (2002) conducted research on mortality rates, using

1 Graduate Student Assistant. 
2 Associate Professor, Corresponding Author, D.B. Warnell School of Forest Resources, University of Georgia, Athens, GA 30602 USA. Phone: 706–542–8169;
fax: 706–542–8356; home page: www.growthandyield.com/chris.
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4 Postdoctoral Fellow, D.B. Warnell School of Forest Resources, University of Georgia, Athens, GA 30602 USA; Assistant Professor, Department of Dendrometry
and Forest Productivity, Faculty of Forestry, Warsaw Agricultural University, Nowoursynowska 159, 02-776 Warsaw, Poland.

wind as the primary disturbance contributing to tree mortality,

and found that the total biomass declined from 1979 to 1989

because the new biomass production was less than mortality.

Pedersen and McCune (2002) modeled tree mortality rates as a

function of diameter at breast height (d.b.h.), species, decades,

and site index. In their study, they reconstructed tree mortality

rates for the years 1968 to 1977 and 1978 and 1987 in oak-hickory

forest. Rouvinen et al. (2002) researched tree mortality, its

causes, and spatial pattern in four transects with a total area of

48.8 ha of Vienansalo wilderness in eastern Fennoscandia,

Finland. They divided mortality into three categories: current,

recent, and predicted mortality. They concluded that tree mortality

was continuous at the landscape scale, although some spatial

aggregations occurred. Osawa et al. (1986) conducted systematic

research on forest tree mortality using Baxter State Park as the

study area and compared tree mortality among various onsite

topographical conditions. Basal area, d.b.h., or stand age is

supposed to significantly contribute to tree mortality (Fridman

and Stahl 2001, Yang et al. 2003, Monserud and Sterba 1999,

Avila and Burkhart 1992, and Zhang et al. 1997). 

In the 1960s and 1970s, linear and polynomial models

were commonly used (e.g., Lee 1971). Osawa et al. (1986)

concluded, however, that multiple regression analysis was

unsuccessful in relating tree mortality to forest structural

characteristics and topographical properties. Nonlinear models,

especially the logistic functions, have been the most widely used

functions for mortality modeling from Walker and Duncan (1967)

and Neter and Maynes (1970). Guan and Gertner (1991) pointed

out that the best function to model individual tree mortality may

be the logistic function based on statistical tests.

We conducted a systematic study on tree mortality in the

State of Georgia. In our research, we performed three steps:

variable preselection based on original data, sampling and spatial

autocorrelation comparison, and model fitting and selection.
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Study Area and Data

Our study area was the entire State of Georgia, the largest State

east of the Mississippi River, with an area of 152,576 square

kilometers. We based our research on available, online, forest

inventory data provided by the Forest Inventory and Analysis

(FIA) program. 

We analyzed plot data for the periodic 2001 inventories

and considered every single FIA plot as the basic unit for our

study. We processed the original data in this manner: 

1. All forest type data, i.e. the data of all trees, was segregated

into two broad forest categories, hardwoods and softwoods.

All tree sizes inventoried by the FIA were included to

account for any potential mortality of small trees. 

2. The number of mortality trees per acre per year (TPAMORT)

was used as the variable to calculate tree mortality on every

plot and also as the response variable. 

3. Latitude (LAT), longitude (LON), elevation (ELEV), con-

dition proportion (CONDPROP), stand age (STDAGE),

stand size code (STDSZCD), site productivity code (SITE-

CLCD), slope (SLOP), aspect (ASPECT), physiographical

code (PHYCLCD), growing-stock stocking code

(GSSTKCD), stand treatment 1 code (TRTCD1), basal

area of all live trees (BALIVE), current diameter (DIA),

and trees per acre (TPACURR) are used as independent

variables. STDSZCD, SITECLCD, PHYCLCD,

GSSTKCD, and TRTCD1 are five categorical variables;

the remaining 10 variables are numerical. 

4. These data are aggregated into three groups: all trees,

hardwood, and softwood. 

5. In the sampling process, the State of Georgia is divided

into five regions (fig 1): the northwest corner is a ridge

and valley region; the northeast corner is a mountain

region; north central Georgia is the piedmont region; south

central Georgia is an upper coastal plain region; and the

southeast corner is a lower coastal plain region. In each

subregion, few differences exist in natural environment,

landscape, or forest species.

Methodology

We used four types of methods in our study. Multiple linear

regression and logistic regression were applied for variable

selection and model fitting. Sampling methods were used to

make samples from the original data. For geographic information

systems (GIS), Environmental Systems Research Institute, Inc.

(ESRI) ArcInfoSM and Arcview® products are used to process

location data and related attributed data and calculate the coef-

ficients of spatial autocorrelation.

Multiple Linear Regression and Logistic Regression

Equation 1 is a multiple linear regression function; equation 2

is a logistic regression function. The two functions, used for all

trees, hardwood and softwood, have categorical variables. We

applied a stepwise method to select variables in fitting logistic

models:

(1)

(2)

Where: Y is the numbers of tree mortality,

p is the probability of tree mortality, and

x1, x2, x3, 
…and x15 are the variables of LAT, LON, ELEV,

CONDPROP, STDAGE, STDSZCD, SITECLCD, SLOP,

ASPECT, PHYCLCD, GSSTKCD, TRTCD1, BALIVE, DIA,

and TPACURR.

Sampling Methods

We used simple random sampling (SRS), the simplest form of

random sampling. It is easy to perform and explain to others, a

fair way to select a sample, and reasonable to generalize the

Figure 1.—Georgia’s five study subregions.



results from the sample back to the population. Second, we

employed systematic random sampling (SYS), also fairly easy

to perform. Third, we used a stratified random sampling (STS)

method. For STS, the population of all trees, hardwood and

softwood, were divided into five groups based to the five sub-

regions (fig. 1) noted above. 

Geographic Information Systems

We used the following two types of coefficients of spatial auto-

correlation this study. Equation 3 is Geary’s coefficient C, and

equation 4 is Moran’s I coefficient. 

(3)

(4)

where Cij is the similarity of attributes, 

Wij is the similarity of distance, and

s2 and      is the variance of attributes.

Results

Variable Selection Based on Original Data

First, a multiple linear regression function is applied for all

trees to select significant variables based on original data. In

equation 1, the tree mortality numbers is the response, and the

other 15 variables are independent variables. The residual plot

indicates the absence of constant variance among the residuals.

Then, a straightforward log transformation for the data of all

trees, hardwood and softwood, is used. Next, the multiple linear

regression models are fitted again for these three groups of data.

The residual plots are good, and the linear models are acceptable.

At the level of alpha = 0.05, some differing variables exist, but

some are also the same (table 1). For all trees, hardwood and
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All trees Hardwood Softwood

Variable F-value P-value Variable F-value P-value Variable F-value P-value

DIA 15.57 0.0001 DIA 30.74 0.0001 DIA 10.21 0.0015

TPAGROW 60.34 <.0001 TPAGROW 20.44 0.0001 TPAGROW 42.15 0.0001

ELEV 3.85 0.05 ELEV 9.97 0.0016 TRTCD 2.91 0.0338

PHYSCLCD 1.87 0.0397

Table 1.—Multiple linear regression analysis based on original data.

softwood, TPAGROW and DIA are significant variables, which

means that tree density may be a critical factor for tree mortality,

and tree size may be also a better variable for mortality prediction.

For all trees and hardwood, ELEV is the other common variable

that affects tree mortality. In addition, at the 0.05 level, the

physiographic class variable is significant for hardwood mortality,

and the treatment class variable is significant for softwood mortality.

The logistic models provided some of the same significant

variables and some different ones, too, compared with multiple

linear models. For all trees, only one variable, DIA, was still

significant; the other four variables—BALIVE, CONPROP,

SITECLC, and STDSZCD—are added, which means that basal

area, condition proportion, site productivity class, and stand size

class were important for mortality of all trees. For hardwood,

the four variables DIA, TPAGROW, PHYSCLCD, and ELEV

were still significant compared with the above multiple linear

regression analysis, and two other variables, BALIVE and

STDAGE, were added. Basal area and stand age were also

important for hardwood mortality based on logistic regression

analysis. For softwood, only one variable, TPAGROW, is still

significant compared with the multiple linear regression, and

three other variables that are important for softwood mortality

were added: stand age, site productivity class, and stand size class.

Sampling and Spatial Autocorrelation Calculation

Spatial autocorrelation is typically over looked in most tree

mortality research. In our study, we calculated spatial autocor-

relation for different kinds of sampling methods (table 2), and

selected a better sampling method, SYS, for model fitting again.

Variable Reselection and Model Fitting

For multiple regression functions, variables are reselected after

log transformation of tree mortality data. Table 3 lists the sig-

nificant variables. 
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Compared with outcomes of logistic regression without

random sampling, the numbers of significant variables decreased,

and some significant variables were no longer significant (table

4). For mortality of all trees, BALIVE, SITECLCD, and STD-

CLCD were still significant after SYS, and TPAGROW became

a significant variable. For hardwood, STDAGE, DIA, and TPA-

GROW were still significant, but BALIVE, PHYSCLCD, and

ELEV were no longer significant. For softwood, TPAGROW

was no longer significant, but STDSZCD, STDAGE, and SITE-

CLCD were still significant after SYS.

Conclusions 

Based on our analyses, the logistic mortality functions for all

trees, hardwood and softwood, are equations 5, 6, and 7.      is

the probability of tree mortality; ba is basal area; g is TPAGROW;

s is the stand size class variable with from one to four classes;

si is the site productivity class variable, which has from one to

five classes; a is stand age; and d is DIA. 

Tree mortality has several common characteristics. For all

trees and softwood, STDSZCD classes 1 and 2 (large diameter

and medium diameter classes) have the highest mortality proba-

bility; STDSZCD 4 (chaparral class) has a medium mortality

probability; class 3 (small diameter class) has the lowest mortality

probability. SITECLCD classes 2 (site productivity between 165

and about 224 cubic feet/acre/year) and 3 (site productivity

between 124 and approximately 165 cubic feet/acre/year) have

higher mortality probability than classes 4 (site productivity

between 85 around 119 cubic feet/acre/year) and 5 (site produc-

tivity between 50 and about 84 cubic feet/acre/year). Class 1

(site productivity more than 225 cubic feet/acre/year) has a

medium mortality probability. For all trees and hardwood, the

probability of tree mortality slightly decreases as TPAGROW

increases.

All trees Hardwood Softwood

Variable Wald-Chi P Variable Wald-Chi P Variable Wald-Chi P

DIA 5.65 .0179 DIA 16.43 <.0001 TPAGROW 11.46 .0009

TPAGROW 22.12 <.0001 TPAGROW 3.91 .0488

ELEV 5.57 .0189

Table 3.—Multiple regression analysis after SRS.

All trees Hardwood Softwood

Variable Wald-Chi P Variable Wald-Chi P Variable Wald-Chi P

BALIVE 9.02 0.0027 STDAGE 9.66 0.0019 STDSZCD 22.49 <0.0001

TPAGROW 6.42 0.0113 DIA 8.29 0.0040 STDAGE 7.87 0.0050

SITECLCD 12.35 0.0149 TPAGROW 5.32 0.0211 SITECLCD 11.36 0.0288

STDSZCD 12.74 0.0052

Table 4.—Logistic regression analysis after systematical random sampling

All trees Hardwood Softwood

Moran’s I Geary’s C Moran’s I Geary’s C Moran’s I Geary’s C

No sampling 0.103 0.100 0.018 0.122 0.097 0.049

SRS 0.071 0.042 0.003 0.040 0.042 0.060

SYS 0.056 0.034 0.004 0.048 0.087 0.029

STRAT 0.138 0.059 0.006 0.036 -0.0009 0.039

Table 2.—Spatial autocorrelation comparison of different sampling methods.
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Much research indicates that logistic regressions appear to

be the best method for individual tree mortality modeling and

have been widely applied (Monserud, 1976; Monsderud and

Sterba 1999, Fridman and Stahl 2001, Woolons 1998, Yang et

al. 2003). In our study, logistic models are selected, and tree

mortality analysis is summarized based on these logistic models.
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Optimal Tree Increment Models for the
Northeastern United States

Don C. Bragg1

Abstract.—I used the potential relative increment

(PRI) methodology to develop optimal tree diameter

growth models for the Northeastern United States.

Thirty species from the Eastwide Forest Inventory

Database yielded 69,676 individuals, which were then

reduced to fast-growing subsets for PRI analysis. For

instance, only 14 individuals from the greater than

6,300-tree eastern white pine sample were used to fit

its PRI model. The Northeastern northern red oak

model predicted faster small tree growth than those

derived for the Lake States or Midsouth, but it soon

fell behind the other regional models and never again

matched their performance. Predicted maximum

increment differences between regions rarely exceeded

0.25 cm, however. The PRI methodology also can help

identify possibly erroneous individual tree records.

Introduction

For tree growth modelers, increment “optimality” is often defined

as an idealized or maximal rate of increase in a specified

dimension (usually diameter or height). This concept assumes

that all environmental conditions are at their most favorable,

and, thus, anything suboptimal decreases growth accordingly.

The primary advantage to an optimized approach is that the

modifiers influencing increment can be separated from the model

used to predict growth, allowing for many different constructs to

be applied (Bragg 2003a). Not surprisingly, potential increment

models have become the cornerstone of many ecological simu-

lators (e.g., Botkin et al. 1972).

Potential growth formulations have their critics. Purely

theoretical designs, while often intellectually appealing, are

problematic because they rarely incorporate real-world meas-

urements and sometimes contain biological flaws. For example,

the gap model’s potential increment design includes a number

of unsupportable assumptions about diameter accumulation and

maximum tree dimensions (Bragg 2001). Lessard et al. (2001)

dismissed potential growth constructs because they cannot be

directly observed and may be difficult to estimate. Finally,

some have argued that empirical models predicting average

(realized) growth are more precise, even if they lack mechanism

(Fleming 1996).

Biologically meaningful optimal growth curves can be

empirically derived, however. The potential relative increment

(PRI) methodology (Bragg 2001) uses the Eastwide Forest

Inventory Database (EFIDB) (Hansen et al. 1992) to estimate

optimal growth based on actual inventories. A set of simple

post-processors (Bragg 2002a), when properly applied to data on

rapidly growing individuals fit to a nonlinear model, produce

response patterns identified as crucial by Shvets and Zeide

(1996) and Zeide (1993). PRI models have been developed for

the Lake States (Michigan, Minnesota, and Wisconsin) and

Midsouth (Arkansas, Louisiana, Missouri, Oklahoma, and Texas)

(Bragg 2001, Bragg 2002b, Bragg 2003b). This article presents

PRI models for the common tree species of the Northeastern

States of Connecticut, Maine, Massachusetts, New Hampshire,

New York, Rhode Island, and Vermont.

Methods

A detailed description of the PRI methodology is beyond the

scope of this article (rather, see Bragg [2001] and Bragg [2002a]).

The PRI approach is a type of boundary line analysis (Webb

1972). Boundary line analysis has shown promise for identifying

the role of maximal growth in ecological and mensurational

applications (for example, Black and Abrams 2003). Briefly,

PRI calculates actual relative increment (ARI) from:

(1)

1 Research Forester, Southern Research Station, U.S. Department of Agriculture, Forest Service, P.O. Box 3516 UAM, Monticello, AR 71656. Phone: 870–367–3464;
e-mail: dbragg@fs.fed.us.
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where the initial (d.b.h.O) and final (d.b.h.C) inventory diameters

are in centimeters. ARI values were then annualized by dividing

by the remeasurement period. A record was considered eligible

if the tree was alive during both inventories, was of the species

of interest, and showed a positive increment (d.b.h.C > d.b.h.O). 

The PRI methodology does not consider every ARI value.

Because virtually all trees are negatively affected by local envi-

ronmental conditions, e.g., competition or poor site quality,

their diameter growth decreases markedly. Easily identified by

their slower growth rates, these individuals were eliminated from

further consideration, leaving only a handful of the fastest growing

trees in a specified diameter class. Maximally performing indi-

viduals that fail to reach the levels of adjacent diameter classes

are also removed from further consideration. The final subset

represents only a fraction (usually 6 to 12 trees) of the original

data, for which the following model was fit:

(2)

Figure 1.—Step-by-step PRI methodology for eastern white pine taken from the Northeastern United States EFIDB. After the
original 6,348 eligible pines were identified (a), the 51 individuals growing at the highest rate per 2-cm diameter class (b) were
retained and further reduced to the final subset (c) of 14 data points, to which the actual PRI equation was fit (d).

where d.b.h.MAX is the d.b.h. of an individual tree growing at the

highest rate in its respective diameter class, and           and

are nonlinear ordinary least squares regression parameter estimates.

As an example, ARI values were calculated for 6,348 eastern

white pines (Pinus strobus) from the Northeastern EFIDB (fig. 1a).

Selecting only the pines (by 2-cm d.b.h. classes) with maximal

ARI reduced this number to 51 individuals (fig. 1b). Because

most of this subset of d.b.h. class maximal ARI points fell

appreciably below the “optimal” frontier, they were removed

before the final curve fitting. Hence, a PRI model for eastern

white pine in the Northeastern United States was generated

with only 14 trees (fig. 1c). Eastern white pine displayed a

characteristic curve (fig. 1d), with the highest predicted PRI in

the smallest pines. Multiplying the result of equation (2) by the

tree’s current diameter yielded an increment curve (fig. 2), with

the greatest optimal annual growth of approximately 2 cm

occurring at 20- to 40-cm d.b.h.
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Figure 2.—Predicted optimal d.b.h. annual increment for eastern
white pine in the Northeastern United States.

Similar steps were used to produce PRI models for the

most common species of the Northeastern EFIDB.

Additionally, I compared northern red oak PRI curves for three

areas (Northeast, Lake States, and Midsouth) to highlight

regional differences in predictions of optimal diameter incre-

ment. Finally, two examples of extremely fast growing individu-

als were used to demonstrate the potential of PRI to identify

inventory outliers.

Results and Discussion

Northeastern PRI Results

I found 30 species sufficiently abundant (n ≥ 100) in the

Northeastern EFIDB for the PRI methodology (table 1). Most

(23 of 30) species produced at least 450 individuals, and 1 in 6

had more than 5,000 trees. Combined, these taxa yielded 69,676

individuals for preliminary analysis. A sample size of this mag-

nitude, even if most are rejected for growing too slowly, is far

more comprehensive than typical growth modeling efforts. 

Although individuals greater than 10 cm and less than 50

cm in d.b.h. (averaging 20- to 30-cm d.b.h.) predominated, this

sample contained very small and very large trees (table 1). For

example, 10 species had individuals greater than 100-cm d.b.h.,

including a 165.9-cm d.b.h. northern red oak (Quercus rubra) and a

185.4-cm d.b.h. black willow (Salix nigra). 

Depending on the species, only 6 to 15 individuals were

needed to develop the PRI curves. All parameter estimates

were significant at a significance level of α = 0.05 (table 2).

Regional Comparison Using Northern Red Oak

Very few obvious differences arose between the regional PRI

models (fig. 3a). After converting the PRI values to potential

increments, relative growth performance primarily differed by

absolute tree diameter. Up to about 10-cm d.b.h., the

Northeastern northern red oak model predicted the highest opti-

mal increment. It was then replaced by the Lake States model

(to 76-cm d.b.h.), after which the Midsouth version produced

the highest predicted optimal northern red oak increment (fig.

3b). Estimated optimal increments peaked at approximately 1.25

cm for the Northeastern and Midsouth models, and at just over

1.4 cm for the Lake States model. These maxima were reached

at about 15-cm d.b.h. for the Northeastern model, roughly 25-

cm d.b.h. for the Midsouth model, and approximately 30-cm

d.b.h. for the Lake States model.

Overall, potential diameter increment differences among the

regions were minor, with residual differences rarely exceeding

0.2 cm annually at any given diameter (fig. 3c). This difference

is not trivial when accumulated over years of growth, however,

especially because PRI-based growth projection systems are

nonlinear functions of current tree diameter.

Identifying Potential Inventory Errors With PRI

As a conservative estimate of optimal growth, PRI curves can

identify individuals growing dramatically faster than expected.

For instance, two individuals from the New York data set were

obvious outliers when maximal ARI points were plotted. An

80.3-cm d.b.h. black cherry grew to 107.4-cm d.b.h. in just 12

years (fig. 4a), while an 80.5-cm d.b.h. white oak increased to

106.7-cm, also in 12 years (fig. 4b). Although this growth is

possible for vigorous young individuals of either species, this

level of productivity was highly suspect in trees of 80-cm d.b.h. 

These extremely fast-growing outliers came from plots of

low stand density (basal areas of 6.9 m2/ha for the black cherry

and 3.7 m2/ha for the white oak), and thus could reflect the pro-

nounced release of previously suppressed individuals. More

likely, they probably reflect measurement or transcription

errors. Given their large girth, these outliers could prove highly

influential in any extrapolations based on their size.
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EFIDB Initial Minimum Mean Maximum
Speciesa codea number d.b.h. (cm) d.b.h. (cm) d.b.h. (cm)

Balsam fir (Abies balsamea) 12 3,387 3.3 17.9 45.7
Tamarack (Larix laricina) 71 357 11.7 20.5 52.1
White spruce (Picea glauca) 94 763 4.6 21.9 55.9
Black spruce (Picea mariana) 95 499 12.7 18.6 39.1
Red spruce (Picea rubens) 97 5,384 7.1 22.2 67.1
Red pine (Pinus resinosa) 125 501 3.8 24.7 72.4
Pitch pine (Pinus rigida) 126 165 9.9 24.7 53.6
Eastern white pine (Pinus strobus) 129 6,348 2.8 29.0 116.8
Northern white-cedar (Thuja occidentalis) 241 4,222 6.6 23.1 73.4
Eastern hemlock (Tsuga canadensis) 261 6,424 5.8 25.5 105.4
Red maple (Acer rubrum) 316 11,283 3.0 23.6 114.0
Silver maple (Acer saccharinum) 317 157 4.6 29.7 74.2
Sugar maple (Acer saccharum) 318 7,540 3.0 27.3 125.2
Yellow birch (Betula alleghaniensis) 371 2,905 4.8 25.9 109.5
Sweet birch (Betula lenta) 372 810 3.6 23.4 75.4
Paper birch (Betula papyrifera) 375 2,538 9.4 20.9 59.7
American beech (Fagus grandifolia) 531 3,430 4.6 24.2 76.5
White ash (Fraxinus americana) 541 2,402 3.6 24.1 115.6
Black ash (Fraxinus nigra) 543 257 8.9 19.0 43.9
Bigtooth aspen (Populus grandidentata) 743 757 9.1 24.3 59.9
Quaking aspen (Populus tremuloides) 746 1,572 3.0 21.3 97.3
Black cherry (Prunus serotina) 762 1,449 4.1 27.1 85.9
White oak (Quercus alba) 802 744 9.9 28.8 93.0
Scarlet oak (Quercus coccinea) 806 351 6.9 25.1 65.0
Chestnut oak (Quercus prinus) 832 484 8.1 25.5 83.6
Northern red oak (Quercus rubra) 833 3,384 5.3 28.6 165.9
Black oak (Quercus velutina) 837 651 3.8 28.7 100.1
Black willow (Salix nigra) 922 104 6.1 46.9 185.4
American basswood (Tilia americana) 951 568 4.1 29.3 119.1
American elm (Ulmus americana) 972 240 3.6 18.6 46.2

TOTAL = 69,676

Table 1.—Species, preliminary counts, and diameter at breast height (d.b.h.) ranges of species used in the Northeastern United
States PRI analysis.

a Species nomenclature consistent with the EFIDB as reported by Hansen et al. (1992).
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Estimated parameters
Species Final

number

Balsam fir 14 0.42 – 0.21 0.937051
Tamarack 11 1.63 – 1.13 0.991027
White spruce 15 1.69 – 1.11 0.989269
Black spruce 7 0.87 – 0.59 0.930458
Red spruce 7 1.06 – 0.56 0.959002
Red pine 6 0.45 – 0.31 0.955000
Pitch pine 7 0.67 – 0.56 0.942390
Eastern white pine 14 0.61 – 0.47 0.981844
Northern white-cedar 7 0.82 – 0.36 0.945433
Eastern hemlock 11 1.02 – 0.83 0.984948
Red maple 15 0.96 – 0.66 0.986284
Silver maple 7 0.51 – 0.27 0.968776
Sugar maple 10 0.40 – 0.46 0.988446
Yellow birch 13 0.66 – 0.67 0.976746
Sweet birch 6 0.46 – 0.29 0.946431
Paper birch 8 0.48 – 0.36 0.945841
American beech 14 0.33 – 0.51 0.977587
White ash 12 0.98 – 0.86 0.996465
Black ash 7 0.58 – 0.58 0.949105
Bigtooth aspen 7 1.97 – 1.06 0.995803
Quaking aspen 12 1.14 – 0.64 0.955174
Black cherry 14 1.04 – 0.80 0.988091
White oak 8 0.41 – 0.23 0.957937
Scarlet oak 7 3.05 – 1.42 0.999900
Chestnut oak 11 0.12 – 0.38 0.979383
Northern red oak 12 0.88 – 0.80 0.988439
Black oak 12 0.52 – 0.75 0.993657
Black willow 7 0.95 – 0.66 0.989004
American basswood 9 0.58 – 0.74 0.985406
American elm 9 0.78 – 0.30 0.935231

Table 2.—Parameter estimates by species for Northeastern United States PRI models.
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Figure 3.—PRI comparison for northern red oak between the
Northeastern (NE), Midsouth (MS), and Lake States (LS) regions.
PRI curves differed slightly for all three regions (a), which
translated into noticeable increment differences (b and c).

Figure 4.—Very prominent outliers (large open symbols) identified
by the PRI methodology. Both the 80-cm d.b.h. black cherry
(a) and white oak trees (b) grew at a very high rate, given their
large size, identifying them as individuals of concern.

(a)

(b)

(c)

(a)

(b)
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Conclusions

The EFIDB for the Northeastern United States contained enough

data to construct PRI growth models for 30 tree species. A

comparison of northern red oak models among several regions,

including the Northeast, produced noticeable differences in the

magnitude and timing of the predicted maximal increment

(table 3). Because diameter growth is cumulative, even subtle

differences over time would lead to substantial variation in tree size,

assuming all other environmental conditions are held constant.

Key to any effort, however, is ensuring that the inventory records

accurately reflect tree dimensions before they are incorporated

into any type of predictive environment.
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Northeastern FIA Tree Taper Study:
Current Status and Future Work

James A. Westfall and Charles T. Scott1

Abstract.—The northeastern unit of the Forest

Inventory and Analysis program (NE-FIA) is engaged

in an ongoing project to develop regionwide tree taper

equations. Sampling intensity is based on NE-FIA

plot data and is stratified by species, diameter class,

and height class. To date, modeling research has been

aimed largely at evaluating existing model forms (and

hybrids thereof) and incorporating mixed-effects

parameters to account for correlations among meas-

urements. In conjunction with the taper study, bark

thickness estimates are being developed from wood

utilization studies. When fully implemented, the bark

thickness/taper equation system will provide a wide

range of analytical flexibility for tree species in north-

eastern forests, and may reduce or eliminate the costs

of collecting data on merchantable heights.

Introduction

To compute merchantable volume of standing trees, the north-

eastern unit of the U.S. Department of Agriculture (USDA)

Forest Service Forest Inventory and Analysis program (NE-FIA)

has traditionally taken field measurements of tree height at certain

diameter limits. Often, these measurements lack repeatability

due to difficulties in observing the bole in upper portions of

the tree and determining the point at which the diameter limit

occurs. To improve data quality and increase fieldwork efficiency,

NE-FIA is developing regionwide taper models. A parallel effort

is underway for estimating the bark thickness of northeastern

tree species. Prediction of bark thickness will increase analytical

flexibility by enabling computation of inside-bark diameters.

These models will be applicable across the 13 States in which

NE-FIA collects resource inventory data.

1 Research Forester and Program Manager, respectively, U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis, Northeastern Research
Station, 11 Campus Blvd., Suite 200, Newtown Square, PA 19073. Phone: 610–557–4043; fax: 610–557–4250; e-mail: jameswestfall@fs.fed.us.

Tree d.b.h. d.b.h. class Tree height Height class

3.0”–4.9” 1 0.0’–29.9’ 1

5.0”–8.9” 2 30.0’–49.9’ 2

9.0”–12.9” 3 50.0’–69.9’ 3

13.0”–16.9” 4 70.0’–89.9’ 4

17.0”–23.9” 5 90.0’ + 5

24.0” + 6

Table 1.—Tree diameter (inches) and height (feet) classes used
to stratify tree sample.

Tree Taper Sample Development

The sampling list was developed from inventory data obtained

on NE-FIA sample plots to represent the range of geography

and tree size. The primary goal was to sample 150 trees in each

of 18 species groups for a total sample of 2,700 trees. The

species groups arise from species assignments used by NE-FIA

for tree volume estimates. 

Information on frequency of occurrence was tabulated and

stratified by species group, tree species, diameter class, and

height class (table 1). This stratification indicated that the sam-

pling intensity for a specific species/diameter class/height class

combination (S/D/H) could not be based on frequency alone

due to the dominance of certain S/D/H combinations within

some species groups. To spread the sample more evenly among

species and tree sizes, a limit of six sample trees was imposed

for any S/D/H arrangement. Conversely, it would be undesirable

to devote the necessary resources to sample relatively rare S/D/H

combinations. Thus, to be included in the sample, S/D/H com-

binations must have at least five observed trees across all NE-FIA

sample plots. S/D/H combinations with at least five observations

but comprising less than 0.1 percent of a species group are

limited to a sample size of one.
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An example of the development of the sample list for red

pine is given in table 2. The Sample0 column indicates the S/D/H

combinations found in the data and the original sample size

based on frequency information alone. The numbers in this

column are determined from the values in the percent of Group

column, which includes frequency percentages for each S/D/H

combination. Using the first row as an example, this S/D/H

combination comprised 4.82 percent of the trees in the species

group (i.e., 4.82 of every 100 trees in the group were in this

category). However, we wanted to determine the number of trees

in this category that should be sampled among the 150 sample

trees for the entire species group. This is indicated in the percent

of 150 column, which shows that the sample size should be 7.23

percent of the 150 sample trees. The result is 10.8 (11 in the

Sample0 column). The remaining values in Sample0 column

also were computed in this manner.

The limit of six sample trees per S/D/H combination is

imposed in Sample1 column (note that the total number of trees

is reduced from 41 to 30). The Sample2 column shows the real-

location of trees into cells with fewer than six sample trees and

comprising more than 0.1 percent of the species group (i.e., an

increase of two sample trees for each eligible S/D/H combination).

The remaining sample tree to be accounted for is placed into the

most common S/D/H category with fewer than six sample trees

(column Sample3), and the overall total is reconciled at 41 sample

trees. This approach to reallocation of sample trees maintains

the original sample size while permitting sampling of most

D class H class Percent of group Percent of 150 Sample0 Sample1 Sample2 Sample3

3 4 4.82 7.23 11 6 6 6
3 3 4.35 6.52 10 6 6 6
2 2 3.31 4.97 8 6 6 6
2 3 1.21 1.81 3 3 5 6
4 4 0.72 1.08 2 2 4 4
4 3 0.61 0.92 2 2 4 4
1 1 0.19 0.29 1 1 3 3
5 4 0.13 0.19 1 1 3 3
1 2 0.07 0.11 1 1 1 1
3 2 0.06 0.09 1 1 1 1
2 1 0.04 0.06 1 1 1 1

Count = 41 30 40 41

Table 2.—Development of sample list for red pine from frequency information and abundance limitations.

S/D/H combinations found on NE-FIA inventory plots. Sample

lists for each State were created from the overall sample list.

Data Collection

During the 2002-03 leaf-off season, tree taper data were collected

in Ohio, Maryland, Pennsylvania, and West Virginia. Tree form

was measured with a Barr & Stroud dendrometer. Paired height/

diameter data were obtained at 1, 2, 3, 4.5, 6 feet, and at taper

intervals of about 1 inch thereafter. A measurement also was

taken at the base of the live crown. Additional data were collected

for each sample tree (d.b.h., crown ratio, crown class, etc.) and

plot-level characteristics (slope, aspect, etc.) were noted. In all,

267 sample trees were measured; yellow poplar was the most

common species. 

Efforts to collect taper data have been greatly expanded

during the 2003-04 leaf-off season, with collection occurring in

all 13 States under NE-FIA auspices. Cooperators in this effort

include Ohio State University, State University of New York

College of Environmental Science and Forestry, and Maine

Forest Service. Additional data were obtained from studies by

the USDA Forest Service Eastern Region (Region 9).

Data on bark thickness were obtained primarily from

wood-utilization studies conducted by NE-FIA; Region 9 also

contributed information. All of these data are from studies of

felled trees. Protocols have differed over time and between

studies, but there are measures of bark thickness for most trees

from 1-foot stump height to a 4-inch top diameter limit. 
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Taper Modeling

Data on yellow poplar collected during 2002-03 were used to

initiate the taper modeling process. Initial analyses consisted of

comparing existing taper equations. Max and Burkhart (1976)

presented a segmented polynomial model with estimated join

points. Each segment was specified as representing the neiloid,

parabolic, or conic sections of a tree. This is consistent with the

approach taken by many other researchers, i.e., the lower por-

tion of the bole is similar to a neiloid; the middle section is

parabolic in shape; and the top section generally is conic:

(1)

where: d = diameter outside bark (in)

DBH = diameter at breast height (in)

h = height (ft) at diameter d

H = total tree height

I1 = indicator (= 1 if _1 ≥ h/H; = 0 if _1 < h/H)

I2 = indicator (= 1 if _2 ≥ h/H; = 0 if _2 < h/H)

α1, α2 = segment join points (estimated from data)

β1-4 = parameters to be estimated from data

ε = random deviation

Kozak (1988) eliminated the necessity for specifying dif-

ferent functions for various parts of the stem by developing a

variable-exponent taper equation. This approach allows the

exponent to change with relative tree height, which allows a

single function to describe neiloid, paraboloid, and conic forms:

(2)

where: X = 

p = percentage of total height where change from 

neiloid to paraboloid occurs

Z = h/H

ln = natural logarithm

e = base of natural logarithm

β5-12 = parameters to be estimated from data

other variables as previously defined

Valentine and Gregoire (2001) described a taper model in

which numerical switching functions are used to smooth the

transition between the neilod, parabolic, and conic forms. The

model is similar to that Max and Burkhart (1976) in that the

three classic shape descriptors provide the basis for the model.

Rather than being estimated from the data, their join points were

fixed at 4.5 feet and height to live crown. To account for repeated

measures on individual trees, 2 random-effects parameters were

specified in one of the switching functions:

(3)

where: Ad = cross-sectional area (ft2) at diameter d 

ADBH = cross-sectional area (ft2) at diameter at breast 

height

C = height to base of live crown (ft)

α1 = estimated shape parameter of the middle segment

α2 = estimated shape parameter of the top segment

S1 = numerical switch exhibiting switch-off behavior

S2 = numerical switch exhibiting switch-on behavior

other variables as previously defined

When the Max and Burkhart (hereafter MB) and Kozak

models were developed, there was no practical means by which

correlations among measurements on individual trees could be

accounted for. However, advances in statistical theory and com-

puting capabilities now allow researchers to account for this

lack of independence when fitting equations. With respect to

correlated observations, one approach is specifying a mixed-

effects model, as was done by Valentine and Gregoire (hereafter

VG). To make valid comparisons among models, the MB and

Kozak equations were modified by incorporating random-effects

parameters. Random components were added to the estimated

join points in the MB equation, allowing the join points to vary

among trees. The Kozak model also was altered to incorporate

random effects into parameters associated with tree size. 

The ability of these three models to describe bole shape

was evaluated by fitting each of the equations to taper data

from 34 yellow poplar trees. For comparisons among models,

each was modified to produce diameter outside bark squared

(d2) as the dependent variable. The models were fitted using the

SAS NLMIXED (Version 8.01) procedure. The efficacy of
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each model was measured by Akaike’s Information Criteria

(AIC) (see Gregoire et al. 1995). A smaller AIC value indicates

a better model fit:

Model AIC

Max and Burkhart 4,153.0

Valentine and Gregoire 4,254.5

Kozak 4,324.3

The results indicate that the MB model outperforms the

other models in predicting tree taper for yellow poplar. On the

basis of this limited analysis, two observations can be made.

First, both the MB and VG models have smaller AIC values

than the Kozak model. This implies that specifying the neiloid,

paraboloid, and conic terms in the model provides better predic-

tions of tree taper than the variable-exponent approach. The

primary difference between the MB and VG models is that the

former utilizes estimated join points while the latter has fixed

values. The smaller AIC for the MB specification suggests that

estimating join points provides a better fit to the data.

To test this assumption, the VG model was generalized to

have estimated join points. This was accomplished by recasting

the model to use relative rather than actual tree height and

replacing fixed join points at 4.5 feet and crown height with

parameters. The fitted regression produced an AIC of 4,041.2,

which was a notable improvement over 4,254.5 obtained from

the original model. This specification also surpassed the MB

model in minimizing AIC. The primary gain in predictive accu-

racy is found in the lower section of the bole (fig. 1). This is

particularly important if the taper equation is used to derive tree

volume because a relatively large percentage of the volume

occurs in this area. Both the estimated and fixed join point

models performed similarly above 0.10 relative tree height.

An additional investigation was undertaken to determine

whether moving the random-effects parameters to another

location in the VG model would improve the fit. The original

specification by VG placed the random effects in the S1 switch.

The improvement in fit statistics for the VG model obtained by

estimating join points led to the supposition that moving the

random effects into the estimated join points could result in

further improvements in AIC. Fitting of this specification produced

an AIC statistic of 3,962.2, a reduction of 2.0 percent from the

previous formulation and 6.9 percent from the original model.

The work thus far provides evidence that a segmented

model with estimated join points provides the best description

of the shape of the bole. Also, it appears that specification of

random effects in the join points produces better fit to the data

than other formulations, and it is thought that the use of switching

functions improves model fit, though additional evaluation is

needed. These findings are based on limited analyses of a single

tree species. Research on the applicability of these results to

other tree species and species groups is warranted.

Bark Thickness Estimation

Estimates of bark thickness are needed to obtain diameter

inside bark (dib) and diameter outside bark (dob) for volume

estimation. In most previous work on bark thickness, an average

dib/dob ratio has been applied (Martin 1981) or the ratio was

predicted as a function of tree size (Hilt 1985). 

To date, data on bark thickness indicate that for many

species, the dib/dob ratio depends on d.b.h. and height along

the bole. Further, the dependence of dib/dob ratio on d.b.h. and

height along bole can be described adequately by a linear model.

The following model was fitted to tree species (as opposed to

groups) for which there were a minimum of 30 observations of

bark thickness:

(4)

Figure 1.—Comparison between estimated and fixed join points
using the Valentine and Gregoire model.
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where: dib = inside-bark diameter (in.) at height h

dob = outside-bark diameter (in.) at height h

β13-15 = parameters to be estimated from data

other variables as previously defined

However, because the ratios for certain species show con-

siderable variability (e.g., white ash), it is difficult to justify a

modeling approach (table 3). For these species, application of

an average ratio may be sufficient. Predicted dib/dob ratios for

3 d.b.h. sizes of slippery elm are shown in figure 2. As expected,

the ratio increases as tree size increases due to bark thickness

occupying a relatively smaller portion of the overall diameter.

Future Work

Taper and bark thickness data still are being collected. As addi-

tional data become available, expanded analyses will be possible.

The application of taper modeling results presented in this article

to other species needs to be addressed, and the need to model

bark thickness vs. applying an average value requires additional

study. If bark thickness models are developed, mixed-effects

parameters should be used to account for correlations among

observations. These analyses should allow for determination of

the best approaches for modeling tree taper and estimating bark

thickness by comparisons of fit statistics and validation using

independent data. When data collection is completed, the esti-

mates of model parameters and other necessary statistics (e.g.,

average dib/dob ratios) can be finalized. When fully implemented,

the bark thickness/taper equation system will provide a wide

range of analytical flexibility for tree species in northeastern

forests, and may reduce or eliminate the costs of collecting data

on merchantable heights.

Species Nonsignificant Adj. R2

American basswood 0.399

Bigtooth aspen h 0.086

Bitternut hickory d.b.h. 0.179

Black cherry 0.192

Chestnut oak 0.544

Cucumbertree d.b.h. 0.331

Eastern white pine d.b.h. 0.111

Northern red oak d.b.h. 0.119

Pignut hickory 0.474

Red maple 0.315

Scarlet oak 0.442

Slippery elm 0.315

Sugar maple 0.237

Sweet birch 0.200

White ash d.b.h., h 0.024

White oak d.b.h. 0.097

Yellow-poplar 0.199

Table 3.—Nonsignificant variables and adjusted R2 for equation
[4] fit to various species (minimum of 30 observations).

Figure 2.—Predicted dib/dob ratios for three different sizes of
slippery elm.
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Mapped Plot Patch Size Estimates

Paul C. Van Deusen 

Abstract.—This paper demonstrates that the mapped

plot design is relatively easy to analyze and describes

existing formulas for mean and variance estimators.

New methods are developed for using mapped plots

to estimate average patch size of condition classes.

The patch size estimators require assumptions about

the shape of the condition class, limiting their utility.

They may have some value as landscape metrics. 

The Forest Inventory and Analysis (FIA) program of the U.S.

Department of Agriculture Forest Service demarcates various

forest conditions that occur on field plots. This relatively new

concept results in a map for each plot showing where the con-

ditions occur. A new condition is defined by changes in charac-

teristics such as land use, tree species, tree size, and tree density.

In the past, some FIA regions forced plots to contain a single

condition by rotating them into a pure condition class. Plot

rotation led to a small bias in the estimates (Birdsey 1995), and

was replaced with plot mapping as recommended by Hahn et

al. (1995). 

A recent paper (Van Deusen 2004) provides a simple deri-

vation of mapped plot estimators for the mean and variance for

particular conditions. This paper briefly reviews those results

and develops a new method for estimating condition patch size

from mapped plots. The new method requires assumptions about

the shape of the condition, i.e., circular or square. Such shape

assumptions are crude approximations to the actual shape.

Regardless, the resulting patch size estimates may have value

as a landscape metric.

Review of Theory

The simple forest inventory model used in the original derivation

(Van Deusen 2004) is used here. Assume two conditions, C and

B, where C is a circular condition surrounded by condition B

(fig. 1). We want estimates of the mean and variance of type C,

and the other types that surround it are denoted as B. The spatial

shape of type C could be anything in practice. Sampling is

systematic or simple random and uses fixed area circular plots

with radius d. The edge of type C is shown by a dash line and

a perimeter band overlaps the outer edge of area C shown by

solid lines. The plot contains both conditions when the plot

center falls within the perimeter band. The condition boundary

is mapped when it crosses a plot, but there is no need to map

the perimeter band. 

The following notation is used (Van Deusen 2004):

ai = the proportion of the area of plot i that is within 

condition C. 

A = area of condition C. 

= area in the perimeter band that is outside of condition 

C plus the area of C.

r =     , the ratio of area C to the area of C plus the outer 

perimeter band.

yi = a variable that can be measured on each randomly 

located plot that completely or partially overlaps 

condition C. For plots that do not overlap C, yi=0. 

µ = the per unit area mean of variable y for condition C, 

e.g., cubic meter per hectare pine volume.

= the per unit area mean of variable y in condition C 

inclusive of the outer perimeter. 

area; the outer perimeter area contains no variable y by

definition, and          .

n = the number of plots that contain some condition C.

The FIA sampling design involves randomly locating plot

centers in a forest area. The FIA plot consists of a fixed con-

figuration of four circular 1/24-acre subplots. The development

here is simplified by using a single circular plot, but the results

apply directly to the FIA plot design. After a plot is located, the

amount of variable y is recorded and expanded to a per acre

value. With the FIA subplot configuration, a total of 1/6 acre is

sampled, so y is multiplied by 6 to expand it to a per acre value.

Consider randomly locating plot centers within the model

forest area (fig. 1) and recording the amount of variable y in

the plot. When plot i contains no condition C, yi=0 and ai=0 It fol-

lows immediately that an estimator for the ratio, r, is 

1 National Council for Air and Stream Improvement, 600 Suffolk Street, Fifth Floor, Lowell, MA 01854. E-mail: Pvandeusen@ncasi.org.
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(1)

Likewise, an estimator of     is 

(2)

Putting equations (1) and (2) together provides an estimator for

the average amount of y within condition C,

(3)

Equation (3) is not unbiased because it involves the ratio of two

random variables (Thompson 2002), but it is consistent.

A model-based derivation of estimator (3) is provided in Van

Deusen (2004), which yields the following variance estimator: 

(4)

where

(5)

and

Note that             when all plots are completely in the condition

of interest. Therefore, equations (3), (4), and (5) reduce to the

usual equations for simple random sampling when all plots are

fully in the condition of interest or plot mapping is not implemented.

Area Estimation

Within the FIA design, three layers are referred to as P1, P2, and

P3. The basic FIA plots are called the P2 layer, whereas forest

health plots comprise the P3 layer. The P1 layer traditionally

consisted of photo points that were classified as being forest or

nonforest. Thus, the P1 layer is a higher resolution sample used

to estimate forest area. The P2 layer has traditionally been a

subset of the P1 layer and could potentially be used to produce

a double sampling variance estimate of area. FIA is currently in

the process of moving toward a P1 layer that provides wall-to-wall

forest/nonforest coverage using remotely sensed data such as TM.

Some uncertainty exists in forest area estimates with either

approach, although FIA does not typically show the variance in

forest area estimates. Confidence intervals for total volume

estimates for a county or State include only the between plot

sampling variance. 

FIA data users have typically relied on plot expansion factors

to determine the number of acres in their area of interest. These

expansion factors are included in the standard FIA database

(FIADB) and indicate the number of acres that a plot represents.

It is difficult to justify the concept of a plot expansion factor

because it implies that plots are selected with variable probability

when they are actually established on a grid. Recognizing this,

FIA is phasing out the plot expansion factor concept. Area

expansion in this paper is based on the assumption that each

plot represents 6,000 acres, adjusted depending on how many

panels are being used.

Suppose we want to estimate the area or volume in condition

C from mapped plots in a State. For any approach, one first needs

to obtain a list of all the plots in the State that contain the desired

condition. The approach used here is to compute the average

volume in condition C with equation (3) and then multiply by

the summed and adjusted expansion factors as follows:

(6)

Figure 1.—An area of condition C surrounded by condition B.
Condition C is bounded by the dashed line that is contained in
a perimeter band of width equal to the diameter of the fixed
area circular plots. Plots with centers that fall within the band
will contain some of both conditions. All other plots contain
only one condition. One plot that is fully in condition C is
shown along with a plot that overlaps the boundary. Plots that
contain no C are not of interest.
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where the expansion factor is reduced in proportion to the amount

of C on the plot. For the example application, Ei = 6000 * 5/3

= 10000 for all plots, because three of five panels are used. 

Equation (6) provides a way to estimate total volume in a

condition class from mapped plots. The total area part of the

estimate, however, could be improved with a remote sensing

derived P1 layer. In any event, the focus of this paper is the

patch area estimator, which does not require knowledge of the

total forest area.

Patch Area

The average patch area of condition classes can be estimated

from mapped plot data, if one is willing to make an assumption

about the shape of a condition. A feasible shape assumption

would be that the condition of interest is approximately circular.

If the average radius of circular condition C (fig. 1) is R, the

average area of condition C is Area(C)=π R2. The radius of the

plots used (fig. 4) is d, so the average area of condition C plus

the perimeter band is Area(C+band)=π (R+d)2. The ratio of this

area is 

(7)

the same ratio estimated by equation (1). Given the known value

for d and an estimate of r, the unknown condition average-radius

is estimated from

(8)

A circular patch area estimator follows immediately from

equation (9):
(9)

where k is a constant to convert the units used for R and d into

appropriate units for area. This estimator requires only the

mapped plot information that is already available in the FIA

database.

A patch-area estimator can also be derived under the alter-

native assumption that the condition shape is square. Let the

length of one side of the condition be S. The analogous procedure

as used with circular shapes gives the following estimate:

(10)

The square patch-area estimator is

. (11)

Therefore, the square patch assumption results in smaller

patches by a factor of π. This shows that patch area estimates

are sensitive to the shape assumption.

Patch-Area Variance Estimates

The patch-area estimators involve the denominator,             ,

which presents the possibility of dividing by zero. This occurs

when the estimate of r is 0 or 1. A suggested solution to this

potential problem is to use an ad hoc, but more robust, estimator

for r:

. (12)

Estimator (11) prevents the estimate of r from reaching 1.0.

An r estimate of 0.0 implies that no plots were in the condition,

so this contingency is not a problem.

The only random component of the patch-size estimators

is    , and a suggested standard error estimator for it is

(13)

which is the usual standard error estimator for    . Since     is

divided by n+1 instead of n, this should provide a conservative

estimate. Now treat the patch-size estimator as a function of    ,

i.e.,          . Establish approximate 95 percent upper and lower

bounds on the patch-size estimates from the bounds on     as       

. In practice, this involves computing the upper

and lower bounds on   , and then using these values to compute

upper and lower patch-size estimates.

Example Application 

Data from the first three annual panels in Maine were used to

demonstrate the patch size estimators. The analysis consists of

computing the results broken down by forest type for the entire

State. The estimated number of acres, number of sample plots,

and mean condition volume estimates are displayed (table 1)

for forest types that have at least 10 sample plots. A sample plot
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can be counted in more than one row, because it can contain

more than one forest type. The per acre estimate of net cubic

foot volume is computed with equation (3). These figures may

not correspond to official FIA reports, because different methods

are being used and this is an out-of-date data set.

Patch size means and confidence bounds (table 2) are com-

puted for each forest type assuming circular patches. The plot

Forest type Total acres Sample size Cubic feet/acre 

Non-stocked 51,471.00 10.00 67.57 

Tamarack 80,283.00 12.00 1,122.99 

Balsam poplar 121,199.00 18.00 947.07 

Red maple/lowland 200,563.00 29.00 943.21 

White spruce 149,275.00 21.00 1,449.91 

Northern red oak 178,840.00 24.00 1,923.19 

Black ash/American elm/red maple 144,677.00 19.00 967.62 

Eastern white pine 535,345.00 73.00 2,736.53 

Red maple/upland 640,588.00 85.00 1,204.09 

White oak/red oak/hickory 127,683.00 16.00 1,246.48 

Cherry/ash/yellow-poplar 168,696.00 21.00 1,090.47 

Red spruce 1,021,258.00 126.00 2,166.10 

White pine/hemlock 122,117.00 14.00 2,801.73 

White pine/red oak/white ash 377,068.00 45.00 1,864.22 

Aspen 926,498.00 112.00 1,252.95 

Northern white-cedar 1,020,298.00 123 1,907.68 

Black spruce 436,904.00 52.00 911.06 

Eastern hemlock 700,215.00 83.00 2,049.81 

Paper birch 1,386,688.00 162.00 937.76 

Balsam fir 1,780,338.00 206.00 949.10 

Red spruce/balsam fir 1,044,594.00 118.00 1,117.62 

Sugar maple/beech/yellow birch 6,626,599.00 715.00 1,427.02 

Table 1.—Number of acres, sample size, and net cubic feet per acre by forest type based on the first three panels for Maine. A con-
stant expansion factor of 10,000 acres per plot is assumed. Results are shown for sample sizes of 10 or more.

radius, d, is set to the radius of a circular 1/6-acre plot. The

mean patch size varies from less than an acre for nonstocked

areas to 107 acres for the sugar maple/beech/yellow birch type.

It is also possible to estimate the number of patches by

type (table 3) by dividing the patch sizes (table 2) into the total

area in the forest type (table 1). It isn’t clear how these statistics

would be used, but they might be useful in conjunction with the

average patch size estimates (table 2) as another landscape metric.



2003 Proceedings of the Fifth Annual Forest Inventory and Analysis Symposium 115

Forest type Lower bound Mean Upper bound  

Non-stocked 0.47 0.78 1.30 

Tamarack 1.64 2.24 3.12 

Balsam poplar 1.93 2.62 3.63 

Red maple/lowland 2.82 3.35 4.01 

White spruce 2.79 3.64 4.84 

Northern red oak 3.99 5.01 6.39 

Black ash/American elm/red maple 4.14 5.40 7.18 

Eastern white pine 4.99 5.40 5.85 

Red maple/upland 6.17 6.62 7.11 

White oak/red oak/hickory 4.99 7.04 10.34 

Cherry/ash/yellow-poplar 5.97 8.27 11.89 

Red spruce 11.89 12.57 13.30 

White pine/hemlock 9.28 14.21 23.48 

White pine/red oak/white ash 13.53 15.26 17.30 

Aspen 14.36 15.30 16.32 

Northern white-cedar 15.00 15.89 16.85 

Black spruce 14.06 16.21 18.84 

Eastern hemlock 16.89 18.36 20.02 

Paper birch 22.42 23.52 24.69 

Balsam fir 26.15 27.19 28.29 

Red spruce/balsam fir 34.41 36.76 39.35 

Sugar maple/beech/yellow birch 105.45 106.99 108.57 

Means 14.70 16.03 17.85

Table 2.—Mean patch size estimates (acres) for Maine by forest type, with approximate 95 percent upper and lower confidence
bounds (assuming circular patches and sorted by mean patch size).

Conclusions

FIA is installing mapped plots nationwide. Some estimators for

basic statistics, such as per acre volume and variance, have

been reviewed. New estimators for average patch size are also

presented. The possibility of making patch size estimates is

unique to the mapped plot design. Patch size estimates depend on

assumptions about patch shape and are nonrobust to the shape

assumption. This limits their application and interpretation. They

may be useful, however, as a basic landscape or ecological metric. 

All the estimators presented in this study depend only on

standard FIA measurements. They can therefore be implemented

with little cost when deemed appropriate. They are a fortuitous

byproduct of the mapped plot design that may prove useful.
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Forest type Lower bound Mean Upper bound  

Non-stocked 39,545.96 65,886.00 109,046.95 

Tamarack 25,693.23 35,770.69 48,887.27 

Balsam poplar 33,367.62 46,203.98 62,727.81 

Red maple/lowland 50,054.23 59,856.03 71,080.45 

White spruce 30,839.63 41,016.24 53,579.08 

Northern red oak 27,989.92 35,671.28 44,790.60 

Black ash/American elm/red maple 20,148.13 26,812.97 34,944.24 

Eastern white pine 91,525.70 99,165.71 107,257.23 

Red maple/upland 90,042.63 96,765.52 103,834.91 

White oak/red oak/hickory 12,350.25 18,138.77 25,600.04 

Cherry/ash/yellow-poplar 14,187.58 20,404.11 28,271.76 

Red spruce 76,762.60 81,251.39 85,908.70 

White pine/hemlock 5,201.45 8,593.88 13,160.27 

White pine/red oak/white ash 21,790.56 24,710.10 27,869.38 

Aspen 56,775.40 60,561.61 64,506.11 

Northern white-cedar 60,554.92 64,217.45 68,018.59 

Black spruce 23,190.67 26,953.18 31,083.90 

Eastern hemlock 34,981.36 38,138.02 41,468.53 

Paper birch 56,173.46 58,969.30 61,849.32 

Balsam fir 62,926.01 65,466.82 68,069.13 

Red spruce/balsam fir 26,545.79 28,415.00 30,360.33 

Sugar maple/beech/yellow birch 61,032.87 61,934.75 62,844.00 

Means 41,894.54 48,404.67 56,598.12

Table 3.—Number of patches in Maine by forest type, with approximate 95 percent upper and lower confidence bounds (assuming
circular patches).
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FIA Quality Assurance Program: Evaluation
of a Tree Matching Algorithm for Paired
Forest Inventory Data

James E. Pollard1, James A. Westfall2, Paul A. Patterson3,

and David L. Gartner4

Abstract.—The quality of Forest Inventory and

Analysis inventory data can be documented by having

quality assurance crews remeasure plots originally

measured by field crews within 2 to 3 weeks of the

initial measurement, and assessing the difference

between the original and remeasured data. Estimates

of measurement uncertainty for the data are generated

using paired data statistical analyses. Because plot

remeasurements are taken at different, but similar,

times by different crews, it can be difficult to match

the remeasured trees with the original tree measure-

ments. In the past, this process required a laborious

exercise of manual review and assignment of matching

codes for the paired tree measurements. An automated

process for matching tree data was developed and

tested using a previously hand-matched data set.

Results of the two matching processes were compared.

More than 95 percent of the individual trees could be

reliably matched using the automated matching program.

The effects of unmatched data being excluded from

the uncertainty analysis was minimal. 

Introduction

The Forest Inventory and Analysis (FIA) program of the U.S.

Department of Agriculture (USDA) Forest Service provides

information needed to assess the status and trends of environ-

mental quality in the Nation’s forests. The FIA program works

to continually improve monitoring and assessment activities by

controlling, identifying, and documenting errors and sources of

variability that could be detrimental to the quality of FIA

inventory results. The quality assurance (QA) program within

FIA involves the overall system of management activities

designed to assure that quality data are collected. This program

can be further divided into quality control and quality evaluation

activities. Quality control within the program encompasses the

operational techniques and activities that control the data

acquisition process such as use of standardized field protocols.

Quality evaluation activities involve application of statistical

tools to determine if the uncertainty in the data will support

programmatic decisions.

A large portion of the QA effort in the FIA program is

focused on error control during the field measurement and data

collection processes. One key element is provided through crew

training and certification with specific national standards. Another

key element of quality control in the program is development

and annual updating of standardized field protocols that are

documented in National Field Manuals (USDA 2003). In addition,

the possibility of data entry error is reduced through use of

portable field data recorders by inventory crew members. This

onsite data recording reduces the chances of transcription-type

data entry errors that are common problems in paper transfers.

Finally, a variety of field check protocols provide immediate

feedback to the crews and provide data to score crew performance.

In addition to extensive quality control activities discussed

above, data quality is assessed and documented using performance

measurements and post-survey assessments. These assessments

identify areas of the data collection process that need improvements

or refinements to meet the quality objectives of the program.

Specific measurement quality objectives (MQOs) have been

developed for the program and are presented in detail in the

field methods guides. These quality standards were developed

from extensive knowledge of measurement processes in

forestry and to meet the program needs of FIA. Evaluation of

data quality is accomplished by analysis of plot remeasurement

data and comparison of the results to the MQO.

1 FIA Quality Assurance Advisor, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154.
2 Research Forester, U.S. Department of Agriculture (USDA) Forest Service, Northeast Research Station, 11 Campus Blvd. Suite 200, Newtown Square, PA 19073.
3 Mathematical Statistician, USDA Forest Service, Rocky Mountain Research Station, 507 25th Street, Ogden, UT 84401–2394.
4 Mathematical Statistician, USDA Forest Service, Southern Research Station, 4700 Old Kingston Pike, Knoxville, TN 37919.
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Methods

Description of the Problem

An ongoing problem encountered when analyzing QA data is

assuring that observations of individual trees are matched for

paired statistical analysis. When plots are measured by two

independent crews, it is not unusual for the crews to number or

identify the trees slightly differently. This creates two data sets

that may not be matched by tree number for a variety of reasons.

For example, crews began numbering trees at different places

on the plot, or crews missed a tree on the plot, setting the num-

bering sequence off. In addition, crews can number trees using

a different spatial rule that can alter the numbering sequence for

trees in a data file. Assuring that data are properly matched, and

evaluating the consequences of mismatched trees in an inventory

data set, is the subject of the current article. This study evaluates

two different methods of assuring tree matching prior to data

analysis. 

The remeasurement process used to generate QA data sets

in the FIA program is known as a blind check. This process

involves a full reinstallation of a production inventory plot,

performed by a qualified inspection crew, without access to the

crew data. This results in two data sets that are independent of

one another and can be subjected to paired data statistical

analyses to obtain an unbiased estimate of the measurement

uncertainty associated with crew performance. To analyze the

quality of the two independent crews’ data it is essential to have

the data paired tree-to-tree so any error in the measurement

process can be attributed to crew measurement error rather than

data management or other nonmeasurement process errors. 

The quality of FIA data has been evaluated in the past using

blind check data (Pollard and Smith 1999, Pollard and Smith

2000). These data have been incorporated into a national forest

health inventory report to document the basic data quality asso-

ciated with these inventories (Conklin et al., in press). However,

to produce these assessments, it was necessary to obtain unbiased

remeasurement data that was representative of the FIA program

both operationally, temporally, and regionally. Once regional data

sets were obtained we began a laborious process of preparing the

data for analysis. This included normalizing regional differences

in naming conventions and variables measured, as well as

matching paired observations to the greatest extent possible.

The most time-consuming aspect of data preparation was assuring

that paired observations of tree level variables were correctly

matched. As increasing amounts of QA data are generated in

the FIA program, and additional States are added to the national

inventory, it becomes highly desirable to automate this tree

matching process to the fullest extent possible.

Development of the Matching Process

Experience gained in analysis of QA data from inventories from

1998 through 2001 led to development of a hand-matching

process for pairing tree-level data. The following steps were

involved in this process:

• Two independently measured data files from a given inven-

tory plot were obtained and identified as the crew data and

the QA data. Each plot file was composed of four subplots

of tree-level data that needed to be tree matched by subplot. 

• Each tree in a given file was assigned a number within a

subplot, which may or may not match the corresponding

tree in the paired file depending on how the sequence was

assigned (see discussion above). 

• Tree-level variables were renamed in the QA data file and

both files were sorted by subplot number, species of tree,

horizontal distance of the tree from plot center, azimuth of

tree measured at plot center, and diameter of tree at breast

height.

• The data from both plots were printed with crew and QA

data side by side and the data were visually compared for

closeness of all matching parameters including the assigned

tree number.

• If the tree numbers were not identical for sorted crew and

QA observations within a subplot, then the numbering

sequence was adjusted in the QA data file to match the

crew data file. 

• The decision to adjust the tree number was based on visual

inspection for closeness of all matching parameters for a

given tree as well as the total number of trees within a given

subplot. For example, if crew data tree numbering started

at 1 and the QA data had an extra tree in the subplot, then

the numbering sequence would be off by one. In this case

the tree numbers in the QA data file were adjusted to match

the tree numbers in the crew data file. Then an extra number

was assigned for the extra tree in the QA data file.
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Once the tree numbering sequences in both crew and QA

data files were matched, then differences between crew and QA

crew observations could be calculated using the subplot and

tree number as the identification key for a given tree.

This matching process can be very labor intensive, depending

on the type of numbering discrepancy in the data files. For

example, it was simple to identify an extra tree in a file and

adjust the tree numbering sequences accordingly. However, if

the files contained the same number of trees of the same species

and the numbering sequence for more than two trees of the same

species were transposed, it was much more difficult to identify

which tree was the corresponding tree for a given number in

the sequence. Occasionally the data for matching parameters

for a number of trees in a given file were so close that it was

necessary to align tree numbering sequences as a “best judgment”

call. This hand-matching process was applied to a large set of

Phase 3 FIA blind check data collected between 1998 and 2001

and required person months of effort totaling more than 3 years.

Refinement and Automation of the Matching Process

Refinement of the hand- matching process was initiated as a

cooperative effort of three regional statisticians and the FIA

Quality Assurance Coordinator. Automation of the process was

developed in the SAS programming language and involved the

following steps:

• QA variables were renamed in the QA data file and crew and

QA data files were merged by State, county, plot number,

and subplot number.

• A “distance” was computed for each QA tree to each crew

tree using a function based on horizontal distance, azimuth,

and diameter of the trees. 

• Each QA tree was matched to the crew tree with the

smallest distance. Pairs of trees were removed from the

matched list because either multiple QA trees were matched

to the same crew tree and only the QA with the shortest

distance was matched or the distance was too great, or

other technical reasons. 

• A decision rule was incorporated in the matching algorithm

that rejected potential matches having relatively large

computed distances. This distance criteria was established

to provide a conservative tree matching basis for this exer-

cise. This distance matching criteria can be adjusted in the

program if desired.

• The first iteration of matches was saved in a list file. 

• Unsuitable matches were removed using similar standards

as were used after the first iteration. 

• A second iteration of distance functions were computed

for those trees not matched in the first iteration.

• The two iterations of matched trees were combined and

outputted into a matched tree list.

• The unmatched trees and/or extra/missed trees were sepa-

rated into subfiles for manual examination to determine

any remaining matches and to determine any missed and

extra trees.

Description of the Data Files

The data were composed of inventory measurements from

approximately 100 Phase 3 inventory plots measured between

1998 and 2001. Data were aggregated from the five FIA regions,

for all years, which resulted in a national data set with reasonable

representation from all FIA regions. The combined data set

contained a total of 4,269 tree records in the QA file and 4,138

tree records in the crew file. The records in one file included

trees that had corresponding matches in the other file, as well

as additional trees that were unique to one or the other file.

These “missed” or “extra” trees were screened from the combined

data set resulting in 3,981 pairs of matched tree data that were

assigned tree numbers based on best judgment of the analyst. 

Results 

Automated Matching Process

Application of the automated matching process to the national

QA data set produced 3,576 pairs of matched trees after two

iterations. Additional matched pairs of data could have been

added to this data set by examination of the unmatched tree

file and performing a hand-matching process. However, for the

purposes of this exercise, it was decided to only use the trees

matched by the fully automated process. Once the programming

was complete, the actual matching process required less than

one day’s effort that included multiple runs of the program to

verify comparability of the results of the two matching processes.



120 2003 Proceedings of the Fifth Annual Forest Inventory and Analysis Symposium

Uncertainty Analysis 

The two data sets (hand matched and automated with two passes)

were subjected to an analysis of mean differences between

crews and estimates of MQO compliance. Simple MQO values

were used to evaluate the robustness of the data sets. The tree

level variables chosen for analysis represented characteristics of

tree diameter, height, and crowns. The variables analyzed were

diameter at breast height (DBH), diameter at root collar (DRC),

total length of the tree (Total Length), actual length of the tree

(Actual Length), foliar transparency (Transparency), foliar dieback

(Dieback), and foliar density (Density) of the crown, as well as

the crown class. 

Mean Differences Between Crews

One estimate of measurement uncertainty that can be easily cal-

culated is the average or mean difference between crew and QA

measurements. Ideally we would expect the mean differences

between the two crews to be zero, which would indicate that the

two estimates for a given variable were not biased. 

A. Hand-matching process

Standard Probability
Variable N Mean error |t| value Minimum Maximum

DBH 3,573 –0.03 0.02 0.0684 –15.9 22.7
DRC 408 –0.25 0.08 0.0019 –26.2 5.5
Transparency 2,884 0.03 0.14 0.8236 –60 79
Crown Class 1,410 0.10 0.02 <.0001 –4 4
Die Back 2,884 0.08 0.11 0.4536 –80 94
Density 2,884 –1.21 0.21 <.0001 –60 50
Total Length 1,529 0.47 0.22 0.0356 –66 63
Actual Length 1,590 –0.17 0.24 0.4912 –116 92

B. Automated matching process

Standard Probability
Variable N Mean error |t| value Minimum Maximum

DBH 3,250 –0.03 0.00 <.0001 –6.3 4.8
DRC 326 –0.17 0.09 0.044 –25.9 4.0
Transparency 2,594 0.09 0.14 0.5416 –60 79
Crown Class 1,341 0.10 0.02 <.0001 –4 4
Die Back 2,594 0.06 0.12 0.5912 –80 94
Density 2,594 –1.37 0.22 <.0001 –60 45
Total Length 1,443 0.3 0.19 0.1162 –30 57
Actual Length 1,498 –0.05 0.17 0.7749 –67 57

Table 1.—Mean differences between investigators for diameter, crown, and length variables computed from the hand-matched data
set (A) and automated matching data set (B).

In addition to the central tendency of the differences the

dispersion of these differences is an indicator of the overall

reproducibility of the data set. The Means Procedure in SAS

calculates the mean, standard error of the mean, and the minimum

and maximum differences. This procedure also allows the mean

differences to be tested to determine if they were significantly

different from zero (biased) using a Student’s t test (Probability

Value). 

The results of these calculations for both matching processes

showed that the hand-matched and automated matched data sets

provided very similar estimates of data uncertainty (table 1).

The mean differences between investigators were very similar

with some variables having slightly larger differences for the

QA crews and some having slightly smaller differences for the

QA crews. The pattern of probability that the mean differences

were not zero was also very similar. There was a tendency for

the range of differences to be somewhat larger for the hand-

matched data set than for the automated matching process. This

would make sense because the automated matching process set

t
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aside 405 sets of measurements for manual inspection based on

the matching criteria provided in the program. 

It is of interest to note that, with one exception (total

length), the variables that had significant bias at < 10 percent

probability were the same in both data sets. However, with the

exception of density, the mean differences were very small, which

would make the significance of the biases somewhat irrelevant. 

Measurement Quality Objective Achievement

Analyzing the field crews’ performance against the program

assigned MQOs can be complex. For example, the MQO for

DBH is ± 0.1 inch for every 20 inches of diameter. During this

exercise, simplified MQO were assigned to variables as follows

to allow easy interpretation of the efficacy of the matching

processes (table 2). 

To compare MQO compliance between hand-matching and

the automated processes, cumulative frequency distributions

were computed and the percentage of the differences noted for

four levels of differences: zero differences; differences within the

A. Hand-matching process

Percent zero Percent Percent Percent
Variable N differences 1X MQO 2X MQO 3X MQO

DBH 3,573 50 90 94 95
DRC 408 25 74 85 91
Transparency 2,884 38 94 99 100
Crown Class 1,410 68 97 100 100     
Die Back 2,884 61 98 99 99
Density 2,884 22 76 95 99
Total Length 1,529 22 74 88 95
Actual Length 1,590 23 75 89 95

B. Automated matching process

Percent zero Percent Percent Percent
Variable N differences 1X MQO 2X MQO 3X MQO

DBH 3,250 54 94 97 98
DRC 326 29 70 82 86
Transparency 2,594 38 94 99 100
Crown Class 1,341 69 97 100 100     
Die Back 2,594 61 98 99 99
Density 2,594 23 77 96 99
Total Length 1,443 22 76 90 96
Actual Length 1,498 23 77 91 97

Table 3.—Cumulative percentage of the data set with zero differences between crews and one times, two times, and three times the
simplified MQO for the hand-matching process(A) and the automated process (B). 

Variable Measurement quality objective

DHH ± 0.2 feet  95% of the time
DRC ± 0.4 feet  95% of the time
Transparency ± 10% Class 90% of the time
Crown Class no errors 85% of the time
Crown Die Back ± 10% Class 90% of the time
Crown Density ± 10% Class  90% of the time
Total Length ± 5 feet 90% of the time
Actual Length ± 5 feet 90% of the time

Table 2.—Simplified measurement quality objectives.

MQO; differences within two times the MQO; and differences

within three times the MQO (table 3). 

As with the results for mean differences, MQO compliance

was very similar in both data sets. There was a slight tendency

for the automated process to produce slightly improved MQO

compliance although the improvement was rarely greater than a

2 percent improvement. It is likely that addition of the hand

matched trees at the end of the automated process would result

in virtually identical results. 
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Summary and Conclusions

Development of an automated tree matching shows much promise

for time saving and simplification of data base manipulations

within the FIA program for the following reasons:

• Hand-matching trees in an inventory data set produced

more tree matches but required much more office labor.

• The mean differences between crews (bias) were similar

for both matching methods. 

• MQO compliance was similar for the two tree-matching

procedures although the automated procedure tended to

provide slightly better MQO compliance. It is likely that

addition of hand matched trees from the list generated by

the automated process would have generated very similar

MQO compliance.

One needs to consider the size of the data set used in this

study, however. With a sample size of thousands of trees, an

automated tree-matching algorithm provided estimates of

uncertainty and MQO compliance comparable to the laborious

hand-matching data screening. However, if regional data sets or

data sets for a given State are analyzed, the exclusion of unmatched

trees from the data set may have a significant impact on the

uncertainty analysis. Additional analyses are needed to evaluate

this technique with smaller, regionally representative data sets.

In addition, the matching program provides a list of unmatched

trees. Using this much-reduced data set, hand screening of the

unmatched trees becomes feasible, which should allow application

of this process to much smaller data sets than were used in this

study.
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Abstract.—A logistic regression model was used

with map-based information to predict the probability

of forest fire for forested areas of the United States.

Model parameters were estimated using a digital layer

depicting the locations of wildfires and satellite

imagery depicting thermal hotspots. The area of the

United States in the upper 50th percentile with respect

to predicted probability of forest wildfire was intersected

with areas within 25 miles of rural communities needing

economic assistance using a geographic information

system. The proportion of total forest wildfire mitigation

funds to be allocated to each national forest region

was calculated as the ratio of intersected area in the

region to all intersected areas nationwide.

Among the environmental issues confronting the United States

in recent years, none has been more visible or compelling than

the frequency and severity of forest wildfires in the Western

States. This phenomenon is generally attributed to two causes:

several years of widespread and intense drought and a century

of aggressive fire suppression practices. These practices have

resulted in a substantial accumulation of highly combustible

woody material throughout much of the Nation’s forested

regions, particularly in the Western States.

Numerous agencies of the Federal Government participate

in efforts to mitigate forest wildfire risks. Among them,

Cooperative Forestry (CF), State and Private Forestry, and U.S.

Department of Agriculture (USDA) Forest Service allocate

Federal funds to regional, State, and community entities for

mitigating wildfire risk and stimulating local economies. In

particular, the Economic Action Programs (EAP) of CF seek

rural communities to which funds may be allocated, directly or

indirectly, to treat forested areas as a means of mitigating wild-

fire risk and building industrial infrastructure. Because sufficient

funds are not available to satisfy all funding needs, EAP needs

defensible methods for allocating funds. 

The objective of the study was to develop a defensible

procedure for determining the proportion of available funds to

be allocated to the national forest regions of the USDA Forest

Service. The allocation to each region was to be in proportion

to the area of forested lands at risk of wildfire that were in close

proximity to rural communities that need economic assistance. 

Methods

Data

A set of nationally consistent maps in the form of digital data

layers was assembled and aggregated into three categories:

Community, Ecosystem, and Fire. The Community category

consisted of two layers: Populated Places and Economic Need.

The Populated Places layer includes the locations and selected

demographic attributes of populated places in the United States

identified by the U.S. Census Bureau (ESRI 2002). Communities

were selected based on CF’s definition of rural communities as

populated places with populations between 100 and 50,000.

Selecting areas of high forest wildfire risk in close proximity to

these communities, defined as a distance of 25 miles or less,

simultaneously accomplishes two objectives: first, it identifies

communities that are at risk of loss due to forest wildfires,

and second, it identifies communities with labor forces that are

sufficiently close to high wildfire risk to implement treatment

prescriptions. The Economic Need layer, based on county

income information from the 1980, 1990, and 2000 decennial

1 Group Leader for Research and Analysis, Computer Specialist, and Computer Specialist, respectively, U.S. Department of Agriculture, Forest Service, North
Central Research Station, St. Paul, MN 55108. Phone: 651–649–5174; fax: 651–649–5285; e-mail: rmcroberts@fs.fed.us.
2 Economist, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Missoula, MT 59807.
3 Program Manager, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR 97208.
4 Associate Leader, U.S. Department of Agriculture, Forest Service, State and Private Forestry, Washington, DC 20250.
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censuses, classifies counties into five categories. Using

Geographic Information System (GIS) functions, an overall

Communities layer was created that depicts areas of the contiguous

48 States within 25 miles of communities characterized as rural

and in the three classes of the Economic Need layer corresponding

to greatest economic need.

The Ecosystem category consisted of five layers: Total

Biomass (TB), Removable Biomass (RB), Palmer Drought Index

(PDI), Historical Natural Fire Regime (HNFR), and Fire Regime

Current Condition (FRCC). TB is estimated using individual

tree measurements on plots measured by the Forest Inventory

and Analysis (FIA) program of the USDA Forest Service. The

FIA sampling design is based on a nationwide array of approxi-

mately 6,000-ac hexagons, each of which includes at least one

FIA plot. These hexagons are derived from the former Forest

Health Monitoring Program (FHM) array of approximately

160,000-ac hexagons, which in turn are adapted from the U.S.

Environmental Protection Agency’s EMAP hexagon array that

tessellates the contiguous 48 States (White et al. 1992). TB is

calculated for each FIA plot, and the mean over all plots in each

FHM hexagon is attributed to the hexagon as a whole. RB is an

estimate of the biomass per unit area that could be removed

from a forest stand to create more optimal forest conditions and

partially addresses CF’s desire to reduce forest fuels. RB is based

on the concept of stand density index (SDI) (Reineke 1933,

Avery and Burkhart 1994), a measure of forest stocking, and is

estimated as the difference between observed SDI and 30 percent

of maximum empirical SDI (USDA Forest Service 2003).

Maximum stand density is based on the self-thinning rule (Yoda

et al. 1963), which describes the maximum ecologically sustainable

biomass on a per unit area basis. Greater overstocking is assumed

to contribute to greater wildfire risk. As with TB, RB is estimated

for individual FIA plots, and the mean over all plots in each

FHM hexagon is attributed to the hexagon as a whole.

PDI indicates prolonged and abnormal moisture deficiencies

or excesses for 350 climatic divisions in the United States (Heim

2000). On the PDI scale, 0 is normal, – 2 is moderate drought,

– 3 is severe drought, and – 4 is extreme drought. PDI is an

important tool for evaluating the scope, severity, and frequency

of prolonged periods of abnormally dry or wet weather and has

been used to indicate the potential intensity of forest fires. Mean

PDI over June, July, August, and September was calculated for

2000, 2001, and 2002 for each climate division. From the climate

division means, mean PDI was calculated for each FHM hexagon

and attributed to the hexagon as a whole.

HNFR and FRCC are coarse-scale characterizations of

pre-settlement natural fire return intervals and current vegetation

conditions (Schmidt et al. 2002). The concept of risk is defined

in terms of losing key components that define a system as a

result of either wildfire or prescribed fire. Current conditions

are characterized in terms of departures from historical natural

conditions. These measures integrate biophysical information,

remotely sensed products, and disturbance and successional

processes including combinations of HNFR and potential natu-

ral vegetation (Hann and Bunnell 2001). HNFR describes the

frequency and severity of pre-settlement fire processes in three

categories of fire return intervals: less than 35 years, 35–100 years,

and greater than 100 years. FRCC describes the relative risk of

losing one or more key components that define an ecosystem in

three categories of increasing wildfire risk (Schmidt et al. 2002).

HNFR and FRCC are mapped at the resolution of 1-km2 pixels,

and classifications are assumed to be unchanging over periods

of several years. The proportions of all 1-km2 pixels in each

FHM hexagon were determined for each category of both

HNFR and FRCC. 

TB and RB values were aggregated to the resolution of

FHM hexagons to obtain enough plot observations to produce

sufficient precision. HNFR and CFCC values were aggregated

to the same scale for two reasons. First, aggregation reduced

the size of the data set from approximately 180,000 records,

each representing 1 km2, to a more manageable data set of

approximately 7,500 records, each representing approximately

64,800 ha. Second, the assumed low accuracy of the HNFR and

CFCC classifications for the 1-km2 pixels was expected to

introduce an unacceptable level of measurement error into the

predictor variable set. Aggregation at a coarser spatial scale

alleviated some of this problem. Thus, because aggregation was

considered necessary, and because TB and RB were already

aggregated to the resolution of FHM hexagons, PDI, HNFR,

and FRCC were also aggregated to the same resolution. 

The Fire category consisted of two layers: fire perimeter

data obtained from the Geospatial Multi-Agency Coordination

(GeoMAC) Wildland Fire Support site (DOI and USDA 2003)

and thermal data obtained from satellite imagery. The scarcity of
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appropriate wildfire location data makes it difficult to calibrate

national models for predicting the probability of forest wildfire.

One of the few appropriate sources, GeoMAC, depicts the loca-

tions and perimeter boundaries of 2000, 2001, and 2002 forest

fires on Federal lands that were sufficiently large to be recorded

by geographic information specialists working on the fires.

Although the layer provides excellent coverage for Western

States, it includes only three fires in the Eastern United States,

all of which were in close proximity to each other. Therefore, a

second layer not specific to Federal lands was obtained from

the Remote Sensing Applications Center, USDA Forest Service,

and was used as a surrogate for fire locations and sizes. This

layer, based on the thermal band of the Moderate Resolution

Imaging Spectroradiometer (MODIS) satellite sensor, identifies

locations of summer 2001 and 2002 thermal hotspots. Variables

related to presence or absence of fires for the GeoMAC and

MODIS hotspots layers were also aggregated for FHM hexagons.

If a hexagon included any portion of the perimeter of a fire

recorded by GeoMAC, a variable was coded 1; otherwise, the

variable was coded 0. Although the MODIS hotspots layer depicts

the locations of forest wildfires, it also depicts the locations of

prescribed burns and prairie, agricultural, and other fires. Thus,

four MODIS hotspots fire variables were created, one corre-

sponding to each of the threshold values of 6, 8, 10, and 12

hotspots per FHM hexagon. For each variable, if the number of

hotspots equaled or exceeded the threshold value, the variable

was coded 1; otherwise, the variable was coded 0. 

Models

Predictions of the probability of forest wildfire for each FHM

hexagon were obtained by combining the Ecosystem and Fire

layers using a logistic model, 

(1)

where:

E(.) denotes statistical expectation, 

P is the probability of a forest wildfire, 

ββ is a vector of parameters to be estimated, and 

X is a vector of predictor variables consisting of values of TB, 

RB, and PDI and proportions of pixels in FHM hexagons 

for each category of HNFR and FRCC. 

The Statistical Analysis System (SAS) CATMOD procedure

with the maximum likelihood option was used to estimate the

model parameters. The model was calibrated twice: once for

the two eastern national forest regions collectively and once for

the six western national forest regions collectively. The model

was separately calibrated for three reasons: first, the model was

calibrated using the GeoMAC layer only for the western regions

because of the inadequate number of observations for the eastern

regions; second, the model was calibrated separately for the

western regions using the MODIS hotspots layers to facilitate

comparisons of results with those obtained for calibration with

the GeoMAC layer; and third, because of differences in species

composition, topography, and forest management practices,

relationships between the probability of forest wildfire and the

predictor variables were expected to differ between the eastern

and western regions. Thus, nine sets of model parameters were

estimated: one set for the western regions using the GeoMAC

layer; four sets for the western regions, one for each of the four

MODIS hotspots threshold levels; and four sets for the eastern

regions—one for each of the four MODIS hotspots threshold

levels. Predictions for the five model calibrations for the western

regions were compared by evaluating the similarity in the rankings

of individual hexagons with respect to their predicted probabilities

of forest wildfire. 

Estimation

Using model [1] with estimates of the model parameters, the

predicted probability of forest wildfire was calculated for July

2002 for each FHM hexagon, and a map depicting the 50 percent

of hexagons with the greatest predicted probabilities of forest

wildfire was constructed. Using a GIS, the selected areas from

these maps were intersected with the Community layer depicting

areas within 25 miles of rural communities in need of economic

assistance. The proportion of EAP funds to be allocated to each

national forest region was calculated as the ratio of the area

selected for each region to the total area selected for all regions.

Results and Discussion

For the Western States, the maps depicting the predicted proba-

bilities of forest wildfire using models calibrated with the four
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MODIS hotspots variables were similar to each other and to the

map obtained using the model calibrated with the GeoMAC

variable. For each of the five maps, each hexagon was classified

with respect to whether its predicted probability of forest wildfire

exceeded probability percentiles ranging from 0.05 to 0.95 in

steps of 0.05. Comparisons of the classifications of individual

hexagons for each of the four MODIS-based maps to the

GeoMAC-based map revealed that proportions of hexagons

with the same classification always exceeded 95 percent. These

results indicate that although the models calibrated using different

fire location layers produced different predictions of the proba-

bility of forest wildfire, the relative rankings of the hexagons

with respect to percentiles of the probability predictions were

very similar. Thus, for the western regions, the MODIS hotspots

data layers were concluded to be acceptable surrogates for forest

fire locations for ranking the hexagons. 

The greatest similarity between rankings with the GeoMAC

variable and a MODIS variable was obtained for the MODIS

variable corresponding to a threshold value of eight hotspots per

hexagon. Thus, this MODIS variable was used as a surrogate

for the presence or absence of a forest wildfire for calibration

of the model for the two eastern regions also. A map depicting

areas of the country in the upper 50th percentile with respect to

the probability of forest wildfire was constructed by selecting

the hexagons at or above the median predicted probability sepa-

rately for the Eastern and Western United States (fig. 1). The

map indicated much more area with high relative probabilities

in the Southeastern United States than the Northeastern United

States, but the area with high relative probabilities was more

concentrated in the western regions. Because separate models

were calibrated for the eastern and western regions, the relatively

greater amount of area selected in the Eastern United States

should not necessarily be construed to mean that more area is at

greater risk of wildfire in the East. This phenomenon may pos-

sibly be attributed to different calibration data sets, responses to

predictor variables, species compositions, forest management

practices, and climate.

This digital layer corresponding to the upper 50th percentile

of the country relative to the probability of forest wildfire was

intersected with the Community layer (fig. 2). Proportions of

funds to be allocated to national forest regions were calculated

as the ratios of areas in the intersections for a particular national

forest region to the collective area of the intersection for all

national forest regions. Based on the intersected areas, the

proportional allocations were estimated for the East as 0.739

to Region 8 and 0.261 to Region 9, and for the West as 0.216

to Region 1, 0.211 to Region 2, 0.220 to Region 3, 0.084 to

Region 4, 0.129 to Region 5, and 0.141 to Region 6 (fig. 2).

Figure 1.—Percentile identity of hexagons with respect to relative
probability of forest fire for July 2002 (light gray = nonforest;
dark gray = 50% of forested area with smallest predicted prob-
abilities; black = 50% of forested area with greatest predicted
probabilities; white = hexagons with eight or more MODIS
hotspots in 2002).

Figure 2.—Areas with the 50% largest predicted probabilities
of forest wildfire for 2002 within 25 miles of a rural community
needing economic assistance (light gray); numerals refer to
national forest regions. 
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Comparison of U.S. Forest Land Area
Estimates From Forest Inventory and
Analysis, National Resources Inventory, and
Four Satellite Image-Derived Land Cover
Data Sets

Mark D. Nelson1, Ronald E. McRoberts2, and Veronica C.

Lessard3

Abstract.—Our objective was to test one application

of remote sensing technology for complementing forest

resource assessments by comparing a variety of existing

satellite image-derived land cover maps with national

inventory-derived estimates of United States forest

land area. National Resources Inventory (NRI) 1997

estimates of non-Federal forest land area differed by

7.5 percent from estimates based primarily on Forest

Inventory and Analysis data reported in the Forest and

Rangeland Renewable Resources Planning Act of

1974 (RPA) draft 2002 forest resource assessment.

The NRI estimates differed only 2.2 percent from

non-Federal land area, with the NRI estimate slightly

smaller than the RPA estimate. Comparisons of

statewide forest land area estimates derived from

these two inventories with four satellite image-derived

maps reveal area-weighted root mean square deviations

ranging from 2.5 to 41.0 percent across the conterminous

United States. In general, estimates of non-Federal

forest land area from RPA and NRI were more closely

related to each other than to image-derived estimates.

The Forest Cover Types map and the National Land

Cover Data set produced image-derived estimates that

were most similar to the RPA estimate of forest land

area across all land ownerships.

For more than half a century, global forest resource assessments

(FRAs) have been conducted by the Forest Resources Assessment

Programme of the Food and Agriculture Organization (FAO) of

the United Nations to “provide information on the state of forest

resources worldwide on a continuing basis.” These FRAs are

based primarily on national forest inventory information provided

by countries, supplemented by state-of-the-art technology. The

global FRA of 2000 (Food and Agriculture Organization of the

United Nations 2001) identified a need to complement future

inventories of forest parameters through remote sensing tech-

nology. Zawila-Niedziecki (2000) edited a compilation of works

on this effort, presented at an International Union of Forest

Research Organizations conference on remote sensing and forest

monitoring. Our study sought to test one application of remote

sensing technology for complementing FRAs by comparing

estimates of forest land area from a variety of existing satellite

image-derived land cover maps with national inventory-derived

estimates of U.S. forest land area.

The Forest Inventory and Analysis (FIA) program of the

U.S. Department of Agriculture (USDA) Forest Service

(http://fia.fs.fed.us) conducts detailed surveys of the Nation’s

forests across all ownerships. The USDA Natural Resources

Conservation Service (NRCS) monitors land use, status, condition,

and trends of the Nation’s soils, water, and related natural

resources on non-Federal lands through its National Resources

Inventory (NRI) (http://www.nrcs.usda.gov/technical/NRI).

Differences in sampling designs and definitions of land cover/use

categories contribute to differences in estimates of forest land

and other common land cover/use categories between these two

inventories (Lessard et al. 2003). Czaplewski et al. (2002)

reported that NRI statewide estimates of forest area can differ

by more than 30 percent from FIA estimates, although these

large relative differences occur only in a few sparsely forested

states where forest land area is small.

Satellite image-derived land cover data and related geospatial

data layers provide an alternative source of information from

which forest land area estimates can be calculated and compared

1 GIS/RS Specialist, U.S. Department of Agriculture, Forest Service, North Central Research Station, 1992 Folwell Avenue, St. Paul, MN 55108.
2 Mathematical Statistician, U.S. Department of Agriculture, Forest Service, North Central Research Station, 1992 Folwell Avenue, St. Paul, MN 55108.
3 Statistician, USDA Natural Resources Conservation Service, Natural Resources Inventory and Analysis Institute, 1992 Folwell Avenue, St. Paul, MN 55108.
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with inventory estimates. Conversely, field-based inventory data

provide a reference for assessing the accuracy of satellite

image-derived data. For example, Owens (2001) reported that

lowland conifer, pines, and nonforest groups had the largest

differences with respect to area when comparing FIA plot-based

and Landsat Thematic Mapper (TM) image-based estimates in

Michigan’s Upper Peninsula. She reported difficulty in creating

a common legend between FIA forest types and forest type

classes in a TM image-based map, and reported that differences

in spatial resolution between FIA and TM maps led to differences

in area estimates (Owens 2001).

Häme et al. (2001), Päivinen et al. (2001), Kennedy and

Bertolo (2002), and Schuck et al. (2003) compared pan-European

forest area estimates derived from forest inventory and satellite

image-derived sources. For some European countries, forest

land area estimates derived from Advanced Very High Resolution

Radiometer (AVHRR) satellite imagery and official statistics

were within ± 5 percent. For other European countries, area-

weighted root mean square errors (RMSE) of estimates derived

from AVHRR imagery and forest inventory statistics were tens of

percent (Päivinen et al. 2001, Schuck et al. 2003). Thus, satellite

image-derived estimates of forest land area appear relatively

comparable across large geographic areas such as the European

Union, but differences in these estimates vary among regions

and tend to increase within smaller geographic regions.

In our study we explored the efficacy of satellite image-

derived maps for estimating forest land area in the United

States by comparing estimates obtained from FIA, NRI, and

four satellite image-derived data sets: 1991 Forest Cover Types,

1992–93 Land Cover Characteristics, 2001 Vegetation Continuous

Fields, and the 1992 National Land Cover Data set. We address

differences among FIA and NRI estimates by incorporating

ancillary geospatial data. Comparisons are made for the entire

United States, the conterminous United States (CONUS), and

for individual States.

Data and Methods

Land Ownership

Polygons in the Conservation Biology Institute’s Protected Areas

Database (PAD) 2001 (DellaSala et al. 2001) that delineate

boundaries of Federal ownership were recoded into a single

Federal lands class. Areas within detailed State boundaries not

delineated in PAD as Federal lands or surface water were assumed

to have non-Federal ownership. PAD Federal lands were used as

a geospatial filter when comparing satellite image-derived estimates

with NRI and FIA estimates of non-Federal forest land area. 

Inventory Estimates

Forest and Rangeland Renewable Resources Planning Act

of 1974

Estimates used in this study come from the Forest and Rangeland

Renewable Resources Planning Act of 1974 (RPA), P.L. 93-378,

99 Stat. 4765 (USDA Forest Service) FRA 2002 Draft Tables on

U.S. forest resources, with source dates ranging between 1983–2000

and an average of 1994 (http://ncrs2.fs.fed.us/4801/fiadb/rpa_tabler/

Draft_RPA_2002_Forest_Resource_Tables.pdf). RPA data were

derived from FIA data, except for portions of some western States

where National Forest System (NFS) lands were inventoried

independently (Smith et al. 2001, USDA Forest Service 2003).

Each of the five regions in the national FIA program report

estimates of forest land area for their respective States. These

estimates are obtained by multiplying total area inventoried by

the mean proportion forest land estimated from forest inventory

plot observations. National FIA precision standards “are designed

to meet statistical guidelines for accuracy within one standard

deviation at the 67 percent level for each State: ± 3–5 percent

per million acres of timberland, ± 5–10 percent per million

acres of all other forest land” (Smith et al. 2001). Because natural

variability among plots and budgetary constraints limit the suf-

ficiency of sample sizes, national FIA precision standards may

not be achieved using estimation techniques based on simple

random sampling. A technique known as stratified estimation

(post-sampling stratification) is used to reduce uncertainty of

FIA estimates (Cochran 1977, Hansen 2001). Sampling errors

used in this study were obtained from a compilation of published

statewide FIA reports (Hansen unpublished report) or by updating

published data from previous inventories using formula 3 in

Hansen (2001). FIA sampling errors for Alaska and Hawaii were

estimated based on a conservative assumption that their forest

land area estimates meet the FIA national precision standard

(likely an underestimate of sampling error) because no FIA

sampling errors were available for these two States.
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FIA defines forest land as “timberland,” “reserved forest

land,” or “other forest land,” including some pastured land with

trees, forest plantations, and unproductive forest land. This

definition of forest land also requires 10-percent minimum

stocking level or, for several western woodland types where

stocking cannot be determined, 5-percent canopy cover; minimum

area of 0.405 ha (1 acre); and a minimum continuous canopy width

of 36.58 m (120 feet) (USDA Forest Service 2003).

National Resources Inventory

NRI is a statistical survey designed to help gauge natural

resource status, conditions, and trends on non-Federal land in

the United States and is carried out under the authority of a

number of legislative acts including the Rural Development Act

of 1972, the Soil and Water Resources Conservation Act of

1977, the Federal Agriculture Improvement and Reform Act of

1996, and the Farm Security and Rural Investment Act of 2002.

Although NRI data are currently collected on an annual basis,

NRI inventories were conducted every 5 years from 1977 through

1997. For this project, statewide NRI estimates of non-Federal

forest land were obtained from the NRI 1997 inventory. The 1997

NRI database was chosen because of the temporal similarity to

the 2002 RPA’s mean data source date of 1994. Although future

NRI inventories will also include Alaska, no 1997 NRI data

were collected for that State; Alaska is therefore excluded from

NRI statewide estimates. The NRI is a longitudinal sample survey

based on scientific statistical principles and procedures. The

NRI is designed as a stratified cluster sample. Estimates and

standard errors of the estimates are calculated using standard

statistical procedures (Cochran 1977, Fuller et al. 1986, Särndal

et al. 1992). 

The NRI land cover/use definition of forest land is similar

to that of FIA in minimum size (0.405 ha or 1 acre) and stocking

(10 percent) requirements. Although both require a minimum

area of 1 acre, NRI specifies a minimum width of 100 feet,

while FIA specifies a minimum width of 120 feet. In some areas

of the west, FIA interprets the 10-percent stocking requirement

to be equivalent to 5-percent canopy cover, but the stocking

definition used by FIA most often is calculated from field

measurements of basal area and number of trees per unit area.

NRI interprets 10-percent stocking to be equivalent to 25-percent

canopy cover when viewed from a vertical direction. Also

included in both FIA and NRI forest land definitions are lands

not currently developed for nonforest use that bear evidence of

natural regeneration of tree cover (for example, cutover forest

or abandoned farmland).

Satellite Image-Derived Estimates

This study used four satellite image-derived maps to estimate

forest land area. Statewide estimates of forest land area for

each of these image sources was obtained by overlaying a

detailed State boundary geospatial dataset (ESRI® Data &

Maps 2002) using ArcGIS® software (ESRI).

Forest Cover Types

Forest Cover types (FC) data were produced by the Forest

Service and the United States Geological Survey (USGS) and

are distributed on the National Atlas Web site (http://www.

nationalatlas.gov/fortypem.html). Sometimes referred to as the

“RPA map” because of its inclusion in the 1997 RPA report

(Smith et al. 2001), FC is a thematic classification of 25 forest

cover types derived from 1991 AVHRR imagery at 1-km spatial

resolution (Zhu and Evans 1994). When estimating forest land

area, we included all 25 forest types and excluded four nonforest

classes (ocean fill, non-U.S. land, U.S. nonforest, and lakes)

from the 29 available classes. 

Land Cover Characteristics

Land Cover characteristics (LC) data were produced by USGS

and are distributed on the National Atlas website

(http://www.nationalatlas.gov/landcvm.html) as a map of 25

land cover classes at 1-km spatial resolution (Loveland et al.

2000).This data set was created using AVHRR imagery from

1992–93. When estimating forest land area, we excluded 20

nonforest classes and included 5 forest classes: Deciduous

Broadleaf Forest, Deciduous Needleleaf Forest, Evergreen

Broadleaf Forest, Evergreen Needleleaf Forest, and Mixed Forest.

Vegetation Continuous Fields

Vegetation Continuous Fields (VCF) data provide per-pixel tree

cover estimates as percent tree canopy cover data and are derived

from 2001 Moderate Resolution Imaging Spectroradiometer

(MODIS) imagery at 500-m spatial resolution. VCF data are

produced and distributed by the Global Land Cover Facility at
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the University of Maryland (http://modis.umiacs.umd.edu/vcf.htm).

Hansen et al. (2002) reported that a VCF minimum percent tree

canopy cover threshold of 35 percent produced a map of CONUS

forest land similar in forest land area to a 1992 Forest Service

estimate (Powell et al. 1993). We calculated two independent

VCF percent tree cover thresholds that produce national estimates

of forest land area equivalent to NRI 1997 estimates of non-

Federal forest land in the United States (excluding Alaska) and

RPA draft 2002 estimates for all 50 states, across all land own-

erships. Statewide estimates of forest land area were obtained

from image pixels having VCF percent tree canopy values

greater than or equal to national thresholds corresponding to

NRI and RPA estimates.

National Land Cover Data Set

The circa 1992 National Land Cover Data set (NLCD) is a 30-m

spatial resolution national land cover data set produced and

distributed by the USGS EROS Data Center (EDC), available at

http://landcover.usgs.gov/natllandcover.asp, using early 1990s

Landsat Thematic Mapper imagery and other sources of digital

data. The classification system used for NLCD provides a con-

sistent hierarchical approach to defining 21 classes of land

cover across CONUS (Vogelmann et al. 2001). For estimating

forest land area we examined eight combinations of up to six

NLCD classes: transitional (33)4, deciduous forest (41), evergreen

forest (42), mixed forest (43), shrubland (51), and woody wetland

(91). Table 1 provides definitions for each combination of NLCD

4 The correct numerical designation for the transitional class is 33; its designation as 31 in Vogelmann et al. (2001) is attributed to a manuscript error (Vogelmann,
EROS Data Center, U.S. Geological Survey, personal communication, 10 October 2001).

*Values in bold type indicate that for pair-wise comparisons, one estimate of CONUS forest land area falls within the 95 percent Confidence Interval of the NRI
estimate (for non-Federal land) or the RPA estimate (for all land ownerships).

Non-Federal lands All land ownerships
Thousand Thousand

Estimate acres Proportion acres Proportion

NRI 404,680 0.271 – –
NRI95low 391,655 0.262 – –
NRI95up 417,704 0.279 – –
RPA 437,315 0.292 620,306 0.321
RPA95low 432,205 0.289 613,819 0.318
RPA95up 442,425 0.296 626,793 0.325
FC 451,091 0.302 631,897 0.329
LC 473,881 0.317 620,503 0.323
VCF36 407,699 0.273 – –
VCF25 – – 623,413 0.325
NLCD3 – – 562,986 0.292
NLCD4a – – 575,248 0.298
NLCD4b – – 912,741 0.473
NLCD4c – – 617,539 0.320
NLCD5a – – 925,003 0.479
NLCD5b – – 629,801 0.326
NLCD5c – – 967,294 0.501
NLCD6 – – 979,556 0.507
NLCD21 – – 1,930,619 1.000

Table 1.—CONUS estimates of forest land area (thousand acres) and proportion of CONUS in forest land for non-Federal lands
(both NRI and RPA) and for lands of all ownerships (RPA only) derived from NRI, RPA, lower (95low) and upper (95up) limits of
NRI and RPA 95-percent confidence intervals, FC, LC, VCF25, VCF36, and combinations of NLCD 1992 classes: 41, 42, and 43
(NLCD3); 33, 41, 42, and 43 (NLCD4a); 41, 42, 43, and 51 (NLCD4b); 41, 42, 43, and 91 (NLCD4c); 33, 41, 42, 43, and 51
(NLCD5a); 33, 41, 42, 43, and 91 (NLCD5b); 41, 42, 43, 51, and 91 (NLCD5c); 33, 41, 42, 43, 51, and 91 (NLCD6); and all 21
classes combined (NLCD21).*
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classes. NLCD forest land area estimates are compared with

other estimates across all ownerships, but not with estimates of

non-Federal forest land as with the other three satellite image-

derived estimates.

Comparisons

RPA/NRI Comparisons

Using statewide sampling errors described above for the two

inventory estimates, three separate sets of 95-percent confidence

intervals were computed for RPA estimates of forest land area

across all ownerships, RPA estimates of non-Federal forest land

area, and NRI estimates of non-Federal forest land area.

Nonoverlapping confidence intervals for RPA and NRI estimates

of non-Federal forest land were interpreted as indicating the

plot-based estimates were significantly different. 

No estimate of uncertainty (e.g., confidence interval) was

available for the image-based estimates. Differences in estimates

of forest land area between image- and plot-based estimates are

reported as significantly different if image-based estimates fell

outside the 95-percent confidence intervals for RPA (across all

land ownerships) and NRI (non-Federal lands). Using PAD,

Federal lands were excluded from satellite image-based maps

when comparing image and NRI estimates of non-Federal forest

land area.

Root Mean Square Deviation

In this paper we use area-weighted root mean square deviation

(RMSD) rather than RMSE (as was cited from previous studies)

for comparing differences in pairs of statewide forest land area

estimates derived from plot- or image-based sources:

(1)

where      is the area of the ith state,     is the total area (sum of    

s for all states), and      and      denote the estimated propor-

tion of forest land area in the ith state obtained from two (r, s)

of the six sources compared in this study (Häme et al. 2001).

Values for     ’s,     ’s, and     ’s pertain either to non-Federal

lands only or to all land ownerships (depending on estimate

pairs), but are consistent in each pair.

Results

We observed a 2.8-percent difference between 1997 U.S. Census

Bureau statistics and 2001 PAD-derived non-Federal land area

for the Nation (1.8-percent difference when excluding Alaska).

Likewise, statewide 2001 PAD estimates of non-Federal land

area generally were within a few percent of 1997 Census Bureau

statistics, with notable exceptions for Wyoming (24 percent),

Alaska (15 percent), and Idaho (11 percent). (Appendix A;

appendixes are not included in this manuscript due to space

constraints but are available from the senior author.) An RMSD

of 2.5 percent (2.3 percent when excluding Alaska) was observed

when comparing PAD to Census Bureau estimates of U.S. non-

Federal land.

RPA and NRI estimates of non-Federal forest land area

differ by 7.5 percent (NRI-RPA/RPA) across CONUS and as

much as 54 percent for individual statewide comparisons

(Appendix B). Relative to non-Federal land area (NRI-RPA/

non-Federal), the CONUS difference is only 2.2 percent and the

maximum statewide difference is 12 percent. The NRI estimate

(± 95 percent confidence interval) of CONUS non-Federal forest

land area (404.7 ± 13.0 million acres) was significantly less

than the RPA estimate (437.3 ± 5.1 million acres) (Appendix B).

Statewide NRI estimates were significantly less than RPA

estimates in 27 States, similar in 19 States, and significantly

greater in 2 of 48 CONUS States (Appendix B, fig. 1). The

RMSD for NRI versus RPA forest land area estimates was 3.9

percent (table 2).

Minimum VCF tree canopy cover thresholds of 36 percent

(VCF36) and 25 percent (VCF25) resulted in national estimates

of forest land area within 95-percent confidence intervals of

NRI estimates for CONUS non-Federal lands (404.7 ± 13.0

million acres) (Appendix B) and RPA estimates for the entire

United States across all ownerships (748.9 ± 7.2 million acres)

(Appendix C). VCF thresholds resulting in statewide estimates

of forest land area equivalent to RPA statewide estimates (all

ownerships) ranged from 2 percent in Arizona, Nevada, New

Mexico, and Utah to more than 55 percent in Connecticut,

Massachusetts, and Rhode Island, with six states (Alaska,

Illinois, Indiana, Iowa, Ohio, and Oklahoma) having thresholds

within 5 percent of RPA’s nationwide VCF threshold (25 percent)

(Appendix C). 
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Comparison RPA NRI FC LC VCF25 VCF36

RPA ….. 3.9 2.9 13.2 – 7.3
NRI – ….. 5.0 14.2 – 6.0
FC 2.5 – ….. 14.0 – 7.6
LC 12.2 – 13.1 ….. – 13.1
VCF25 10.7 – 10.6 12.0 ….. –
NLCD3 7.0 – 8.3 12.9 13.0 …..
NLCD4a 6.4 – 7.7 12.4 12.1 –
NLCD4b 32.2 – 32.4 38.6 41.0 –
NLCD4c 5.8 – 6.3 12.4 8.3 –
NLCD5a 32.2 – 32.4 38.5 40.8 –
NLCD5b 6.2 – 6.5 12.6 7.3 –
NLCD5c 31.4 – 31.4 37.7 39.3 –
NLCD6 31.5 – 31.5 37.7 39.2 –

Table 2.—Area-weighted RMSD (percent) for pair-wise comparisons of forest land area estimates for CONUS non-Federal lands
(above diagonal, italics font) and for CONUS lands across all ownership (below diagonal, regular font).*

Figure 1.—Comparison of statewide estimates of forest land
area within the conterminous United States (CONUS), excluding
Alaska and Hawaii. Bar areas and numerals portray the number
of States in each pair-wise comparison where the first estimate
is higher, the same as, or lower than the 95-percent confidence
interval of the second estimate. Rectangular bars below the x-axis
illustrate CONUS-wide comparisons, using the same scheme as
described for statewide comparisons.

Of the three estimates of CONUS non-Federal forest land

derived from image products, both FC and LC were significantly

higher than NRI while VCF36 was not significantly different

than NRI (Appendix B, fig. 1). Based on RMSD, FC appears

more similar to both NRI (5.0 percent RMSD) and RPA (2.9

percent RMSD) than do three other image-derived estimates of

non-Federal forest land percent (table 2, Appendix B). Slightly

larger RMSD values were observed when comparing non-Federal

forest land percent estimates based on VCF36 to NRI (6.0 percent)

and RPA (7.3 percent) (table 2, Appendix B).

For CONUS estimates across all land ownerships, NLCD3

and NLCD4a (table 1) were significantly lower; FC, NLCD4b,

NLCD5a, NLCD5b, NLCD5c, and NLCD6 were significantly

higher; and LC, VCF25, and NLCD4c did not differ significantly

from the RPA estimate of forest land area (table 1, fig. 1,

Appendix C, Appendix D). Of these three estimates, NLCD4c

had the smallest RMSD (5.8 percent) (table 1) for CONUS

while VCF25 resulted in the smallest RMSD for the entire

United States (9.9 percent), relative to RPA estimates. Compared

to the RPA estimate across all ownerships, however, FC had the

lowest RMSD of all image-derived estimates (2.5 percent)

(table 1, table 2). 

*Values in bold type indicate that for pair-wise comparisons, one estimate of CONUS forest land area falls within the 95-percent Confidence Interval of the other
estimate in that pair.
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Discussion

Because of its similarity with the 1997 Census Federal land

area statistics, PAD was deemed suitable for use as a geospatial

filter to exclude Federal land in image-derived analyses for

national estimates and for most statewide estimates of non-Federal

forest land area. Differences in shoreline definitions and census

vintage between ESRI® Data & Maps (2002) State boundary

delineations; census statistics; and NRI statistics may result in

slight differences in statewide total land area estimates. This

study does not address possible effects of these differences on

estimates of statewide forest land area.

In general, estimates of non-Federal forest land area from

the two inventory sources were more closely related to each

other than to the image-derived estimates. The notable exception

was the closer agreement between FC and RPA than between

NRI and RPA. The relatively small differences between NRI

and FIA may be the result of differences in sampling intensity,

year of photography, definitions of forest land cover/use, or

inventory conventions on range and pasturelands. Greatest dif-

ferences occurred in the arid western states, which is also where

the most rangeland occurs, often with substantial patches of

woody canopy).

VCF Estimates

The VCF36 threshold that produced estimates comparable with

the NRI 1997 CONUS estimate of non-Federal forest land is

nearly identical to the 35 percent-threshold reported by Hansen

et al. (2002) as being equivalent to a 1992 CONUS Forest

Service estimate of forest land area across all ownerships. It is

different, however, from the 25-percent threshold we observed

for the RPA 2002 nationwide estimate of forest land across all

ownerships. No single VCF threshold appears suitable for all

national inventories.

By identifying VCF percent tree canopy thresholds specific

to inventory, geographic area, land ownership, and date, we

obtained VCF-derived estimates of forest land area that fell

within 95-percent confidence intervals of NRI and RPA forest

land area estimates. For most States, it is inappropriate to extract

statewide estimates of forest land area using maps created with

a nationwide VCF threshold. The vast majority of VCF-derived

statewide estimates were significantly larger or smaller than their

corresponding inventory-based estimates, and RMSD values

were approximately 6 and 11 percent for comparisons of

NRI:VCF36 (non-Federal lands) and RPA:VCF25 (all land

ownerships), respectively. 

The VCF data set includes continuous estimates of percent

tree, percent herbaceous, and percent bare cover, allowing for

user-defined thresholds, varying by inventory, land ownership,

and geographic extent. Although not analyzed in this study, a

similar product (forest density, derived from 1-km AVHRR)

also is available as a companion to the FC data (Zhu 1994).

Improvements to VCF-derived estimates of forest land area would

be expected by determining thresholds in smaller geographic

areas; stratifying areas by forest types, type groups, or life forms;

or by calibrating per-pixel continuous estimates of land cover

to match inventory-based estimates. 

NLCD Estimates

All eight NLCD combinations used in this study included three

“pure” forest classes (deciduous forest, evergreen forest, and

mixed forest) and seven of the eight combinations included one,

two, or three additional NLCD classes (transitional, shrubland,

and woody wetland). Area estimates derived from NLCD varied

widely with class combinations. Estimates from NLCD combi-

nations that included shrubland were about 50 percent larger

than RPA estimates of CONUS forest land area across all own-

erships and had RMSD values of 31–32 percent. In contrast,

NLCD combinations that excluded shrubland resulted in estimates

similar to RPA estimates, with RMSD values of about 6–7 percent.

In particular, the NLCD4c four-class combination (deciduous

forest, evergreen forest, mixed forest, and woody wetland) had

the lowest RMSD (5.8 percent) of any NLCD-derived estimate

of CONUS forest land area across all ownerships and was the

only NLCD-derived estimate to fall in the 95-percent confidence

interval surrounding the RPA estimate. NLCD5b included one

additional class (transitional), had an RMSD value (6.2 percent)

slightly larger than NLCD4c, and produced an estimate of forest

land area only slightly larger than the RPA 95 percent upper

confidence interval. The apparent superiority of NLCD over

some of the other satellite image-derived estimates may result

from its finer spatial resolution (30 m versus 500–1000 m)

combined with its temporal similarity (~1992) to the mean date

of RPA data collection (~1994). Although NLCD estimates
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were not calculated for non-Federal lands, such a calculation

might be useful for comparison with NRI estimates of non-

Federal forest land and other land cover classes.

Forest Cover Types Estimates

Compared with RPA estimates across all land ownerships, the

FC-derived estimates had the lowest RMSD of any image-derived

estimate, even though the CONUS estimate from FC was sig-

nificantly larger than the RPA estimate of CONUS forest land

area. It is not surprising that FC performed well, despite its

coarser spatial resolution (1-km pixel size), because the “Forest

Cover Types” used in the FC classification were defined to be

consistent with RPA definitions. 

Conclusions

Five conclusions may be drawn from the results of this study.

First, inventory-derived estimates of non-Federal forest land area

from draft 2002 RPA data and 1997 NRI data were closer to

each other than to image-derived estimates, with the exception

of the Forest Cover Types map. Second, compared to both RPA

and NRI, estimates of forest land area derived from FC resulted

in the smallest image-derived RMSD, both for non-Federal lands

and for all land ownerships. Third, a combination of four land

cover classes (deciduous forest, evergreen forest, mixed forest,

and woody wetland) from the 1992 National Land Cover Data

set resulted in an estimate of CONUS forest land that was similar

to the RPA estimate and had an acceptably low RMSD. Addition

of “transitional” class resulted in a slightly larger estimate, and

also may account for differences between forest land use (e.g.,

RPA) and forest land cover (e.g., NLCD) by including forest

clearcuts and other areas of forest regeneration not usually rec-

ognized by satellite imagery as forest cover. Fourth, thresholds

of VCF percent tree canopy data can be selected that produce

estimates comparable with plot-based estimates at either State

or national levels. A single threshold based on nationwide or

CONUS-wide plot-based estimates, however, is inappropriate

for obtaining estimates within smaller geographic areas, e.g.,

States. Finally, multiple satellite image-derived land cover maps

with a variety of characteristics (date of imagery, classification

scheme, spatial resolution, etc.) show potential for complementing

U.S. forest resource assessments.

Literature Cited

Cochran, W. 1977. Sampling techniques, 3rd edition. New York:

John Wiley & Sons. 428 p.

Czaplewski, R.L.; Rack, J.; Lessard, V.C.; et al. 2002.

Coordination, cooperation, and collaboration between FIA and

NRI. In: McRoberts, R.E.; Reams, G.A.; Van Deusen, P.C.;

McWilliams, W.H.; Cieszewski, C.J., eds. Proceedings, 4th

annual forest inventory and analysis symposium; 2002

November 19–21; New Orleans, LA. Gen. Tech. Rep. NC–252.

St. Paul, MN: U.S. Department of Agriculture, Forest Service,

North Central Research Station: 141–148.

DellaSala, D.A.; Staus, N.L.; Strittholt, J.R.; Hackman, A.;

Iacobelli, A. 2001. An updated protected areas database for the

United States and Canada. Natural Areas Journal. 21(2):

124–135.

Environmental Systems Research Institute, Inc. (ESRI). ArcGIS,

ver. 8.1. Redlands, CA: ESRI.

Environmental Systems Research Institute, Inc. (ESRI). 2002.

ESRI data & maps 2002. CD-ROM. Redlands, CA: ESRI.

Food and Agriculture Organization (FAO) of the United Nations.

2001. Global forest resources assessment 2000: main report.

FAO Forestry Paper; 0258-6150; 140. Rome, Italy: FAO. 479 p.

Fuller, W.A.; Kennedy W.; Schnell, D.G.S.; Park, H.J. 1986. PC

CARP©. Ames, IA: Iowa State University, Statistical Laboratory.

Häme, T.; Stenberg, P.; Andersson, K.; et al. 2001. AVHRR-

based forest proportion map of the Pan-European area. Remote

Sensing of Environment. 77(1): 76–91.

Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; et al. 2002.

Towards an operational MODIS continuous field of percent tree

cover algorithm: examples using AVHRR and MODIS data.

Remote Sensing of Environment. 83: 303–319.



2003 Proceedings of the Fifth Annual Forest Inventory and Analysis Symposium 137

Hansen, M.H. Unpublished report. State total estimates from

FIADB with reported and estimated sampling errors from FIA

state reports. St. Paul, MN: U.S. Department of Agriculture,

Forest Service, North Central Research Station, Forest

Inventory and Analysis. 

Hansen, M.H. 2001. Remote sensing precision requirements

for FIA estimation. In: Reams, G.A.; McRoberts, R.E.; Van

Deusen, P.C., eds. Proceedings, 2nd annual forest inventory and

analysis symposium; 2000 October 17–18 ; Salt Lake City, UT.

Ashville, NC: U.S. Department of Agriculture, Forest Service,

Southern Research Station: 43–51.

Kennedy, P.; Bertolo, F. 2002. Mapping sub-pixel forest cover

in Europe using AVHRR data and national and regional statistics.

Canadian Journal of Remote Sensing. 28(2): 302–331.

Lessard, V.C.; Hansen, M.H.; Nelson, M.D. 2003. Comparing

Minnesota land cover/use area estimates using NRI and FIA

data. In: McRoberts, R.E.; Reams, G.A.; Van Deusen, P.C.;

Moser, J.W., eds. Proceedings, 3rd annual forest inventory and

analysis symposium; 2001 October 17–19; Traverse City, MI.

Gen. Tech. Rep. NC-230. St. Paul, MN: U.S. Department of

Agriculture, Forest Service, North Central Research Station:

36–43.

Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; et al. 2000.

Development of a global land cover characteristics database

and IGBP DISCover from 1 km AVHRR data. International

Journal of Remote Sensing. 21(6/7): 1303–1330.

Owens, K.E. 2001. Development and analysis of current and

presettlement forest cover mapping methods for the eastern

Upper Peninsula of Michigan, Luce District. Houghton, MI:

Michigan Technological University. 215 p.

Päivinen, R.; Lehikoinen, M.; Schuck, A.; et al. 2001. Combining

earth observation data and forest statistics. Joensuu, Finland:

Research Report 14, European Forest Institute, Joint Research

Center-European Commission. 101 p.

Powell, D.S.; Faulkner, J.L.; Darr, D.R.; Zhu, Z.; MacCleery,

D.W. 1993. Forest resources of the United States, 1992. Gen.

Tech. Rep. RM-234. Fort Collins, CO: U.S. Department of

Agriculture, Forest Service, Rocky Mountain Forest and Range

Experiment Station. 132 p.

Särndal, C.E.; Swensson, B.; Wretman, J. 1992. Model assisted

survey sampling. New York: Springler-Verlag. 694 p.

Schuck, A.; Päivinen, R.; Häme, T.; et al. 2003. Compilation of

a European forest map from Portugal to the Ural Mountains

based on earth observation data and forest statistics. Forest

Policy and Economics. 5(2): 187–202.

Smith, B.W.; Vissage, J.S.; Darr, D.R.; Sheffield, R.M. 2001.

Forest resources of the United States, 1997. Gen. Tech. Rep.

NC-219. St. Paul, MN: U.S. Department of Agriculture, Forest

Service, North Central Research Station. 190 p.

U.S. Department of Agriculture (USDA) Forest Service. 2003.

Forest inventory and analysis national core field guide, vol. 1:

field data collection procedures for phase 2 plots, ver. 2.0. USDA

Forest Service, Washington Office, internal report. On file with:

U.S. Department of Agriculture, Forest Service, Forest Inventory

and Analysis, 201 14th St., Washington, DC 20250. 281 p.

Vogelmann, J.E.; Howard, S.M.; Yang, L.; et al. 2001.

Completion of the 1990s National Land Cover Data Set for the

conterminous United States from Landsat Thematic Mapper

data and ancillary data sources. Photogrammetric Engineering

& Remote Sensing. 67(6): 650–662.

Zawila-Niedzwiecki, T., ed. 2000. Remote sensing and forest

monitoring. Warsaw, Poland: Institute of Geodesy and

Cartography. 101 p.

Zhu, Z. 1994. Forest density mapping in the lower 48 States: a

regression procedure. Res. Pap. SO-280. New Orleans, LA:

U.S. Department of Agriculture, Forest Service, Southern Forest

Experiment Station. 11 p.

Zhu, Z.; Evans, D.L. 1994. U.S. forest types and predicted percent

forest cover from AVHRR data. Photogrammetric Engineering

& Remote Sensing. 60(5): 525–531.



138 2003 Proceedings of the Fifth Annual Forest Inventory and Analysis Symposium



2003 Proceedings of the Fifth Annual Forest Inventory and Analysis Symposium 139

Accuracy Assessment of FIA’s Nationwide
Biomass Mapping Products: Results From
the North Central FIA Region

Geoffrey R. Holden, Mark D. Nelson, and Ronald E.

McRoberts1

Abstract.—The Remote Sensing Band of the Forest

Inventory and Analysis (FIA) program has developed

a nationwide map of forest biomass to be distributed

as a geospatial raster data set with 250-meter spatial

resolution. The accuracy of the forest biomass map

depends on both an intermediate forest/nonforest

classification and the biomass estimation. For the

North Central FIA region, we assessed the accuracy

of the forest classification and biomass estimation

using three approaches: (1) per pixel percent correctly

classified; (2) comparisons of pixel- and FIA plot-based

estimations within delineated areas; and (3) utility for

stratified estimation of FIA attributes. Results showed

the forest/nonforest map to be accurate based on all

three assessments, while the forest biomass map

performed well only for area estimates. 

Introduction

The mission of the Forest Inventory and Analysis (FIA) program

is to provide statistical information about America’s forests. In

the past, much of this information was summarized in statistical

reports covering large areas, which offered little insight into

describing where forest attributes occur on the ground. With

improvements in geospatial technologies and the increased

availability of remotely sensed imagery, developing maps of

predicted forest attributes across landscapes is now feasible.

During the summer of 2003, the Remote Sensing Band (RSB)—

an interregional working group of the FIA program—developed

a nationwide forest biomass map. The purpose of this mapping

effort was to predict forest biomass across the Nation by com-

bining FIA measurements with remotely sensed imagery and

other raster data sets. This effort produced two mapping products:

a forest/nonforest (FNF) map and the forest biomass map itself.

Although this mapping effort is notable, its utility depends on

the accuracy of the resulting products. In this article, we report

and discuss results related to our validation of the portions of

the FNF and biomass maps in the North Central FIA (NCFIA)

region. We assessed accuracy using the following approaches:

(1) per pixel correctly classified, (2) comparisons of pixel-based

and FIA plot-based estimates within delineated areas, and (3)

utility for stratified estimation of FIA attributes.

Biomass Mapping Effort

Forest/nonforest classes and continuous estimates of biomass

were mapped at a 250-meter spatial resolution across the conti-

nental United States, Alaska, and Puerto Rico. FIA attributes

were integrated with spectral information from a variety of data

layers collectively referred to as the national geospatial predictor

data set. These data layers included Moderate Resolution Imaging

Spectroradiometer (MODIS) reflectance data; MODIS derivatives

such as Enhanced Vegetation Index, Normalized Difference

Vegetation Index, and Vegetation Continuous Fields (Hansen et

al. 2002); derivatives of the National Land Cover Data of 1992

(NLCD92), a 30-meter spatial resolution land cover product of

the Multi-Resolution Land Characterization Consortium

derived from nominal 1992 Landsat Thematic Mapper (TM)

imagery (Vogelmann et al. 2001); and elevation, precipitation,

and temperature data. 

Software from a suite of data mining packages developed

by RuleQuest Research was used for creating models specific

to mapping zones developed for the National Land Cover Data

of 2000 (Homer et al. 2002). See5, a data mining software

package, was used for modeling forest land by combining FNF

data observed on FIA plots with corresponding information

from the predictor data set to produce decision trees or rule

sets (RuleQuest Research 1997). Using a custom software

interface tool developed by the Forest Service’s Remote Sensing

1 Geographic Information System (GIS) Analyst, GIS Analyst, and Mathematical Statistician, respectively, U.S. Department of Agriculture, Forest Service, North
Central Research Station, St. Paul, MN 55108. Phone: 651–649–5149; fax: 651–649–5285; e-mail: gholden@fs.fed.us.
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Applications Center (RSAC), we incorporated these decision

trees or rule sets with ERDAS IMAGINE image processing

software to assign each 250-meter pixel to either a forest or

nonforest class. 

Modeling and mapping of biomass was performed in a

similar manner, but relied on Cubist, RuleQuest Research’s data

mining software package for deriving predictive models of

continuous response variables (RuleQuest Research 1997). The

Cubist rule-based linear models were used for predicting gross

biomass of all live trees (oven-dry tons/acre). Again, the models

were brought into ERDAS IMAGINE using the custom-built

RSAC tool to map the biomass predictions for each pixel.

Because the model was predicting forest biomass values, biomass

was mapped only on forest land, and the FNF map was used to

mask appropriate nonforest areas. 

Accuracy Assessment

Per Pixel

FNF Map

Because the FNF map included discrete classes, the accuracy

assessment for the FNF map used only FIA plots that were both

single condition (either 100-percent forested or 100-percent

nonforested) and independent of the plots used to train the model

(10 percent were randomly selected from the total plots available).

For pixels containing these “test” plot locations, predicted forest

or nonforest classes were extracted and compared to observed

forest or nonforest assignments reported for those specific plots.

Results were tabulated in a confusion matrix. Originally, assess-

ments were to be performed for each State. Based on a rule of

thumb proposed by Congalton and Green (1999), which suggests

at least 50 sample points per class for accuracy assessment,

however, some States were combined into larger areas. One of

these aggregations included Iowa (IA) and the Plain States (PS):

North Dakota (ND), South Dakota (SD), Nebraska (NE), and

Kansas (KS). Indiana (IN) and Illinois (IL) were also combined

into a single area. Per State assessments were performed for the

remaining four States in NCFIA: Michigan (MI), Minnesota

(MN), Missouri (MO), and Wisconsin (WI). In addition, a

regionwide assessment was conducted.

Four accuracy measures were calculated from the confusion

matrix: (1) overall accuracy, (2) producer’s accuracy, (3) user’s

accuracy, and (4) Kappa. Overall accuracy, a measure of the

accuracy across all classes, is calculated as the ratio of the total

number of correctly classified reference points to the total number

of reference points. Producer’s accuracy, which describes how

well the classification matched the reference data for each class

individually, is calculated as the ratio of the number of correctly

classified reference points for a class to the total number of

reference points for that class. User’s accuracy, also referred to

as mapping accuracy, measures the likelihood that an area

assigned to a class will actually be that class when visited in the

field. This number is calculated as the ratio of the number of

correctly classified reference points for a class to the total of

reference points classified as that class. The Kappa, or KHAT

statistic, measures the percent improvement the classification

has over a classification based purely on a random assignment

of pixels to classes (Congalton and Green 1999, Jensen 1996,

Lillesand and Kiefer 2000).

Forest Biomass

Cubist, the data mining software used to model biomass, produces

three measures for assessing model accuracy. These measures—

average error, relative error, and correlation coefficient—are

based on all model predictions. Average error is calculated as

the average absolute difference between observed and predicted

values. Relative error is the ratio of the average error to the

average absolute difference between observed values and the

mean value of the training observations. A relative error value

near to or greater than 1 indicates little or no improvement by the

model over the assignment of the mean of the observed values

to each case. The correlation coefficient (r) describes the linear

relationship between observed and predicted values. These three

measures were also recalculated for the independent validation

data set, using only plots with 100-percent forest condition and

located in pixels classified as “forest” in the FNF map.

Assessment was performed on the regionwide map.

Plot- Versus Pixel-Based Area Estimates

Although per pixel accuracy assessments are important for

validating maps at the local level, area estimates can provide an

indication of correctness for larger areas. Reese et al. (2002)
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reported that using a k-Nearest Neighbor (kNN) algorithm with

SPOT 3 and Landsat TM/Enhanced Thematic Mapper Plus data

performed poorly at the pixel level but produced acceptable

results for larger area estimates of wood volume and biomass

in Sweden’s forests. For our study, we assessed accuracy of

area estimates by comparing FIA plot-based estimates to RSB

map-based estimates. This comparison, relative difference (RD),

was calculated as:

RD = 

Because FIA plot-based estimates are based on a sample, 95-

percent confidence limits were calculated for each estimate and

compared to the RSB map-based estimates.

FNF Map

Total and forested pixel counts were determined for each State

in the 11-State NCFIA region. Proportion forest land area for a

State was computed as the ratio of the number of forested pixels

in a State to the total number of pixels in that State. A consistent

intensity of FIA plots in a State was used to calculate estimates

of plot-based proportion forest area based on the assumption of

simple random sampling (SRS). For comparison to another

map product, estimates of statewide proportion forest land were

calculated using the NLCD92. The NLCD92 data set consists

of 21 land cover classes. We aggregated these classes into forest

and nonforest, as recommended by McRoberts et al. (2002),

and computed statewide proportion forest land, as was done for

the RSB FNF map. In addition, RD was calculated to compare

plot-based estimates to NLCD92-based estimates. 

Forest Biomass

Pixel-based area estimates for forest biomass were calculated in

much the same way as forest area estimates. The mean biomass

in tons/acre was calculated for an area using all pixels classed

as forest in the RSB FNF map in the area. Plot-based estimates

included only plots that had a forested condition.

Stratified Estimation

NCFIA currently uses a stratified estimation (post-sampling

stratification) approach that incorporates satellite-imagery-derived

land cover classification data for improving the precision of

FIA estimates (McRoberts et al. 2002). According to Hansen

(2001), “The sampling errors of the area estimates are very

dependent on the quality of the stratification” (Hansen 2001, 45).

We assessed the accuracies of the mapping products by examining

their utility for stratified estimation. This was accomplished by

comparing the precision of a stratified estimate using map-based

strata to the precision of estimates based on SRS. 

For SRS, plot-based estimates calculated for the area estimate

comparisons discussed above were used. The variance estimates

were then calculated to determine the precision of each SRS

estimate. For stratified estimation, the same plots used in the

SRS technique were assigned to strata based on overlays of the

stratification layers. Again, the estimate,    , and associated

variance estimate, Var (   ), were calculated, but this time

Cochran’s (1977) formulas for stratified analyses were used: 

and

where:

A is total area, 

j=1,…,J denotes stratum, 

Wj is the weight for the jth stratum calculated as the 

ratio of the number of pixels assigned to the jth

stratum to the total number of pixels for all strata, 

denotes the mean proportion forest land for plots 

assigned to the jth stratum,

is the within-stratum variance for the jth stratum 

calculated as:

where:

Pij is the proportion forest land observed by the   

field crew for the ith plot in the jth stratum,

and 

nj is the number of plots assigned to the jth stratum.

FIA precision estimates are scaled to a constant area to

report precisions for estimation units of varying sizes. These

precisions, as a percent estimate per million acres of forest land

or a percent per billion tons of biomass, were calculated as follows:
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Relative efficiency (RE) of the stratified estimation precision to

the SRS precision is calculated as: 

RE =

FNF Map

Using a consistent intensity of FIA plots from the first annual

inventory, a SRS estimate of forest land area was calculated for

each State. The FNF map was used as a stratification layer to

compute a stratified estimate of forest land area. Two stratification

layers were derived from this map. The first was a two-stratum

layer created using the forest and nonforest classes directly. The

second was a four-stratum layer that included two interior classes,

forest and nonforest, and two edge classes, one located adjacent

to forest interior and the other adjacent to nonforest interior. The

four-strata layer required manipulation of the FNF map including

(1) a division of each 250-meter pixel into 25 50-meter pixels,

and (2) a search and recode operation to reassign the first tier of

50-meter pixels adjacent to each interior class located along the

transition zone to its respective edge class. This same procedure

was repeated for the entire 11-State FIA region, using FIA plots

from fiscal year (FY) 2001, the only year for which annual plot

data are available across all 11 States.

Forest Biomass

Per area estimates of forest biomass were computed for the

entire NCFIA region. Plots from a single year of the annual

inventory FY 2001 were used. To create the stratification layer,

the continuous biomass values were aggregated into three biomass

classes representing low, medium, and high biomass. Class breaks

were based on those proposed for distribution in the RSB

national map: less than 30 tons/acre (low), 30–50 tons/acre

(medium), and greater than 50 tons/acre (high). These class

breaks are comparable to one standard deviation of the predicted

data in the NCFIA region. A per pixel accuracy assessment of

these biomass classes was performed using observed values

from FIA plot data grouped in the same classes as test data. 

Results

FNF Map

Per Pixel

Table 1 shows a summary of the results for the per pixel correctly

classified assessment of the RSB FNF map. Overall accuracies

for all areas were good, exceeding the 85-percent minimum

described as acceptable by Anderson (1971) for land cover clas-

sifications. For many areas, overall accuracy exceeded 90 percent.

When compared to the reference data (producer’s accuracy), the

nonforest class had relatively high values (88 percent or higher)

in all analysis areas. The accuracy of the forest class tended to

reflect the abundance of forest land in that area, because classi-

fications of sparsely forested areas (PS and IA) performed poorly,

while classifications of more heavily forested areas (MI, MN,

MO, and WI) performed better. The mapping accuracy (user’s

accuracy) exhibited a similar trend. Except for the PS and IA area

(Kappa = 43 percent), the classifications performed better than

a random assignment of pixels to classes (Kappa > 70 percent).

Analysis Overall Producer’s accuracy (%) User’s accuracy (%) Kappa (%)
area accuracy (%) Forest Nonforest Forest Nonforest

MI 91 92 89 90 91 81
MN 89 91 88 84 93 78
MO 88 77 94 88 88 73
IL and IN 95 82 97 77 98 77
PS and IA 98 40 99 48 99 43

Region 94 84 96 86 96 81

Table 1.—Confusion matrix summary for the FNF map based on a per pixel accuracy assessment.
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Plot- Versus Pixel-based Per Area Estimates 

Table 2 shows the RSB map-based, NLCD92 map-based, and

plot-based proportion forest area estimates. Compared to the

plot-based estimates, the RSB map-based forest land estimates

underestimate all areas except MN. For MN, the estimates were

within 1 percent. The relative difference between the plot- and

RSB map-based estimates tended to reflect the abundance of

forest land calculated for an area, so that more heavily forested

areas had closer estimates, and more sparsely forested areas

had greater differences between estimates. Conversely, the

NLCD92 map-based estimates tended to overestimate forest

area when compared to the plot-based estimates except for two

sparsely forest areas, KS and NE. For most States/areas, the

RSB map-based estimates were below the range of the 95-percent

confidence limits for the plot-based estimates (table 3).

Stratified Estimation

Table 4 reports the forest area estimates in thousands of acres

for the SRS, RSB map two- and four-class stratifications, and

NCFIA’s reported estimates for FY 2002 that use an NLCD92-

derived classification to assign plots to strata. As was expected,

the estimates were all comparable with stratified estimates and

within a few percent of the SRS estimates. The RSB FNF map

improved the precision of the estimates over the SRS for all

States and the entire NCFIA region. Table 5 lists these preci-

sions and the relative efficiencies of the stratified estimates.

Because an improvement in precision for most States was

obtained using the four-class stratification over the two-class

stratification, the relative efficiency was calculated only for the

four-class stratification. Sparsely forested States such as NE,

ND, IA, and KS showed a slight improvement in precision over

the SRS (relative efficiency was less than 1.5), while heavily

forested States, such as MI, MN, MO, and WI, showed a greater

improvement, which is consistent with the poorer accuracies

Analysis
Proportion forest land Relative difference (%) to plot-based

area RSB NLCD92 Annual RSB NLCD92
map-based map-based plot-based map-based map-based

IL 0.09 0.15 0.11 –25 31
IN 0.14 0.20 0.19 –25 7
IA 0.04 0.08 0.07 –35 19
KS 0.02 0.04 0.04 –49 –13
MI 0.51 0.56 0.52 –3 7
MN 0.29 0.36 0.29 0 22
MO 0.28 0.39 0.32 –11 21
NE 0.01 0.02 0.03 –76 –23
ND 0.01 0.04 0.02 –67 144
SD 0.03 0.06 0.03 –12 62
WI 0.41 0.47 0.44 –7 6

Region 0.16 0.20 0.18 –11 11

Table 2.—Comparison of proportion forest area estimates.

Analysis RSB Plot-based 95-percent C.I.
area map-based Lower Upper

IL 0.09 0.10 0.13
IN 0.14 0.18 0.20
IA 0.04 0.06 0.08
KS 0.02 0.04 0.05
MI 0.51 0.51 0.54
MN 0.29 0.28 0.30
MO 0.28 0.31 0.33
NE 0.01 0.02 0.03
ND 0.01 0.01 0.02
SD 0.03 0.03 0.04
WI 0.41 0.43 0.46

Region 0.16 0.17 0.19

Table 3.—Comparison of RSB map-based forest proportion to
plot-based 95-percent confidence limits (C. I.)
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seen with the other two assessment methods described above.

Also, increased sampling intensity in these four heavily forested

States most likely contributed to this improvement. Stratified

estimation using the NLCD92-based stratification layer

achieved higher precisions for all analysis areas except one, SD

(relative efficiency of 2.14 compared to 3.72 when the RSB

FNF map was used as a stratification layer). 

Forest Biomass

Per Pixel (Continuous)

Average error of the Cubist biomass model predictions was

about 20 tons/acre, meaning that, on average, the predicted

value differed from the observed value by plus or minus 20

tons/acre. The relative error was 0.88. Because values nearing

1.0 indicate little improvement of the predicted values over the

assignment of the observed mean to all cases, this result might

indicate that the modeling tended to predict values close to the

mean. The correlation coefficient was calculated as 0.4. Figure

1 is a scatter diagram of the predicted biomass values plotted

against the observed biomass values with a “least squares”

trendline and r2 statistic. Initial observations show a positive

correlation between the observed and predicted values, but the

range of the predicted values (10–60 tons/acre) did not match

that of the observed value range (0–286 tons/acre). Correlation

was poor with r2 = 0.16.

Analysis
FIA precisiona Relative efficiency

area Simple random RSB map RSB map NLCD92 RSB map NLCD92
sampling two-class four-class four-class four-class four-clas

IL 6.74 4.96 4.82 3.98 1.95 2.88
IN 6.48 4.60 4.38 3.66 2.19 3.13
IA 6.92 5.88 5.87 4.39 1.39 2.48
KS 6.83 6.50 6.44 5.47 1.13 1.56
MI 2.40 1.45 1.43 1.34 2.82 3.21
MN 4.75 2.89 2.84 2.57 2.80 3.41
MO 5.56 4.11 3.96 3.16 1.97 3.08
NE 6.95 6.28 6.31 5.97 1.21 1.36
ND 7.02 6.42 6.42 6.12 1.19 1.32
SD 7.37 3.88 3.82 5.04 3.72 2.14
WI 3.87 2.64 2.58 2.19 2.25 3.14

Region 5.83 3.60 3.56 N/A 2.69 N/A

Table 5.—Precisions of forest area estimates as a percent per million acres and relative efficiency of map-based precisions over
precisions based on the assumption of simple random sampling (SRS).

a Calculated as a percent per million acres of forest land.
N/A = not available.

Analysis
Stratified estimation

area SRS RSB map RSB map NCFIA
two-class four-class four-class

IL 4,097 4,180 4,275 4,260
IN 4,359 4,216 4,223 4,545
IA 2,492 2,524 2,567 2,699
KS 2,172 2,171 2,175 2,229
MI 19,618 19,752 19,710 19,349
MN 15,922 16,394 16,416 16,353
MO 14,231 14,544 14,570 14,464
NE 1,355 1,443 1,449 1,364
ND 744 731 716 823
SD 1,700 1,702 1,705 1,714
WI 15,894 15,982 15,941 16,016

Region 82,390 81,755 81,924 83,815

Table 4.—Estimated forest area (1,000 acres) based on an
assumption of simple random sampling (SRS) and stratified
estimation.
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Analysis Mean biomass (tons/acre) Relative Plot-based 95 percent C.I.

area RSB map Plot-based difference (%) Lower Upper

IL 50.66 52.34 –3 48.17 56.51
IN 53.37 60.76 –12 57.68 63.84
IA 45.01 46.06 –2 42.09 50.03
KS 39.84 41.04 –3 35.89 46.19
MI 45.66 50.16 –9 48.21 52.11
MO 45.07 45.29 0 44.06 46.53
NE 36.92 36.77 0 30.23 43.31
ND 29.24 28.62 2 21.52 35.72
SD 25.94 21.79 19 18.91 24.68
WI 43.81 45.18 –3 43.60 46.77

Region 42.43 44.87 –5 43.64 46.10

Table 6.—Pixel- versus plot-based estimates of average biomass per acre by analysis area.

Figure 2.—Confusion matrix for classed biomass map.

Figure 1.—Scatter diagram of observed biomass values versus
predicted biomass values.

Per Pixel (Classed)

Overall accuracy for the classed biomass map was poor with

only about 40 percent of the reference points correctly classified.

The error matrix in figure 2 shows that the majority of the

error occurred in the low and high biomass classes because of

a bias in the map toward the medium biomass class. Although

the reference data included an almost equal number of points

observed in each class, the classification showed the majority of

the reference data (about 69 percent) predicted in the medium

class. This bias is evident in the producer’s accuracies of 73

percent for the medium class and 24 and 32 percent, respectively,

for the low and high classes. The Kappa statistic of 14 percent

indicates that the classification was not much of an improvement

over a random assignment of classes to pixels.

Plot- Versus Pixel-based Per Area Estimates

Table 6 provides average biomass estimates by State and region

based on the RSB biomass map and the FIA plot data. For many

States and regionwide, the predicted average biomass per acre

was within 10 percent of the observed average biomass, with

estimates for two States, MO and NE, within less than 1 percent.

Many of the pixel-based estimates were within the 95-percent

confidence limits of plot-based estimates. Exceptions included

areas with RD greater than 0.04.
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Stratified Estimation

Estimates of total biomass for the entire region were comparable

between the SRS (3.73 billion tons) and stratified estimation

(3.35 billion tons). Using biomass classes for stratification did

little to improve the precision of total biomass stratified estimation

with an RE of 1.08.

Conclusions

The 11-State NCFIA portion of the RSB FNF map exhibited

favorable results for all three measures of accuracy assessment

used in this study. The map appears to have a consistent negative

bias, however, relative to plot-based estimates. Bias was smaller

in more heavily forested States and larger in more sparsely

forested States. In contrast, the 30-meter NLCD92 FNF map

was positively biased relative to plot-based estimates, with

magnitude of bias being less dependent on the amount of forest

land within a State. The coarser spatial resolution of the RSB map

(250-meter) versus the NLCD92 map (30-meter) may partially

account for the different bias trends in these two image-based

maps. Mayaux and Lambin (1995) related bias in image-based

estimates to “effects of spatial aggregation.”

Although sums of biomass pixel values produced unbiased

estimates of statewide forest biomass for most NCFIA States,

individual pixel predictions tended to underestimate high biomass

and overestimate low biomass with high correlations occurring

in the middle values, similar to observations made by Reese et

al. (2002). Given this observation, the minimal gain in precision

over SRS estimates achieved when using biomass classes as

strata for stratified estimation is not surprising. Additional work

is needed to determine spatial scales at which the RSB FNF

and biomass maps are biased or unbiased and compare preci-

sion of estimates derived from these maps to estimates derived

from the FIA inventory.
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A Proposal for Phase 4 of the Forest
Inventory and Analysis Program

Ronald E. McRoberts1

Abstract.—Maps of forest cover were constructed

using observations from forest inventory plots, Landsat

Thematic Mapper satellite imagery, and a logistic

regression model. Estimates of mean proportion forest

area and the variance of the mean were calculated for

circular study areas with radii ranging from 1 km to

15 km. The spatial correlation among pixel predictions

was incorporated into the variance calculations. The

map-based estimates were compared to estimates

obtained using only plot data for the same circular

areas. For three circular study areas in Minnesota, the

map-based estimates were similar to the plot-based

estimates and more precise. 

The Forest Inventory and Analysis (FIA) program of the U.S.

Department of Agriculture (USDA) Forest Service surveys the

Nation’s forested lands using a combination of field plot meas-

urements and remotely sensed data. Traditionally, the FIA program

has used data from these inventories to respond to the “How

Much?” question by reporting plot-based estimates of forest

attributes by county or combinations of counties. The estimates

are obtained using a three-phase approach: Phase 1 consists of

using remotely sensed data, often satellite imagery, to stratify the

land area of interest for increasing the precision of estimates,

and, optionally, to determine if a plot has accessible forest land;

Phase 2 consists of measuring a suite of mensurational variables

for plots with accessible forest land; and Phase 3 consists of

measuring a suite of variables related to forest health for a 1:16

subset of the Phase 2 plots.

Increasingly, users are also asking “Where?” and are

requesting access to plot data for estimating for their own areas

of interest (AOI), frequently for use as training or accuracy

assessment data for spatial products. Many of these applications

require the coordinates of plot locations to determine if a plot is

located in the AOI. Although forest inventory programs generally

release plot information to the public, many resist releasing

plot locations. First, release of plot locations may entice users

to visit plots for additional data, which could artificially disturb

the ecology of the sites and contribute to bias in inventory esti-

mates. Second, many forest inventory programs rely on the

goodwill of private forest landowners for permission to observe

plots on their land. Landowners generally do not welcome

unwarranted or frequent intrusions and often only permit visits

by inventory crews contingent on assurances that plot locations

and proprietary information will not be released. 

In response to the “Where?” question, the FIA program

has initiated local, regional, and national mapping efforts.

Although the objectives of these efforts have been to map the

spatial distribution of forest attributes, generally they have not

included investigations of whether the maps may be used to

produce unbiased and precise estimates of forest attributes. For

the latter objective, plot-based estimation using data for plots

located in the AOI has been necessary. However, if unbiased

and sufficiently precise estimates of forest attributes could be

obtained from maps, then several advantages would accrue. First,

release of plot locations would be unnecessary for estimation

for user AOIs. Second, because mapped values for individual

mapping units would be based on aggregated data from multiple

plots, proprietary information would not be released. Third,

estimation would be possible for small areas for which the

number of plots is insufficient for plot-based estimation. Fourth,

efficiencies would be gained by simultaneously addressing both

the “How Much?” and “Where?” questions. 

The objective of the study was to investigate estimation of

forest attributes from maps constructed using inventory plot data

and satellite imagery. In this context, FIA Phase 4 is defined as

the construction of forest attribute maps that satisfy two criteria:

(1) estimates at all spatial scales are within tolerance limits rel-

ative to plot-based estimates, and (2) estimates of the precision

of the map-based estimates are comparable to the precision of

plot-based estimates. For this study, the terms plot-based and

map-based estimates are considered equivalent to the terms

design-based and model-based estimates, respectively. Although

the second set of terms may be regarded as more correct from a

1 Mathematical Statistician, U.S. Department of Agriculture, Forest Service, North Central Research Station, 1992 Folwell Avenue, St. Paul, MN 55108.
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statistical perspective, the terms of the first set are generally used

for this study because they are considered more descriptive. The

study focused on constructing maps depicting pixel-level proba-

bilities of forest ground cover using inventory plot data, Landsat

Thematic Mapper (TM) satellite imagery, and a logistic regres-

sion model, and then comparing the map-based and plot-based

estimates of forest land area.

Data

FIA Plot Data

Under the FIA program’s annual inventory system (McRoberts

1999), field plot centers are established in permanent locations

using a systematic sampling design that is assumed to produce

a random, equal probability sample. In each State, a fixed pro-

portion of plots is measured annually. For the FIA program of

the North Central Research Station , plots measured in a single

federal fiscal year (e.g., FY 2004: 1 October 2003 to 30

September 2004) comprise a single panel of plots with panels

selected for annual measurement on a 5-year rotating basis. In

aggregate, over a complete 5-year measurement cycle, a plot

represents approximately 2,400 ha (slightly less than 6,000 ac).

In general, locations of forested or previously forested plots are

determined using global position system receivers, while locations

of non-forested plots are determined using digitization methods.

Each field plot consists of four 7.31-m (24-foot) radius

circular subplots. The subplots are configured as a central

subplot and three peripheral subplots with centers located at

36.58 m (120 ft) and azimuths of 0o, 120o, and 240o from the

center of the central subplot. Among the observations field crews

obtain are the proportions of subplot areas that satisfy specific

ground land use conditions. Subplot estimates of forest land

proportion are obtained by aggregating ground land use condi-

tions into forest and non-forest classes consistent with the FIA

definition of forest land, and plot-level estimates are obtained

as means over the four subplots. For this study, all plots were

observed or measured between the beginning of FY1999 and the

end of FY2002. Although the locations of the central subplots

are considered a random, equal probability sample, the fixed

spatial configuration of the peripheral subplots with respect to the

central subplots requires accommodation of spatial correlation

among subplot observations for subplot-level analyses.

Satellite Imagery

Landsat TM imagery for scenes Row 27 and Row 28 of Path 27

was obtained from the Multi-Resolution Characterization 2001

land cover mapping project (Homer et al., in press) of the U.S.

Geological Survey. The imagery was characterized by several

salient features: (1) a combination of Landsat 5 and Landsat 7

Enhanced TM+ data, (2) three dates including early, peak, and

late vegetation green-up (Yang et al., 2001), (3) geometrically

and radiometrically corrected, (4) cubic convolution resampling

to 30 m x 30 m spatial resolution, (5) visible and infrared bands

(1-5, 7), and (6) conversion to at-satellite reflectance.

For predicting the probability of forest cover, the satellite

image spectral data were used in two forms: the 18 raw spectral

band data and 12 transformations including normalized difference

vegetation index (NDVI) and the tree tassel cap transformations

(brightness, greenness, and wetness) for each image date (Kauth

and Thomas 1976). The raw band data and the transformations

were evaluated separately. 

Combining FIA Data and Satellite Imagery

The spatial configuration of the FIA subplots with centers sepa-

rated by 36.58 m and the 30 m x 30 m spatial resolution of the

TM imagery permits individual subplots to be associated with

individual image pixels. Further, the subplot area of 167.87 m2

is approximately 19 percent of the 900 m2 pixel area and is gen-

erally deemed an adequate sample of the ground characteristics

of the pixel area. However, when describing relationships

between forest attributes and satellite image spectral values,

two phenomena must be considered. First, because a subplot is

a single, 19-percent, contiguous sample of the pixel area, the

proportion forest for a partially forested subplot may not accu-

rately represent the proportion forest for the entire pixel. Second,

Global Positioning System and image registration errors may

cause a subplot to be associated with an incorrect pixel, resulting

in the forest attribute of a subplot being erroneously associated

with the spectral signature of a non-forested pixel, and vice

versa. Both phenomena obscure relationships between observed

forest attributes and spectral values, cause bias in estimates of

parameters of models of the relationships, increase both model

residual variability and the uncertainty in model parameter

covariance estimates, and contribute to increasing the variance

of map-based estimates of forest attributes. To avoid these phe-
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nomena, when fitting models data were excluded for plots with

a mixture of forest and non-forest cover. An important result of

the exclusion of these data was that proportion forest area, Y,

was a binary variable. This variable was quantified according to

the convention that Y = 1 denoted a forested subplot and Y = 0

denoted a non-forested subplot.

Within the two TM scenes, three 15-km radius circular

study areas were arbitrarily selected to represent a spectrum of

forest/non-forest ground cover conditions (fig. 1). Because the

relationship between spectral values and the forest/non-forest

composition of ground cover was expected to be approximately

constant over the scenes, data for calibrating models were com-

bined for the three study areas. In addition, spatial variability

was evaluated for the three study areas collectively under the

assumptions that spatial correlation is stationary (i.e., it does

not change within the scene) and that spatial correlation is

isotropic (i.e., it is the same in all directions). 

Methods

Model Calibration

The relationship between the binary forest/non-forest depend-

ent variable, Y, and the continuous spectral value independent

variables, X, may be expressed as,

(1a)
or

(1b)

where i denotes subplot, pi is the probability that Yi = 1, β is a

vector of parameters to be estimated, f(Xi,β) is a function

expressing the relationship among the independent variables

and the parameters, εi is unexplained residual uncertainty, and

E(.) denotes statistical expectation. For binary data, f(Xi,β) is

often expressed as a logistic model of which one form is,

(2a)

and another is, 

(2b)

Each of the two forms, (2a) and (2b), may be expressed as one

minus the other, and parameter values for the two forms are the

same, except that the signs are reversed. 

The parameters of (2) are often estimated by maximizing

the likelihood, L, expressed as,

(3)

where n is the number of subplot observations. Maximum like-

lihood parameter estimates using (3) may be obtained using

SAS PROCs LOGISTIC, CATMOD, or GLIM (SAS 1988),

although care must be exercised to assure the model form, (2a)

or (2b), to which the parameter estimates apply. However,

because (3) cannot accommodate spatial correlation among

subplot observations, another approach to parameter estimation

must be considered if correct measures of uncertainty are

required. Nevertheless, because (3) yields unbiased parameter

estimates, it may be used to obtain parameter estimates if no

measures of uncertainty are required or to obtain initial parameter

Figure 1.—Study areas (white circles represent study areas;
solid white rectangle denotes TM Path 28 Row 27; dashed
white rectangle denotes TM Path 28 Row 28).
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estimates for iterative approaches that accommodate spatial

correlation. 

An iterative approach based on generalized estimating

equations (GEEs) as described by Albert and McShane (1995)

and Gompertz et al. (2000) was used to accommodate spatial

correlation. For the first iteration, ordinary logistic regression

using maximum likelihood was used to fit (2) to the data. The

GEE approach consisted of solving,

(4)

where the elements, zij, of Zi are,

(5)

and              is the logistic function, (2), evaluated using the

parameter estimates,    . The subplot residual covariance matrix,

Ve, was recalculated following each iteration. The standardized

residuals, 

(6)

were calculated and used to define an empirical semivariogram, 

(7)

where h is the distance between subplots, nh is number of subplots

h km apart, and the subscripts i and j indicate the ith and jth sub-

plots, respectively. The exponential semivariogram,

(8)

was fit to the empirical semivariogram using weighted nonlinear

least squares techniques. The elements, vij, of the subplot residual

covariance matrix, Ve, were estimated as,

(9)

The k+1st iterative updated estimate,       , was obtained as,

(10)

The iterative procedure of updating      and recalculating Ve

continued until convergence. The covariance matrix, Vβ, for the

parameter estimates was approximated as,

(11)

Individual variables from among the 18 raw spectral bands and

the 12 transformations were selected for inclusion in the model

by repeatedly fitting the model using the GEE technique after

eliminating the least significant variable among those that did

not contribute significantly to improving the quality of fit. 

Map-Based Estimation

Because the estimate of forest area for an AOI may be expressed

as the product of the AOI’s total area and an estimate of its

expected proportion forest land, the remaining discussion focus-

es on the estimation of the expected proportion forest land and

the precision of the estimate. For the ith pixel in the AOI, the

probability, pi, that Yi = 1 was estimated as,

(12)

where      is the vector of parameter estimates obtained from

(10). The estimate,     , of the expected proportion forest, P, for

the entire AOI is the mean of the probability estimates over all

pixels,

(13)

where N is the number of image pixels in the AOI. The variance

of      was estimated as,

(14)

where      is the covariance matrix for the parameter estimates

from (11) and ε is residual uncertainty. The first component

within the brackets of (14) quantifies the uncertainty in the

estimate because predictions for each pixel are obtained from a

model with parameter estimates obtained from the same sample.

The second component within the brackets of (14) quantifies

the effects on uncertainty of residual variation around the model

predictions. The derivation of (14) is provided in the appendix.
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An estimate of correlation among residuals at a distance h,    

(h), was obtained from the relationship,

where    (h) is obtained from (8) and                   . Thus, in

application, Cov(εi,εj) was estimated as, 

(15)

where h is the distance between the centers of the ith and jth pixels.

Plot-Based Estimation

Plot-based estimates of the mean and variance of proportion

forest land were calculated as a standard of comparison for

map-based estimates. When calculating these estimates, data were

included for all four subplots of each plot having any portion

of a subplot in the AOI. In addition, all plots in the AOI were

selected for calculation of the mean and variance, regardless of

the homogeneity of the ground cover. Inclusion of subplots

with a mixture of forest and non-forest ground cover meant

that proportion forest area could not be considered a binomial

variable when calculating the variance of the estimate of the

mean. Because the sampling design was considered to produce

an equal probability, random sample, central subplots of all plots

were considered to be randomly located, and spatial correlation

among observations from different plots was not considered.

However, the fixed spatial configuration of peripheral subplots

with respect to their corresponding central subplots meant that

spatial correlation, ρ, among subplot observations of the same

plot could not be ignored. Large area analyses indicated that the

correlation between central and peripheral subplot observations

for the same plot was approximately 0.9, while the correlation

between peripheral subplot observations of the same plot was

approximately 0.8. Estimates of the variances of the plot-based

mean proportion forest land area estimates were calculated as,

(16)

where i denotes subplots, n is the number of subplots in the AOI,

is the number of central subplots, and        is the number of

peripheral subplots.

Analyses

The inventory plot data and the satellite image spectral data were

pooled for the three study areas, and a single set of parameters

for model (2a) was estimated for all three study areas. For each

circular area, the prediction of the probability of forest land was

calculated for each pixel, and a map of the predicted probabilities

was created. Within each 15-km radius circular study area, the

map-based estimates    and Var (   )were calculated using (13)

and (14), respectively, for circular areas with radii ranging from

1 km to 15 km centered at the center of the study area. In addition,

the plot-based estimates     and              were calculated using

(15) and (16), respectively, for the same circular areas.

Results and Discussion

The NDVI and tassel cap transformations were better predictors

of the probability of forest ground cover than were the raw

spectral band data. However, these results may vary for different

ground covers and for satellite imagery of different dates. Because

of the relatively small numbers of plots in each study area and

the common set of parameter estimates for all three study areas,

a single semivariogram was fit to residual data collectively for

all three study areas. The fitted semivariogram indicated that

spatial correlation did not extend beyond 350 m.

The inventory data, satellite imagery, and logistic model

produced considerable detail in the maps depicting the probability

of forest land for each pixel (fig. 2). Comparisons of the map-

based and plot-based estimates of mean proportion forest land

and estimates of the standard errors of the estimates yielded

three primary results (table 1). First, the map-based estimates

of mean proportion forest land were very similar to the plot-based

estimates. Of the 37 circular areas for which the plot-based

standard error was greater than zero, all except four map-based

estimates of proportion forest land were within two plot-based

standard errors of the plot-based estimates. For these exceptional

four cases, t-tests using plot-based variances in the denominator

of the t-statistic yielded P = 0.04, P=0.04, P=0.02, and P<0.001.
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Radius Plot-based estimates Map-based estimates
(km) No. plots Mean SE Mean SE

Study Area 1
1 0 ----- ----- 0.4803 0.1038
2 0 ----- ----- 0.6585 0.0563
3 1 1.0000 0.0000 0.7370 0.0468
4 2 0.5000 0.3561 0.7578 0.0449
5 3 0.6667 0.2678 0.7184 0.0418
6 6 0.8333 0.1464 0.7002 0.0384
7 6 0.8333 0.1464 0.6691 0.0359
8 7 0.8571 0.1269 0.6467 0.0299
9 10 0.7000 0.1383 0.5965 0.0281
10 13 0.6154 0.1284 0.5965 0.0281
11 16 0.6094 0.1158 0.6002 0.0309
12 18 0.6300 0.1072 0.6111 0.0314
13 23 0.5490 0.0975 0.6223 0.0317
14 26 0.5914 0.0906 0.6271 0.0321
15 29 0.5992 0.0855 0.6279 0.0332

Study Area 2
1 0 ----- ----- 0.8390 0.0069
2 1 1.0000 0.0000 0.8362 0.0400
3 1 1.0000 0.0000 0.8199 0.0378
4 1 1.0000 0.0000 0.7587 0.0402
5 3 0.6667 0.2678 0.7684 0.0381
6 7 0.8571 0.1269 0.7768 0.0359
7 7 0.8571 0.1269 0.7756 0.0398
8 7 0.8571 0.1269 0.7758 0.0359
9 12 0.9167 0.0760 0.7599 0.0390
10 12 0.9167 0.0760 0.7372 0.0361
11 14 0.9286 0.0654 0.7309 0.0351
12 17 0.8676 0.0780 0.7216 0.0351
13 22 0.8010 0.0796 0.7133 0.0344
14 24 0.8170 0.0737 0.7099 0.0333
15 32 0.7065 0.0755 0.7032 0.0332

Study Area 3
1 0 ----- ----- 0.7563 0.0388
2 1 0.7500 0.4710 0.7506 0.0570
3 1 0.7500 0.4710 0.7430 0.0714
4 2 0.8750 0.2355 0.7016 0.0608
5 4 0.9375 0.1178 0.6846 0.0675
6 5 0.9500 0.0942 0.6563 0.0705
7 6 0.7917 0.1596 0.6378 0.0719
8 8 0.8438 0.1229 0.6341 0.0726
9 10 0.6750 0.1413 0.6358 0.0717
10 13 0.7500 0.1142 0.6347 0.0694
11 16 0.6692 0.1111 0.6316 0.0713
12 18 0.5949 0.1093 0.6245 0.0726
13 23 0.5525 0.0979 0.6119 0.0734
14 27 0.5447 0.0905 0.5971 0.0742
15 30 0.5236 0.0861 0.5760 0.0735

Table 1.—Mean proportion forest estimates by study area.
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Figure 2a.—Probability of forest for Study Area 1 (white=non-
forest, black=forest).

Figure 2b.—Probability of forest for Study Area 2 (white=non-
forest, black=forest).

Figure 2c.—Probability of forest for Study Area 3 (white=non-
forest, black=forest).

However, it must be noted that, on the one hand, these P-values

are conservative because the denominator of the t-statistic did

not account for uncertainty in the map-based estimates. On the

other hand, P-values for circular areas of different radii in the

same study area are not independent, because the plot data used

to obtain an estimate for any particular circular area uses plot

data for all circular areas of smaller radii in the same study area.

Nevertheless, these results indicate that the map-based and

plot-based estimates are quite similar. Second, the map-based

estimates revealed a smooth transition as the radii of the circular

areas increased from 1 km to 15 km. This result suggests that

even when the number of plots in a small circular area was

insufficient to obtain a reliable plot-based estimate, a reliable

map-based estimate was possible. Third, the map-based standard

errors were consistently smaller than the plot-based standard errors. 

Two conclusions are warranted from this study. First, for

forest land area, map-based estimation is not only feasible but

also may produce estimates that are comparable, if not superior,

to plot-based estimates. Second, although map-based estimation

for other forest attributes is expected to be more difficult than

for forest land area, the results of this study are sufficient to

encourage the FIA program to initiate a Phase 4 focusing on

construction of maps for estimation. 
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Appendix

The estimate,    , of the expected proportion forest, P, for an

entire area of interest is simply the mean of the probability

estimates,    , over all pixels,

where N is the number of image pixels in the AOI. The objective

of the appendix is to provide a derivation of the estimate for

the variance of    . First, however, two intermediate results are

demonstrated. 

The first intermediate result is that for Zi = (zi1,zi2,…,zin), a

vector of constants, and ∆′ = (δ1,δ2,...,δn), a random vector dis-

tributed N(0,V∆), 

(A1)

Although (A1) is not proven for the general case, a demonstra-

tion for the case of n=2 is provided. 

The general case follows by analogy.

The second intermediate result is that for Zi = (zi1,zi2,…,zin), a

vector of constants, and ∆′ = (δ1,δ2,...,δn), a random vector dis-

tributed N(0,V∆),

(A2)

Although (A2) is not proven for the general case, a

demonstration for n=2 is provided. 

by (A1)

The extension of this result to the general case also follows by

analogy.
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The primary result is that for pi equal to the probability

that Yi = 1 (i.e., that the ith pixel has forested ground cover),         

=         ,   , and                , the variance of      may be esti-

mated as,

(A3)

where     is the estimated covariance matrix for the estimates of

ββ, Zi is a vector with elements, 

and εi is a residual. The proof follows.

by (A2).
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Extending and Intensifying the FIA Inventory
of Down Forest Fuels: Boundary Waters
Canoe Area and Pictured Rocks National
Lakeshore

Christopher W. Woodall1 and Bruce Leutscher2

Abstract.—The sampling design for the Forest

Inventory and Analysis (FIA) program of the U.S.

Department of Agriculture Forest Service allows

intensification of fuel inventory sampling in areas of

“special interest” and implementation of fuel sampling

protocol by non-FIA personnel. The objective of this

study is to evaluate the contribution of sampling

intensification/extension toward furthering multiscale

fire science investigations in two case study areas. In

the Pictured Rocks National Lakeshore in Michigan,

adoption of FIA’s fuel sampling protocols increased

inventory efficiencies while linking local fuel estimates

to the system of FIA plots. In Minnesota’s Boundary

Waters Canoe Area, results indicate that 100- and

1,000-hr fuel loadings in wilderness blowdown areas

may be twice those of the surrounding forest ecosystem.

Both case studies illustrate the potential for the FIA

program to provide estimates of fuels and facilitate

local fire science initiatives and fuel inventories.

Introduction

The relative severity of recent fire seasons has highlighted the

need for a more comprehensive forest fuels inventory across

the forest ecosystems of the United States. The dispersal of fire

risk mitigation efforts/funding is partially based on the amounts

and condition of fuels at various locations. Unfortunately, the

disparate efforts and sampling designs used to quantify down

forest fuels across the United States has resulted in an inability

to compare fuel loadings between forest regions. The down fuel

sampling protocols of the U.S. Department of Agriculture

(USDA) Forest Service’s Forest Inventory and Analysis (FIA)

program are applied in a systematic manner across forested

regions of the United States, providing for the first standard

national inventory (Woodall and Williams 2005). Beyond providing

a “strategic-scale” fuels inventory, the sampling intensity of the

FIA program’s fuels inventory may be augmented to increase

fuel estimation precision in areas of “local interest.” Additionally,

the fuels sampling protocol may be adopted by non-FIA entities

so that their resulting fuels estimates may be directly comparable

to those from the FIA program. The fuels inventory of the FIA

program offers the ability to explore multiscale forest fuels

issues through two initiatives described in this study: extension

and intensification.

For this study, intensification is defined as increasing the

sample intensity from a base Phase 3 intensity of one plot per

96,000 acres (Bechtold and Patterson, 2005). Besides the

negative aspects of additional costs and logistics for field sampling

and data management, numerous benefits of intensification exist.

Intensification reduces the variance of fuel estimates by increasing

sample sizes in areas of interest. Because intensification often

increases the sample size in localized areas, estimates and

analyses can now range in scale from regional to local, therefore

increasing the number of analytical opportunities. With locally

pertinent fuels data available, FIA can expand its user group

through intensification. Because FIA’s down woody materials

(DWM) inventory was intensified in the Boundary Waters Canoe

Area (BWCA) Wilderness of northern Minnesota in 2001, this

area can serve as a case study to examine intensification. 

We define extension as the process by which non-FIA

agencies or individuals use FIA sample protocols for their own

inventories. Because these agencies/individuals have no FIA

affiliation, sampling usually occurs off the FIA plot system,

subsequent estimation procedures (i.e., population estimates)

may vary from FIA’s. Non-FIA entities that adopt FIA’s sample

1 Research Forester, U.S. Department of Agriculture, Forest Service, North Central Research Station, St. Paul, MN 55108. Phone: 651–649–5141; fax:
651–649–5140; e-mail: cwoodall@fs.fed.us.
2 Biologist, Pictured Rocks National Lakeshore, Munising, MI 49862.
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protocols may gain numerous benefits. First, field sampling

protocols and associated quality assurance procedures are already

developed, allowing non-FIA entities to allocate more resources

to field sampling and less to sample protocol development.

Secondly, because FIA provides base estimators and data manage-

ment guidelines, non-FIA entities have peer-reviewed estimation

procedures on which to base their own analyses. Finally, because

the inventories of non-FIA entities use FIA sampling protocols,

they may seamlessly link with the larger scale data from FIA

and couch their inventory estimates within FIA’s. The Pictured

Rocks National Lakeshore (PRNL) began using FIA’s DWM

sample protocol to inventory fuels in 2001; subsequently, this

area serves as a case study to examine extension.

Our goal was to evaluate the contribution of intensification

(BWCA) and extension (PRNL) to DWM inventory and analysis

objectives. Objectives included (1) estimating and comparing

fuel loadings for blowdown and nonblowdown areas of the

BWCA, the North Central State region, the Laurentian Mixed

Forest ecosystem of the Lake States (Ecological Province 212)

(Bailey 1995), and PRNL, (2) exploring multiscale mapping

possibilities gained from intensification and extension, and (3)

determining what novel, multiscale fuel dynamics information

may be obtained from intensification and extension. For this study,

local is defined as a distinct area of ownership, management, or

ecological uniqueness (i.e., BWCA), and regional is defined as

encompassing a political boundary (i.e., State or USDA Forest

Service region) or an area of ecological similarity (i.e., ecological

province). 

Study Sites

The PRNL is located along the south shore of Lake Superior

near the town of Munising in Michigan’s Upper Peninsula

(National Park Service 2003) (fig. 1). PRNL, designated by

Congress as the first national lakeshore in 1966, includes 200-

foot-high sandstone cliffs and unspoiled beaches/dunes. PRNL

consists of 71,397 acres of mixed hardwood and boreal forest

types on soils ranging from well-drained sand to hydric. Upland

northern hardwoods, including American beech (Fagus grandi-

folia), sugar maple (Acer saccharum), red maple (Acer rubrum),

and yellow birch (Betula allegheniensis), dominate about 80

percent of PRNL’s forest area. Remaining forests are occupied

by red, white, and jack pines (Pinus resinosa, P. strobus, and P.

banksiana, respectively) on coarse outwash and coastal sands,

paper birch (Betula papyrifera) and trembling aspen (Populus

tremuloides) in successional areas, and black spruce (Picea

mariana), white spruce (Picea glauca), and northern white cedar

(Thuja occidentalis) in poorly drained lowlands. A primary

management goal for PRNL is to develop and implement a

comprehensive natural resource inventory and monitoring program

(National Park Service 2003). Given that nearly 20 percent of

PRNL’s vegetation are fire-dependent forest communities, the

National Park Service has mandated that PRNL preserve and

perpetuate fundamental physical and biological processes to the

fullest extent possible (National Park Service 2001). Therefore,

PRNL intends to inventory forest and fuels conditions and

develop a program to reintroduce fire in appropriate forested

areas. Additionally, PRNL will compare fuel loads between

Federal and non-Federal land within the lakeshore’s boundary to

assess effects of land management strategies on fuel loads and

the potential for cooperative mitigation of hazardous conditions.

The BWCA Wilderness, located in northeast Minnesota,

was established as a wilderness area in 1978 and contains 1.084

million acres (Heinselman 1996) (fig. 1). Nearly 18 percent of

the BWCA is water with more than 1,000 portage-linked lakes

and streams drawing more than 200,000 visitors a year

Figure 1.—Map of North Central States (white fill), Ecological
Province 212 (grey), and BWCA and PRNL.
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(Heinselman 1996, USDA Forest Service 2001). The forests of

the BWCA, an intermix of north-central hardwoods and boreal

forests, contain some of the largest tracts of virgin forest in the

Eastern United States. (Heinselman 1996, USDA Forest Service

2001). Eighty-one percent of BWCA forests are occupied by

upland species of black spruce, northern pines (jack, red, and

eastern white), maple, aspen, and paper birch (Heinselman

1996). Black spruce bogs and alder (Alnus rugosa)/willow

(Justicia americana) wetlands occupy the remaining forested

areas (19 percent) (Heinselman 1996). Although mostly formed

from the parent material of glacial till, soils in the BWCA

range from moderately acidic granitic soils to slightly alkaline

calcareous clay deposits (Heinselman 1996). The forests of the

BWCA have historically been fire-dominated ecosystems with

nearly all stands initiated by catastrophic wildfires (Carlson

2001). The historic fire regime that dominated the BWCA was

large-scale running crown fires or high-intensity surface fires

(Heinselman 1996). Since European settlement began more

than a century ago, however, fire suppression activities have

increased fire rotation length from 122 years to more than

2,000 years (Heinselman 1996). On July 4, 1999, an unheralded

wind storm with winds in excess of 90 miles per hour affected

approximately 367,000 acres of the BWCA. (USDA Forest

Service 2001). The resulting blowdown substantially increased

the volatility and amount of fuel in the BWCA, increasing the

probability of wildfire escaping the wilderness (Leuschen et al.

2000). Fuel loadings were estimated to have increased from

5–20 tons per acre to 50–100 tons per acre; normal fuel loading

in a typical BWCA stand has been proposed as 10 tons per acre

(Leuschen et al. 2000). Since this wind event, the Superior

National Forest has sought to monitor fuel loadings, assess

blowdown effects, and mitigate fuel hazards through prescribed

burns (USDA Forest Service 2001). 

Methods

Varying sample intensities and field crews were used to sample

DWM in the North Central States, Bailey’s Ecological Province

212 (Bailey 1995), the BWCA (blowdown and nonblowdown),

and PRNL. FIA field crews sampled 429 plots in the North

Central States with 84 plots in the BWCA (9 in blowdown and

75 in nonblowdown), 131 plots in Ecological Province 212 (out-

side the BWCA), and 214 plots in the rest of the North Central

States (outside Ecological Province 212). PRNL personnel

sampled 121 plots in the lakeshore. In this study, we used 1-,

10-, 100-, and 1,000-hr fuels data, along with duff and litter

depths, for analysis. Detailed description of the sampling design

for DWM is provided by the North Central Research Station

(USDA Forest Service 2003) and Woodall and Williams (2005).

Briefly, 1,000-hr fuels were sampled on each of three 24-foot

horizontal distance transects radiating from each FIA subplot

center at 30, 150, and 270 degrees (fig. 2). Down woody pieces

with a intersecting transect diameter of at least 3 inches and a

length of at least 3 feet were considered 1,000-hr fuels (coarse

woody debris [CWD]). Data collected for every 1,000-hr piece

were transect diameter, length, small-end diameter, large-end

diameter, decay class, species, evidence of fire, and presence of

cavities. Fine woody debris (FWD) (1-, 10-, and 100-hr fuels)

were sampled on the 150-degree transect on each subplot. FWD

with transect diameters of 0.01 to 0.24 and 0.25 to 0.99 inches

(1- and 10-hr, respectively) were tallied separately on a 6-foot

slope distance transect (14 to 20 feet on the 150-degree tran-

sect). FWD with transect diameters of 1.00 to 2.99 inches

(100-hr) were tallied on a 10-foot slope-distance transect (14 to

Figure 2.—Sampling design for the DWM indicator of the
USDA Forest Service Forest Inventory and Analysis  program.
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24 feet on the 150-degree transect). The nonwoody surface

fuels of duff and litter were sampled using an estimate of their

respective depths at a 24-foot slope distance along each 1,000-hr

transect (for a total of 12 sample points across all four subplots).

Slight deviations exist between the 2001 and 2002 DWM sample

protocols; the descriptions of these protocols are beyond the scope

of this article but are detailed in Woodall and Williams (2005). 

Per unit area estimates (tons per acre) for the fuel hour

classes followed Brown’s (1974) estimation procedures, while

per unit area estimates (tons per acre) for litter and duff were

based on average depth among all 12 sample points expanded

to tons per acre units. CWD volume estimates were based on

DeVries’ line-intercept estimators (DeVries 1986). The total

basal area (BA) for each sample plot was estimated from the

inventory of standing trees conducted by field crews for the

Phase 2 of each inventory. The means and associated standard

errors were determined for all variables among plots stratified

by PRNL, BWCA (blowdown and nonblowdown), Ecological

Province 212 (excluding plots in the BWCA and PRNL), and

North Central States outside Ecological Province 212. Fuel

maps were based on interpolation of plot-level DWM estimates

using ordinary kriging with an exponential model. To limit esti-

mation to forested regions, fuel estimates were masked by

applying a forest/nonforest map based on the Phase 1 National

Land Cover Database (NLCD) imagery (Vogelmann et al. 2001). 

Results/Discussion

The national inventory of DWM provides context for smaller

scale fuel inventories regardless of whether FIA conducted

those inventories. Mean plot estimates of fuel classes show that

blowdown areas have more than twice the 100- and 1,000-hr

fuels than the nonblowdown BWCA area (fig. 3). Before FIA

began its national inventory of fuels, any inventory of fuels in

the BWCA would have been conducted in isolation with no

regional or national context. Most local fuel inventories use unique

sample designs, estimation procedures, and data management

systems that restrict the direct comparison of local estimates to

those regional estimates or estimates from adjoining lands.

Through the process of increasing sample intensity in an area

of interest (BWCA), however, the FIA program can provide a

multiscale assessment of fuels in local areas of interest. For the

BWCA, fuel estimates may be compared to estimates from the

greater North Central States region and inventories in Ecological

Province 212 (fig. 3). Based on interpretation of sample mean

standard errors, the means of 100- and 1,000-hr fuel loadings in

BWCA blowdown areas are significantly different from those

of BWCA nonblowdown areas (fig. 3). Additionally, 100- and

1,000-hr fuels in the BWCA are also greater than those in the

rest of the North Central States and Ecological Province 212

(fig. 3). The same benefit of ecological context of local estimates

is witnessed with PRNL fuel estimates (fig. 3). Before a consis-

tent regional inventory of fuels was available, PRNL had only

an estimate of approximately 4 tons per acre of 1,000-hr fuels

(fig. 3). Management decisions and fuel mitigation efforts were

based solely on that information with little relation or context

of the surrounding forests/ecosystem/biome. Because PRNL

used the same sample protocol and estimation procedures as the

FIA program (extension), the PRNL data are essentially the

same as FIA’s and may be linked seamlessly with FIA regional

estimates. PRNL management may know that its estimates of 4

tons per acre of 1,000-hr fuels are significantly below those for

not only Ecological Province 212, but also for the remainder of

the North Central States (fig. 3). 

In addition to fuel inventory estimates, intensification/

extension provides multiscale mapping capability that enable

users to zoom in and out of areas of concern (fig. 4). The base

Figure 3.—Means and associated standard errors of fuel classes
for forested inventory plots in various areas of the North Central
States region of the United States.
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sampling intensity of DWM provided by the FIA program

allows construction of a regional map of FWD (fig. 4).

Because sample intensity was increased in the local area of the

BWCA, a smaller scale fuels map may be made for the area

and framed within the regional FWD map (fig. 4).

Intensification and extension of fuels sampling in local areas

may allow local users to spatially appraise fuel loadings while

zooming out to larger scales to couch local fuel inventories in

regional assessments. Although numerous map-making

methodologies are available for creating fuel maps, this study

used a geostatistical approach. Regardless of which methodolo-

gy is selected, the ability to  provide context for fuel invento-

ries at various scales (local to regional) may empower

decisionmakers with an empirical basis for fire hazard mitiga-

tion planning. 

Increasing sample intensity at local levels may refine the

understanding of the dynamics between fuel and stand attributes.

If a fuels inventory is conducted solely at regional scales, an

absence of fuel inventories at finer (local) scales will prohibit

assessments of local areas of “ecological interest.” Because the

BWCA experienced a rare wind event, increasing DWM sampling

intensity in the wilderness area allowed an examination of the

fuel dynamics of this storm in the context of the region. In the

BWCA, the volume per acre of 1,000-hr fuels actually decreases

with increasing standing live stand basal area (fig. 5). In the

PRNL, the volume per acre of 1,000-hr fuels appears to increase

with increasing standing live basal area (fig. 5). These trends in

1,000-hr fuels and basal area may be examined in the context

of the larger ecosystem. The remainder of the DWM plots in

Ecological Province 212 has mean 1,000-hr per acre volumes

that increase with increasing stand basal area (BA) in contrast

to the trends found in the BWCA (fig. 5). Because the BWCA

experienced a massive blowdown, stands that have little standing

BA also have large amounts of 1000-hr fuels because most of

their standing live BA was converted to 1,000-hr fuels in 1999

(fig. 5). Because this trend in 1,000-hr per acre volumes and

BA was not found in the greater forest ecosystem or the PRNL,

blowdowns of the severity found in the BWCA are likely to

change forest ecosystem stand/fuel dynamics. Furthermore,

because of an increasing linear relationship between standing

live BA and 1,000-hr fuels in Ecological Province 212, it may

be hypothesized that this ecosystem experiences density-induced

individual tree mortality or sub acre-scale wind disturbances that

increase 1,000-hr fuel volumes in older/greater density stands.

Although intensification and extension data may be seamlessly

included with base DWM inventory data for fuel assessments

and research, two caveats should be noted. First, extension data

should not be used in standard reports or assessments in the

FIA program; non-FIA personnel collected the data, and the

subsequent data quality cannot be verified (through quality

assurance/quality control procedures). Although this caveat does

Figure 4.—Fine woody debris for selected region of the North
Central States with "zoom-in" of Boundary Waters Canoe Area
Wilderness based on ordinary kriging of DWM inventory plots
masked using a nonforest map based on classified NLCD
imagery.

Figure 5.—Means and associated standard errors of 1,000-hr
fuels by total stand basal area for Ecological Province 212,
BWCA, and PRNL.
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not preclude use of extension data in FIA research projects,

extension data should be explicitly defined and identified.

Second, reduced sample and population estimate variances of

means in intensification areas are possible. Hypothetically, if 60

plots exist statewide in Minnesota while 84 plots exist in the

BWCA, less variance is likely with estimates in the limited area

and forest types of the BWCA compared to the rest of the state.

Unequal variances across fuel estimates by strata (i.e., forest

types) may be acceptable provided variances are explicitly stated

and discussed during hypothesis testing and data delivery.

Conclusions

Extension/intensification benefits not only helps meet the

objectives of the FIA program, but they also better service FIA’s

customers. FIA’s customer base is expanded by providing data

at both regional and local scales that enable individuals/agencies

with localized interests to use inventory data. Additionally,

research opportunities are expanded because sampling may

occur in relatively small areas of ecological interest. Quantification

of dynamics between fuel and stand attributes may be refined

because intensification may allow investigation of small-scale

ecological phenomena such as wind events. For the BWCA, this

study’s preliminary estimates indicate that 100- and 1,000-hr

fuel loadings in blowdown areas may be more than twice those

of nonblowdown areas and the rest of the Lake States region.

Also, relationships between fuel loadings and stand BA differed

between the BWCA and surrounding forest ecosystem, a trend

most likely caused by BWCA’s recent wind event. For the PRNL,

estimates of the lakeshore’s fuel loadings appear less than those

of surrounding regional forests. Given the current national

efforts to assess and mitigate fire hazards at local and regional

scales, FIA’s DWM inventory may aid fuel management efforts

as evidenced by intensification and extension cases in this study. 
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Detection Monitoring of Crown Condition in
South Carolina: A Case Study

William A. Bechtold1 and John W. Coulston2

Abstract.—This article presents a case study of how

indicators of forest health can be adjusted for natural

factors, standardized to a common basis, and subjected

to spatial analysis for the purpose of detecting potential

problems related to forest health. Two of five Forest

Inventory and Analysis inventory panels in South

Carolina and surrounding States were completed in

2000 and 2001. The crown volume of each sampled

live tree at least 5.0 inches in diameter was estimated

from field measurements associated with the Phase 3

Crown Indicator. Regression models were then used

to adjust each crown volume for differences in stem

diameter by species. Model residuals were subsequently

rescaled to a mean of 0 and standard deviation of 1,

thereby enabling direct comparisons of deviations from

expected crown volumes across species and tree sizes.

The occurrence of trees below the 25th percentile on

these adjusted statistical distributions was then examined

for spatial cohesion. A statistically significant cluster

of plots containing trees with below-threshold values

was identified on the South Carolina-Georgia border.

Additional spatial analyses in which thresholds were

lowered to the 10th and 5th percentiles yielded similar

results.

When the U.S. Department of Agriculture Forest Service Forest

Inventory and Analysis (FIA) indicator advisors and analysts

met in October 2002, the decision was made to showcase Phase

3 forest health indicators in the upcoming Maine and South

Carolina analytical reports. The analyses included in this article

began as a demonstration for the South Carolina report (Conner

et al. 2004) to show how data for the crown indicator could be

used in detection monitoring to check for unusual trends in tree

crown health. Detection monitoring is the first of three analytical

processes applied by the Forest Health Monitoring (FHM)

program to evaluate forest health (Riitters and Tkacz 2004).

When a potential problem surfaces through detection monitor-

ing, an evaluation monitoring project is initiated to increase the

signal-to-noise ratio. If evaluation monitoring fails to yield a

satisfactory explanation, and the potential problem is not a false

signal, intensive site monitoring may then be used to more fully

understand the situation. 

With only the 2000 and 2001 data panels available for

analysis, we were surprised to discover the demonstration in

detection monitoring leading to significant results. This article

describes the current status of the South Carolina crown analyses

and discusses followup studies planned for evaluation monitoring. 

Methods 

Composite Crown Indicator

Field crews record the following tree-level variables as part of

the crown indicator on all FIA Phase 3 plots: uncompacted live

crown ratio, crown density, crown dieback, foliage transparency,

crown light exposure, and crown position. Complete descriptions

of these variables are available in the FIA Phase 3 field guide

(USDA Forest Service 2001). The crown variables can be ana-

lyzed singly or be combined to formulate composite indicators

of crown condition. We decided that crown volume, a composite

approximation of crown size that combines estimates of crown

length, width, and density into a single value, was the most

appropriate variable of interest for the purpose of detection

monitoring. Net primary production originates at the tree crown;

therefore, it logically follows that trees with small or sparsely

foliated crowns might indicate a state of decline. 

Field measurements of uncompacted crown ratio, crown

density, and tree length were thus combined with modeled

crown diameter to estimate a composite crown volume (CCV)

for each sampled tree:

1 U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC 28802. Phone: 828–257–4357; fax: 828–257–4894; e-mail: wabech-
told@fs.fed.us. 
2 North Carolina State University, P.O. Box 12254, Research Triangle Park, NC 27709. Phone: 919–549–4071; fax: 919–549–4047; e-mail: jcoulston@fs.fed.us.
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(1)

where:

R = CD / 2,

CL = H (UCR) = crown length (ft),

UCR = uncompacted crown ratio (percent),

H = total tree length (ft),

DEN = crown density (percent), and 

CD = crown diameter (ft), which was estimated from 

the model:

(2)

where:

D = d.b.h. (in), and 

b0…b3 = regression coefficients unique to each species.

The crown-diameter models were derived from trees on

1,740 FHM plots measured in 24 Eastern States between 1991

and 1999 (Bechtold 2003). Note that crown diameter had to be

modeled because of the decision to drop the direct measurement

of crown diameter when the FIA and FHM programs were inte-

grated in 2000. 

Standardized-Residualized Indicator 

The next step was to adjust the computed crown volumes for

natural factors known to influence crown size. Two of the most

obvious and easily available factors in the data set were species

and diameter at breast height (d.b.h.). Adjustments for species and

d.b.h. were accomplished by solving the linear model specified

in equation (3) for each species. Note that the model could have

taken any form or been expanded to include any tree, stand,

plot, or exogenous attributes for which adjustment is wanted. 

(3)

The residuals from the least-squares solution of equation

(3) serve to quantify deviations of individual trees from their

expected crown volumes for a given species and tree size:

(4)

where: 

= the residualized indicator for tree t of species s. 

Because the model residuals are scaled differently by species,

one additional adjustment was made to standardize the residuals

across species. The residualized indicators (    ) from equation

(4) were rescaled to a standard deviation of 1 by dividing the

model residuals by the standard deviation of the residuals for

each species:
(5)

where: 

= the standardized-residual indicator for tree t of 

species s, and

= the standard deviation of the model residuals for 

species s.

At this point, we have a tree-level indicator of CCV (     )

that has been adjusted for d.b.h. and standardized (by species)

to a mean of 0 (i.e., the mean of the model residuals is 0) and a

standard deviation of 1. Standardization in this manner allows

trees to be combined across species for analysis. Trees can thus

be averaged or otherwise grouped for comparison by tree-level

attributes (e.g., overstory versus understory trees), condition-level

attributes (e.g., public versus private ownership), or plot-level

attributes (piedmont versus coastal plain). More details on

standardization and residualization techniques are provided by

Zarnoch et al. (2004).

Note that a regression model is not required to standardize

indicators by species. Had the adjustment for d.b.h. not been

wanted, a standardized indicator could have been produced by

replacing the predicted            in equation (4) with the mean    

from the data. Using the mean of the indicator allows

standardization to proceed when adjustment is not necessary or

possible. 

Spatial Analysis

The spatial scan statistic developed by Kulldorff (1997) was used

to search for potential clusters of plots with below-average crown

conditions. This statistic was developed to test for randomness

of disease occurrence in the spatial and spatiotemporal domains

and has been applied to indicators of forest health by Coulston

and Riitters (2003). The scanning proceeds by visiting every

location (i.e., plot) in the study area. A series of circular windows

of increasing size (up to 50 percent of the study area) is then

superimposed over each location. The test statistic, , is then
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calculated using the total number of “events” inside and outside

each window. is the likelihood ratio, based on the Bernoulli

distribution, that the occurrence of events is the same everywhere

after adjusting for differences in the total number of observations

(events and nonevents) inside and outside the window: 

(6)

where:

= the number of events within the window,

= the number of nonevents within the window,

= the number of events outside the window,

= the number of nonevents outside the window, and

= 1 if                          , or 0 otherwise. 

The indicator function (I) in equation (6) sets up a one-sided

test of the null hypothesis (Ho: Ec/Nc=Ec'/Nc') against the

alternative that the rate of events is higher inside the window. 

The distribution of        across the study area and p-values

associated with         were obtained by a Monte Carlo simulation

that repeated the analysis for 9,999 random replications of the

full data set under the null hypothesis of complete spatial ran-

domness. The significance test for the cluster of observations

within the window compared         for the window to the distri-

bution of       from the Monte Carlo simulation. If the value of    

exceeded 95 percent of the values from the Monte Carlo

simulation, the cluster was considered significant at the 5-percent

level. 

We defined an event (E) as a plot with a mean adjusted

crown volume         below the 25th percentile of the frequency

distribution of all plot-level means in the study area and non-

events (N) as the complement:

E = 1 if                , or 0 otherwise (7)

N = 1 if               , or 0 otherwise (8)

where: 

= the number of trees on plot p, and

= the 25th percentile of the distribution of      

across all plots in the study area.

Plots up to 40 miles outside South Carolina were included in

the spatial analysis to avoid any edge effect caused by truncating

the analysis at the border. A total of 43 systematically distributed

forest plots were available for analysis within the State, with an

additional 33 plots contained in the band of border plots. 

Results and Discussion

Detection Monitoring Analyses

Figure 1 shows the spatial distribution of forest plots in the

study area classified as events and nonevents based on the 25th

percentile of the         frequency distribution. Two spatial clusters

of plots with relatively small mean crown volumes         were

detected, but neither was statistically significant, and the observed

clustering could have occurred by random chance.

The analysis was subsequently refined to increase the sig-

nal-to-noise ratio. Because the spatial clusters identified by the

circles in figure 1 extended beyond the South Carolina border,

the buffer area was expanded from 40 to 80 miles. This expansion

increased the number of plots in the buffer from 33 to 80,

yielding a total of 143 plots in the study area. We also revised

the definition of an event. Recall that an event was previously

defined as a plot in the lower 25th percentile of the distribution

of          across plots; thus, the number of events assigned to

Figure 1.—The distribution of FIA plots measured within 40
miles of South Carolina (2000–01), showing two clusters with a
relatively high rate of events (mean plot-level standardized-
residualized crown volumes below the 25th percentile). Neither
cluster is statistically significant.
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each plot location was either 0 or 1. In our refined analysis, trees

in the lower 25th percentile of the distribution of the residuals

for their species (     ) were identified as events, and the number

of tree-level events and nonevents was then summed for each

plot (equations 9 and 10) before calculating the test statistic

(equation 6).

(9)

where:

Ep = the sum of events on plot p,

Etp = 1 if tree t is on plot p and            , or 0 otherwise

Ts = the 25th percentile of the distribution of the 

residuals for species s (    ) across the study area.

The number of nonevents on each plot (N) was then

(10)

Each plot was thus characterized by the number of events and

nonevents observed, as opposed to the binary 0-1 classification

used in the initial analysis. This adaptation was more consistent

with Kulldorff’s (1997) original technique and gave more precision

and power to the analysis. 

The revised analysis again detected a cluster of plots with

small crowns (fig. 2a) in the same approximate location as the

secondary cluster from the initial analysis (fig. 1), but this time

the spatial cluster was statistically significant (p = 0.0001). In

the cluster, 288 events were recorded when the expected number

was 221. The threshold used to define an event was then pro-

gressively reduced to check the sensitivity of the cluster to the

somewhat arbitrary threshold. Similar results were obtained

when the threshold was lowered to the 10th percentile (fig. 2b).

Again, the cluster was statistically significant (p = 0.0001), and

87 events were recorded when the expected number was 49.

Although the 10th-percentile cluster was smaller and shifted

slightly to the east, the cluster was mostly contained within the

larger cluster associated with the 25th-percentile threshold.

Further reducing the event threshold to the 5th percentile resulted

in a significant spatial cluster (p = 0.0002) contained by the

cluster from the 25th percentile, with 41 events recorded when

only 18 were expected (fig. 2c). Substantial overlap was observed

in the location of the spatial cluster across thresholds (fig. 2d). 

Figure 2.—The distribution of FIA plots measured within 80 miles
of South Carolina (2000–01), showing significant (p < 0.01)
spatial clusters of FIA plots containing sample trees with stan-
dardized-residualized crown volumes below the (a) 25th, (b) 10th,
(c) 5th percentile, and (d) overlay of significant spatial clusters. 

(a)

(b)
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Figure 3 lists the 10 most common species encountered in

the 25th-percentile cluster. By species, the mean standardized

residuals of trees inside this cluster (     ) were below zero for

all species except laurel oak, indicating that the spatial anomaly

seems to cross species boundaries. (     ) was calculated as follows:

(11)

where:

nsc= the number of trees of species s in cluster c, and

i= 1 if tree t is located in the cluster c and of 

species s, or 0 otherwise. 

At – 0.47, shortleaf pine had the lowest (     ) of all species in

the cluster. Loblolly pine, with a mean standardized residual of

– 0.30, did not fare much better. Loblolly is by far the most

common species in the region, accounting for 60 percent of the

trees sampled within the cluster.

Evaluation Monitoring Proposal

Given these results, we conclude that the applied detection

monitoring techniques have exposed a cluster of below-average

crown volumes worthy of further investigation under evaluation

monitoring. We have consequently proposed an evaluation

monitoring study designed to probe deeper into the unusual

cluster of trees with small crowns straddling the South Carolina/

Georgia border. The objectives of the proposed study are as follows:

Figure 3.—Mean standardized-residualized crown volumes of
FIA sample trees within a significant (p < 0.01) spatial cluster
of trees below the 25th percentile on the South Carolina-Georgia
border (2000–01), by species.

(c)

(d)
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1. To examine the influence of specific crown dimensions

and tree species on the location and significance of the

cluster. This will be accomplished by using the standardi-

zation procedures and spatial scan statistics described

above on the individual crown components (transparency,

dieback, density, crown length, and crown width) and

species separately. Pursuing this objective is important

because the presence of a single crown dimension or tree

species responsible for the geographic cluster will guide

the selection of potential explanatory variables.

2. To run the analysis again separately on individual panels

and add a third panel with 2002 data (when available) to

determine if a particular panel is driving the results, which

may indicate a training issue.

3. To validate the data. Field plots inside and outside the cluster

will be visited to check the field measurements. Crown

diameters will also be measured and checked against the

crown diameters estimated with regression models.

4. To identify potential explanatory variables. A tree pathologist

will be included on the revisit team to examine tree and

stand characteristics that might explain the cluster.

5. To develop cause-effect hypotheses and test with statistical

models. We will use multivariate statistical techniques to

test potential explanatory variables for differences between

plots inside and outside the cluster. Explanatory variables

will include potential causal agents identified during the

field visits, as well as environmental differences available

from other data sets such as drought occurrence, ozone

exposure, insect and pathogen activity, and soil characteris-

tics. Based on results from the  multivariate analysis, we

intend to build models to evaluate   and test cause-effect

relationships. 

Conclusions

Besides the potential problem with crown condition, some addi-

tional observations during the detection monitoring exercise are

worthy of note. 

Analysis of the crown indicator was severely handicapped

by the absence of crown-diameter data. Because crown diameters

had to be estimated using regression models, we essentially had

to guess at one of the three variables needed to estimate the CCVs

featured in the detection monitoring exercise, and are now

faced with obtaining the missing data in the evaluation phase.

We also had to delete species for which crown-diameter models

were not available, such as palmetto and hawthorn. FIA should

reconsider the decision to drop crown-diameter measurements.

If not measured, crown diameters should at least be estimated in

the field, which only requires 15–20 seconds per tree (Bechtold

et al. 2002). We also experienced difficulty with the way uncom-

pacted crown ratios are measured on leaning and down trees,

ultimately resulting in their deletion from the analysis. We have

recently submitted a change proposal to correct that problem. 

The detection monitoring techniques applied to the crown

indicator can be used as a template for almost any indicator.

One major advantage of the standardization approach is that it

does not require biological thresholds, which involve difficult

and time-consuming, process-level research, usually on a

species-by-species basis. Statistical thresholds are quite useful

and available for immediate use. In addition, the standardization

approach easily lends itself to adjustment for the influence of

natural factors through modeling. The spatial scan statistic also

can be easily applied to other indicators, and it seems very effi-

cient at identifying nonrandom spatial patterns with relatively

few observations.

Finally, the spatial clustering detected in this analysis was

surprisingly persistent (fig. 2d). Adjustments were made in the

way crown volumes were computed for down trees and trees

with broken tops, and the event thresholds were changed—all

with essentially the same result. Whether a real problem exists

in this area remains to be seen. Evaluation monitoring certainly

is appropriate given the information at hand. Even if evaluation

monitoring discovers a problem with the data or the applied

analytical techniques, valuable experience will be gained in the

effort to monitor forest health. 
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Forest Inventory and Analysis and Forest
Health Monitoring: Piecing the Quilt

Joseph M. McCollum and Jamie K. Cochran1

Abstract.—Against the backdrop of a discussion

about patchwork quilt assembly, the authors present

background information on global grids. They show

how to compose hexagons, an important task in

systematically developing a subset of Forest Health

Monitoring (FHM) Program plots from Forest Inventory

and Analysis (FIA) plots. Finally, they outline the FHM

and FIA grids, along with their current problems and

future issues. 

Introduction

The curious title of this paper is meant to evoke an image of an

old-fashioned patchwork quilt. One popular patchwork design,

called Grandmother’s Flower Garden (Brackman 1993), is

featured in figure 1. One pattern represents the pistils of a

flower, another pattern represents the petals, and a third pattern

represents the actual garden. The flowers are reminiscent of the

Steinman heptahex (Steinman 2001). A patchwork quilt with

no fixed shape or size patch—for instance, one with triangles

here and squares there—is called a crazy quilt. 

Global grid developers have proposed lists of criteria for

evaluating their grids. Clarke (2000) compared the proposed

list of criteria for global grid development of Goodchild (1994)

to that of Kimerling et al. (1999). Kimerling’s list resembles

Goodchild’s, although with some obvious additions and an

apparent subtraction. Carr (1998) cites the Goodchild criteria

but reorders them as follows: 

1. The domain is the globe.

2. Areas exhaustively cover the domain.

3. Areas are equal in size.

4. Areas are compact.

5. Areas are equal in shape.

6. Areas have the same number of edges.

7. Edges of areas are of equal length.

8. Edges of areas are straight on some projection.

9. Areas form a hierarchy preserving some properties for    

m < n areas.

10. Each area is associated with only one point.

11. Points are maximally central within areas.

12. Points are equidistant.

13. Points form a hierarchy preserving some properties for 

m < n points.

14. Addresses of points and areas are regular and reflect other 

properties.

The authors offer the following points of clarification:

First, areas are grid cells. For Forest Inventory and Analysis

(FIA), a plot (a piece of sampled landscape, currently 672 m2,

while cells are 2.4 x 107 m2) assigned to a particular cell must

fall inside that cell. 

Second, many measures of compactness exist, but one pos-

sible measure is maximum area per unit perimeter. Because the

first eight criteria limit the choice of grid cell to an equilateral

1 Information Technology Specialist and Supervisory Forester, respectively, U.S. Department of Agriculture, Forest Service, Southern Research Station, Forest
Inventory and Analysis Unit, 4700 Old Kingston Pike, Knoxville, TN 37919. E-mail: jmccollum@fs.fed.us.

Figure 1.—Grandmother’s flower garden.
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triangle, rhombus, and regular hexagon, to show that the hexagon

is the most compact cell is easy. Another possible measure of

compactness is to minimize the maximum distance between any

point and the grid point or any point and a potential plot. For

FIA hexagonal cells of 2,400 hectares, no point is more than

3,040 meters from a grid point and no more than twice that

distance from an actual plot. With the same size squares (which

was the cell shape used in much of the United States before

1998), no point is more than 4,900 meters from a grid point and

no more than twice that distance from an actual plot. 

Third, what the hierarchy criteria mean is that the cell sizes

should be somewhat flexible, as figure 2 shows. According to

the criteria, the domain is divided into n cells, but the domain

should be able to be divided into m cells, where m is some (but

not necessarily any) number less than n, and m and n are integers.

For instance, a network consisting of squares (which are rhombi

with equal angles) is hierarchical because a square may be

decomposed into h2 smaller squares, where h is an integer. If h

is odd, the centroid of the larger cell will coincide with a centroid

of a smaller cell. An equilateral triangle, as figure 2(b) illustrates,

may be decomposed into h2 smaller equilateral triangles. A

hexagon may be divided into T = h2 + hk + k2 smaller hexagons,

where T stands for triangulation, and h and k are integers. The

first several triangulation numbers are 1, 3, 4, 7, 9, 12, 13, 16,

19, 21, 25, and 27. Any product, rather than the multiple, of

triangulation numbers is also a triangulation number. The

decomposition of the hexagon is not quite as elegant as that of

the square or the triangle because some of the smaller hexagons

are cut in pieces around the perimeter of the larger hexagon.

Reorientation of axes permits that h ≥ k ≥ 0. When h = k (e.g.,

when h = 3, k = 3, and T = 27), shown in figure 3(a), or when k

= 0 (e.g., when h = 4, k = 0, and T = 16), shown in figure 3(b),

the decompositions are a bit more elegant. In the former case,

partial hexagons are either half-hexagons or third-hexagons; in

the latter case, partial hexagons are half-hexagons. Further

details on partial hexagons may be found in McCollum (2001).

Fourth, points are grid points, and by “the maximally central

point,” global grid developers mean the centroid of the cell.

Such points are equidistant from each other. Many global grid

developers believe the sample should be taken at the centroid,

but FIA and Forest Health Monitoring (FHM) programs have

avoided this rule. Details of how plots were assigned to hexagons

are available in Brand et al. (2000). Basically, legacy FHM plots

were favored first, then legacy FIA plots, then deleted plots

could be reconstructed, and, finally, if a cell remained empty, a

new plot was generated. Ties at any level of favor were broken

by choosing the plot closest to hexagon center. Moreover, the

Food Security Act (7 U.S.C. 2276) forbids release of plot loca-

tions or of any information that makes landowners’ identity

discernible. If plots did appear at grid point, the plot grid could

Figure 2.—Hierarchy of (a) squares and (b) triangles.

(a)

(b)
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be reconstructed, and landowners’ privacy, if not the integrity

of the data, would be at risk. 

Fifth, cells have regular addresses if deducing the addresses

of a cell’s neighbors is easy. This characteristic is important in

developing grids of varying resolution. 

The additional criterion in Kimerling et al. (1999) was that

“the grid system have a simple relationship to the traditional

latitude-longitude graticule” (Kimerling et al. 1999, 273).This

particular criterion seems in conflict with an earlier criterion in

the same paper, namely that “areal cells have the same shape,

ideally a spherical polygon with edges that are great circles”

(Kimerling et al. 1999, 272). FHM did its best to adhere to

both criteria. It used a variation of a grid based on great circles,

but it numbered its plots according to the latitude and longitude

of the grid point. Plot numbers had seven digits, where the first

two digits were degrees of latitude, the next three digits were

degrees of longitude, the sixth digit was the number of eighths

of latitude, and the seventh digit was the number of eighths of

longitude. For instance, a grid point at 30 degrees 1 minute north,

89 degrees 59 minutes west would be assigned an identification

number of 3008918. With this numbering system, no obvious

way existed to deduce this cell’s neighbors. 

FHM has offered its own reasons for accepting hexagons

as the ideal cell. Among the benefits of a hexagonal network

that D.L. Cassell cited in the FHM 1992 Activities Plan

(Alexander and Barnard 1992) were the following: 

1. It is spatially compact.

2. It provides uniform spatial coverage.

3. It is very flexible for altering the grid density.

4. It is less likely than a square grid to coincide with anthro-

pogenic features.

5. It generally leads to smaller variance estimates than a

random selection.

Moreover, the hexagon patch is superior to the square in

computing contagion index (Parresol and McCollum 1997)

because no quarrel need exist about whether to use rook’s rule

or king’s rule, and the patch is superior to the random shape

because no quarrel need exist about how to weight edge lengths. 

Composing Hexagons

In the interest of brevity, the authors will call a FIA Phase 2

(P2) hexagon a C1 and an historic FHM Phase 3 (P3) hexagon

a C27; in general, a T-fold composition of FIA hexagons will be

called a CT. The variables H and K provide a convenient coor-

dinate system, as figure 4 shows. The bold numbers in the

upper left of each cell represent H, and the row and the plain

text numbers in the lower right of each cell represent K, the

path. This addressing scheme facilitates the hierarchy criteria,

because to generate C16 hexagons, one must choose the conjunctions

Figure 3.—Hierarchy of hexagons.

(a) (b)
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of every fourth row and every fourth path of hexagon centers,

and then perform Thiessen polygon expansions. In general, for

a T-fold composition, T different possible starting points

(a0,0,b0,0) exist. Additional grid points are selected by the fol-

lowing equation:

(1)

where i and j are index variables belonging to the set of integers.

Thus, when trying to generate C16 hexagons, solve T = 16

= h2 + hk + k2. From above, (h,k) = (4,0). If the starting point

(a0,0,b0,0) is (0,0), the generated points include (4,0) if (i,j) =

(1,0), (8,0) if (i,j) = (2,0), and (8,-4) if (i,j) = (1,1). The index

variables may become as negative or positive as necessary to

cover the domain. 

Equation (1) may also be used to assign hexagons to panels

according to the interpenetrating design, as described in such

papers as Reams and Van Deusen (1999) or Roesch and Reams

(1999). For the seven-panel P2 scheme, this equation was followed.

Because 5 and 10 are not triangulation numbers, the equations

were not followed in the 5- and 10-panel P2 schemes. Rather, P2

hexagons were numbered in panels 1 to 10 in interpenetrating

fashion across the country, and then 10 panels were collapsed

into 5 panels. 

Forest Health Monitoring

Before 1999, the FHM program measured one plot per 64,800

hectares. Cells were hexagons numbered in four panels. The

plan was to measure one panel per year plus a one-third overlap

from the rest of the cycle. A State might have 240 FHM plots,

so that 60 plots existed in each panel, and 20 plots existed in

each overlap. Thus, in 12 years, a plot would be measured three

times in its own panel and once in its own overlap. 

When FIA and FHM were combined, P2 plots were to be

put on a hexagonal grid of approximately 2,400 hectares per

cell, while P3 plots were to be put on a grid approximately

1/16th as dense. The overlap would no longer be measured, and

a fifth panel would be added. The hypothetical State with 240

FHM plots would have 400 P3 plots. Ideally, one-fifth of the

plots would be measured each year. 

Many States already had P3 plots on a grid of 64,800

hectares per cell. For the first four panels in those States, primary

grid points (illustrated in this paper’s figures by filled circles)

were located at the centers of C27 hexagons, as figure 5 illustrates.

Secondary grid points (illustrated in this paper’s figures by open

circles) were generated near the primary grid points. The sec-

ondary grid point would usually belong to the same P2 panel as

Figure 4.—Hexagons numbered in rows and paths.

Figure 5.—Intensification method, panels 1–4, old FHM States.
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the intended panel of the P3 plot. Details on panel assignment

may be found in Brand et al. (2000). The grid was intensified

by locating three existing grid points of the same panel and then

generating a fourth primary grid point of that panel. Again, a

secondary grid point was generated. The result is a Y-shaped

pattern, known to electrical engineers and linguists as a “wye,”

somewhat reminiscent of the mapped plot design (Alexander

and Barnard 1992). 

For the fifth panel in these States, the conjunctions at every

ninth row and every ninth path of P2 hexagons were chosen as

primary grid points, thereby unwittingly establishing C81 hexagons,

as figure 6 shows. The reader may realize that the intensification

method used in the old FHM States leads to an expected ratio

of P2 grid points to P3 grid points of 16.2 to 1. Five out of every

nine C9 cells will be filled. In the C81 hexagon highlighted in

figure 6, four C9 cells that are filled form wye pattern. Around

the perimeter of the C81 hexagon, three other C9 cells that are

filled exist, but each one is shared with two other hexagons.

The four empty C9 cells also form a wye. 

For States new to FHM, for the most part, conjunctions of

every fourth row and every fourth path of hexagons were chosen

as primary grid points. Unwittingly, this selection process

established C16 hexagons, which figure 7 illustrates. Panel

assignment was based on the interpenetrating design (Roesch

and Reams 1999, Reams and Van Deusen 1999). For States

with little or no coastline, the expected ratio of P2 grid points

to P3 grid points is 16.0 to 1.

Why Rip the Seams?

In the quilting hobby, “ripping the seams” means undoing

stitches and sewing new patches rather than actually ripping.

The reason the authors are ripping the seams is that a number

of current difficulties exists. First, the actual ratio of P2 grid

points to P3 grid points in many States is quite different from

the expected ratio. Secondary grid points were overlaid on

TIGER shapefiles (U.S. Census Bureau 2000) to see which

States they were in and whether they landed on land or water.

Table 1 shows the results. 

The results show that States with proportionally large

coastlines per unit area—Florida, Louisiana, and South Carolina,

for instance—are undersampled. When the grid was first con-

structed, coastal water plots were eliminated with some method

other than a TIGER land coverage. This method inadvertently

eliminated some land plots; for security reasons, a map has been

withheld. Some C16 cells are unsampled—from C16 center no

P3 plot in any direction for at least 10,500 meters. Some of

Figure 6.—Intensification method, panel 5, old FHM States.

Figure 7.—Panel layout, new FHM States.
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these unsampled C16 centers actually are land, and other C16

centers are water, the secondary grid point, if not the plot,  easily

could be land. One way to address this issue would be to extend

the P3 grid to the exterior boundary of the United States, as

indicated in TIGER files (U.S. Census Bureau 2000).

The second current issue has to do with borders—some C16

centers exist in new States that were not selected as primary

grid points. Other C9 centers exist in new States that were

selected, but this resulted from the rule of the old States. Figure

8 illustrates examples of these anomalies. The authors’ opinion

is that either the grid or the documentation should be amended.

Because the exact border rule is difficult to determine, the

authors recommend that secondary grid points should be in the

same State as primary grid points, and primary grid points

should be selected only under the rules of the State they are in

rather than under the selection rules of neighboring States. This

solution has another side effect. Currently, the primary grid point

can be in one State, and the secondary grid point be in another,

and both States are old or both States are new. The proposed

solution could affect a number of plots along such State boundaries. 

A third current issue is plot registration. Current Global

Positioning System (GPS) readings do not necessarily agree with

previously digitized plot locations, some to the point that many

plots are outside their original assigned P2 hexagon. Several

reasons exist for this problem. First, when plots were digitized,

and no intention of one day laying them on a national grid

existed. Quality assurance in digitizing maps may not have been

what it should have been. Plots marked on county maps were

only rough approximations of plot locations marked on aerial

photographs. Second, when plot coordinates were collected

with GPS units, the coordinates were transcribed to field sheets

and then keypunched in the office, thereby providing at least

two sources of transcription error. Third, in dense forest, GPS

receivers can have difficulty maintaining a fix on satellites.

Fourth, some miscommunication occurred regarding plot lists

and plot selection rules.

A side effect of poor plot registration has been dropping

plots because they are outside their assigned hexagons. On one

hand, FHM does not want to needlessly drop past data, nor does

FIA. On the other hand, FHM realized the importance of spatial

dispersion among plots before FIA did. Keeping legacy plots

and maintaining spatial dispersion, however, are conflicting

goals. The authors believe that the best compromise would be to

replace P3 plots if the field location is determined to be outside

the assigned P3 hexagon. The P3 hexagon is the intended C16

Old P3 States New P3 States

Land only All hexagons Land only All hexagons

State P2 P3 Ratio P2 P3 Ratio State P2 P3 Ratio P2 P3 Ratio

SC 3,252 193 16.85 3,453 204 16.93 LA 4,770 290 16.45 5,592 303 18.46
VA 4,295 261 16.46 4,613 271 17.02 FL 5,823 359 16.22 7,069 377 18.75
GA 6,291 383 16.43 6,413 388 16.53 TX 28,224 1,746 16.16 28,955 1,774 16.32
AL 5,464 337 16.21 5,655 348 16.25 AR 5,621 349 16.11 5,732 358 16.01
NC 5,266 325 16.20 5,800 338 17.16 KY 4,293 267 16.08 4,359 275 15.85
TN 4,462 276 16.17 4,538 282 16.09 OK 7,423 465 15.96 7,535 472 15.96

Table 1.—Ratio of P2 to P3 hexagons in Southern States.

Figure 8.—Border issue, new FHM State vs. old FHM State.
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hexagon in States new to P3 and is the intended C9 hexagon in

historical P3 States. 

To ensure that P2 and P3 plots are in the correct hexagon,

a new quality assurance effort will be instituted. First, plot

coordinates should be digitized by “heads-up” screen digitizing.

The authors have already implemented a program to do this in

several Southern States. Second, county maps with latitude,

longitude, and county boundaries clearly marked should be

issued to field crews. Third, field crews need to make sure that

they can download coordinates from GPS to their data recorders

through supplied GPS cables. 

Future Issues

The authors numbered all P2 hexagons into rows and paths, but

might have renumbered the plots themselves. Field crews do

not like it when plot 201 is in one side of the county, 202 is on

the other side, 203 does not exist at all, and 204 is in the center.

The lowest numbered row and path could be the first plot in the

county, then plots could be incremented columnwise within

row and then rowwise until all plots were numbered in logical

fashion. It could be easy for the field crew to know the panel

of a plot based on its plot number. The authors recognize the

disadvantages of renumbering plots as well: database maintenance

may become more difficult, and such a numbering scheme

might be too easy for intruders (Office of Management and

Budget 1994) to reconstruct. 

Another application would be the construction of larger

hexagons. Although hexagon maps are elegant, they may be

legally risky. A C1 map would reveal the P2 hexagon centers.

A CT map would not be risky as T grows large. 

Conclusions

First, if the plot intensity for P2 or P3 changes yet again, global

grid axioms should be followed. The axioms for intensifying

the P3 grid have not been followed in the old States. With the

current grid, either cells of unequal size exist or empty cells exist.

According to the global grid axioms, there should be one plot

in every cell, and cells should be equal area, regular hexagons.

Second, a favorite expression in the quilting hobby is “measure

twice, cut once.” Failure to do so will turn a rationally planned

patchwork quilt into a crazy quilt. 
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Models for Estimation and Simulation of 
Crown and Canopy Cover

John D. Shaw1

Abstract.—Crown width measurements collected

during Forest Inventory and Analysis and Forest

Health Monitoring surveys are being used to develop

individual tree crown width models and plot-level

canopy cover models for species and forest types in

the Intermountain West. Several model applications

are considered in the development process, including

remote sensing of plot variables and stand modeling

with the Forest Vegetation Simulator. The modeling

process is intended to be data driven, consistent with

crown architecture and stand dynamics concepts, and

compatible with multiple end-user applications. 

Introduction

Canopy cover is an important forest stand variable that is used

in a wide variety of applications, including assessment of

wildlife habitat characteristics, stand competition status, and

susceptibility to damaging agents. Crown width and canopy

cover measurements have been collected periodically in the

Intermountain West as part of Forest Inventory and Analysis

(FIA) and Forest Health Monitoring (FHM) sample designs.

These data have not yet been used to their full potential. New

applications have been made possible with the implementation

of the mapped plot design (Birdsey 1995, Hahn et al. 1995).

Measured or modeled crowns can be stem-mapped to provide

estimates of projected canopy cover that can be compared to

other canopy cover estimates, such as those measured by field

crews or derived from aerial imagery. Spatially explicit crown

projections also permit development of specific overlap curves

for stands of different composition and structure. Crown data

from surveys conducted between 1980 and 1999 are being used

to develop individual tree crown models and plot-level canopy

cover models for most species and forest types that occur in the

Interior West FIA (IW-FIA) database. The suite of models gen-

erated by this research may lead to improvements in data col-

lection methods, canopy cover estimates, and remote sensing

applications. 

This article describes the available data, analysis consider-

ations, and process with which a comprehensive set of crown

diameter and canopy cover models is being developed for trees

and forest types in the Intermountain West. This modeling

effort includes objectives, such as increasing field efficiency

and improving accuracy of canopy cover estimates that are

internal to the FIA program. Other objectives anticipate users’

needs and build on recent research and applications that use

crown and canopy cover data. For example, the canopy cover

extension to the Forest Vegetation Simulator (FVS) produces

overlap-adjusted canopy cover estimates, but cover estimates

are based on the assumption that stems (and crowns) are in a

random spatial arrangement for all stand compositions and

structures (Crookston and Stage 1999). Data from mapped FIA

plots can be compared to FVS estimates and may support the

assumption of random arrangement or suggest alternative

arrangements by forest type. Most crown modeling efforts (for

example, Bechtold 2003, Bragg 2001) are focused on prediction

of crown width based on stem diameter and other factors.

Isolating and measuring individual trees using high-resolution

imagery (for example, Gougeon 1995, Gougeon and Leckie

2003) is possible, however, increasing the ability to estimate

stem diameters and stand basal areas using crown measurements.

Therefore, models that are optimized for remote sensing appli-

cations—in other words, with stem diameter as the dependent

rather than independent variable—will also be valuable.

Analysis Approach

The approach to crown modeling taken herein reflects the

desire to anticipate end user needs and, at the same time, develop

models that are based on an understanding of tree biology and

1 Analyst, U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis, Rocky Mountain Research Station, Ogden, UT 84401. Phone: 801–625–5673;
fax: 801–625–5723; e-mail: jdshaw@fs.fed.us.



184 2003 Proceedings of the Fifth Annual Forest Inventory and Analysis Symposium

stand dynamics. Local parameterization of the models is desirable

to the extent that the data permit. The analysis plan consists of

a progression from simple individual tree crown models to more

complex single tree models, and ultimately plot-level canopy

cover models. Analysis will be conducted in two phases. Phase

1 will address individual tree crowns, and phase 2 will address

plot-level cover models.

Mining Historic Data

This study was conceived with the intent of using data collected

from past surveys. The number of usable records was unknown,

however. Twenty-two surveys conducted by FIA from 1980 to

1988 and by FHM from 1991 to 1999 were identified as potentially

including crown width measurements based on field manual

documentation. Crown width data from the oldest surveys were

retrieved from digital tape archives. The surveys covered all, or

major portions of, seven of the eight states in the IWFIA analysis

area: Arizona, Colorado, Idaho, Nevada, New Mexico, Utah,

and Wyoming (fig. 1). No crown data from past surveys were

available for Montana.

At a minimum, species, diameter, and two crown width

measurements were required to constitute a usable record.

Diameter was recorded to the nearest 0.1 inch in all surveys.

For most species, diameter was measured at breast height

(d.b.h.), but for woodland species (species of short stature and,

commonly, a multistem habit), diameter was measured at the root

collar (d.r.c.). For individuals with multiple stems, the method

described by Chojnacky (1988) was used to calculate an equivalent

diameter at root collar. Crown widths were measured to the

nearest foot; further discussion of crown width data follows. 

Other variables under consideration include number of stems

(woodland species only), compacted or uncompacted live crown

ratio (measured or calculated), density measures (basal area or

stand density index), elevation, and various geographic or political

divisions (for example, National Forest unit or ecoregion). 

The analysis data set includes 108,946 usable records for

59 species or species groups (table 1). The number of usable

records varies widely by species, however, and complete sets of

the potential additional variables could not be compiled for some

species. This situation may limit the potential for geographic

stratification for some species. For 17 species with a low number

of observations, only preliminary models (or no models at all)

may be developed. The distribution of observations appears to

reflect the relative abundance of species across the area of

interest, however, and less demand for models of rarer species

is assumed. Some locally abundant species with limited geo-

graphic ranges, such as Arizona cypress (Cupressus arizonica),

are not represented in the data. The analysis data set contains

43 species with n > 30, 38 species with n > 50, 33 species with

n > 100, 22 species with n > 500, and 17 species with n > 1,000.

Based on this distribution of observations and the behavior of

the stem diameter-crown width relationship, developing reliable

general crown width models for at least 32 species and local (in

other words, geographically stratified) crown width models for

at least 17 species should be possible.

Data Considerations

Because the data include observations for which two crown

width measurements were obtained, some assumptions must be

made about crown shape to determine the appropriate value for

use in crown diameter modeling. FIA field manuals usually

specify that the long crown axis should be measured first and

Figure 1.—Locations of sample plots that include crown width
measurements.
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the short axis of the crown be measured perpendicular to the

long axis and centered on the bole. In some field manuals, this

method was specified in the text, but accompanying illustrations

suggested that the second measurement should be taken where

the crown was at its minimum width, regardless of the angle.

The perpendicular measurement method was therefore assumed

because measurement angles were not recorded.

When both crown width measurements are equal, the issue

of diameter calculation is trivial. The issue becomes somewhat

more important, however, as the difference between the two

crown width measurements increases—in other words, crown

shape is more eccentric. Typically, the value used in diameter

crown width modeling efforts has been the arithmetic mean of

Species n Species n Species n

Conifers Pinus flexilis 991 Cercocarpus montanus 18 
Abies concolor 815 Pinus strobiformis 49 Cercocarpus breviflorus 19
Abies grandis 1,818 Pinus jeffreyi 62 Cornus nuttallii 1 
Abies lasiocarpa 2,563 Pinus leiophylla 16 Olneya tesota 95
Abla var. arizonica 385 Pinus ponderosa 7,088 Platanus californica 2
Juniperus erythrocarpa 21 Pinus monophylla 9,663 Populus spp. 72
Juniperus californica 20 Pinus discolor 270 Populus angustifolia 174
Juniperus deppeana 3,598 Pinus monticola 200 Populus deltoides 18
Juniperus occidentalis 263 Pseudotsuga menziesii 5,605 Populus tremuloides 3,822
Juniperus osteosperma 19,181 Thuja plicata 1,102 Populus trichocarpa 45
Juniperus monosperma 8,312 Tsuga heterophylla 437 Prosopis spp. 871
Juniperus scopulorum 2,748 Tsuga mertensiana 27 Prunus spp. 21
Larix occidentalis 569 Hardwoods Quercus spp. 214
Picea engelmannii 2,962 Acer macrophyllum 20 Quercus spp. (evergreen) 2,634
Picea pungens 80 Acer negundo 25 Quercus arizonica 1,061
Pinus albicalus 153 Acer glabrum 128 Quercus emoryi 571
Pinus aristata 71 Acer grandidentata 49 Quercus gambelii 3,843
Pinus edulis 19,648 Alnus rubrum 12 Quercus oblongifolia 45
Pinus contorta 5,527 Alnus rhombifolia 5 Robinia neomexicana 33
Pinus coulteri 1 Betula papyrifera 118
Pinus engelmannii 11 Cercocarpus ledifolius 784

Table 1.—Species included in the crown width database and number of observations for each.

Wl Ws Wx a b K e We Percent area

8 8 8 4 4 50.3 0.00 8.0 1.000
10 6 8 5 3 47.1 0.40 7.7 0.938
12 4 8 6 2 37.7 0.47 6.9 0.750

Table 2.—Area and diameter calculations for three hypothetical crowns of varying eccentricity.

Note: Wl and Ws are the long and short axes of the crown; Wx is the arithmetic mean of crown width; a and b are the long and short radii of the ellipse representing
the crown; K is ellipse area in square feet; e is the eccentricity of the ellipse; We is the diameter of a circle with an area equal to the area of the ellipse; and percent
area is the ratio of the area of the ellipse to the area of a circle with diameter Wx.

two (or occasionally more) crown width measurements (Bechtold

2003, Bragg 2001). This value has no mathematically intrinsic

relationship, however, to crowns that are not round. If the true

shape of a crown with differing width measurements is assumed

to be an ellipse, crown area is calculated using equation 1.

K = πab (1)

where:

K is projected crown area, and 

a and b are the major and minor radii of the ellipse.

Sensitivity to calculation of “average” diameter when the

radii are unequal can be shown by a simple example (table 2).

Three trees with crowns of varying eccentricity are used in the
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crown width-stem diameter models are effectively “optimized”

for the variable—crown area—that is more likely to be used in

remote sensing applications.

Crown width data are notoriously variable, with hardwood

species typically more variable than conifer species (Bechtold

2003, Bragg 2001). In the Intermountain West, woodland

species (hardwoods and conifers), and especially those with

multistemmed growth habits, tend to be the most variable.

Analysis of the stem diameter-crown width relationship

revealed three basic patterns into which each species could be

grouped: (1) a well-behaved, apparently linear relationship, (2)

a well-behaved, apparently nonlinear relationship, and (3) a

highly variable pattern that masked the relative linearity of any

underlying relationship, assuming one exists (fig. 2). 

Scatter plots such as those in figure 2 show that the variance

is not homogeneous across the ranges of diameter and crown

width. For some species, the need for data transformation is

obvious, but for others, such as ponderosa pine (fig. 2A), the

need is not as clear. As a result, log10 (diameter) and log10 (crown

width) were added to the data set. The decision of whether to

use transformed or untransformed values in the models was

deferred until the model fitting process, at which time the decision

would be based on model behavior and residuals analysis.

Phase 1: Individual Tree Models

Phase 1 of the study involved the development of crown width

models that relate crown width to stem diameter and other vari-

ables. Commonly, crown width studies produce “basic” models

that predict crown width solely as a function of stem diameter

and “complex” models that use one or more explanatory variables.

The latter set of models assumes that the additional variables

have been measured or can be calculated from other variables.

Geographic location may be coded in the data set as a categorical

variable (Crookston n.d.) or as a continuous variable such as

latitude-longitude or Universal Transverse Mercator coordinates

(Bechtold 2003). Significant variables may be selected using

stepwise regression methods or by applying information effi-

ciency criteria.

Simple equations used to predict crown width can have linear

or nonlinear forms. Some investigators have made a priori

decisions with respect to selection of linear or nonlinear models

example. In the trivial case, both diameter measurements are

equal (8 ft). In this case, eccentricity (e) equals 0, and area (K)

equals 50.3 ft2—in other words, the area of a circle with a 4-ft

radius. In the other cases, crown widths vary, but the arithmetic

mean remains equal to 8 ft. As eccentricity increases, K decreases.

The projected area of a crown with major and minor diameters

of 12 and 4 ft is only 75 percent that of a round crown, although

the arithmetic mean diameters are equal.

An argument can be made that this difference is biologically

important, given that the projected crown area (and likewise, the

surface area of the crown paraboloid) bears some relationship

to the potential exposed photosynthetic area (Oliver and Larson

1990). Implications also exist with respect to packing of crowns

in closed or nearly closed canopy stands. This suggests that

considering the difference during analysis may be important.

Aside from the biological argument, another practical reason

exists to consider projected crown area as the basis for calculating

crown width. Determination of crown area is far more practical

than determination of crown width in remote sensing applications.

With the increasing availability of high-resolution imagery (in

other words, < 3 ft) and current image processing capabilities,

isolating and measuring individual trees (for example, Gougeon

1995, Gougeon and Leckie 2003, Maltämo et al. 2004) is possi-

ble. The irregular nature of tree crowns makes it difficult (or

computationally inefficient) to determine an “average” diameter

for remotely sensed crowns. The area of individual crowns can

be measured (or estimated) easily, however, whether by raster-

or vector-based methods.

Based on the potential advantages of using crown area as

the basis for measure instead of an arithmetic mean of diameters,

a crown width value (We in table 2) was calculated from elliptical

crown area using equation 2. In simple terms, crown width for

an eccentric crown is defined as the diameter of a circular

crown with a projected area equal to the projected area of the

elliptical crown.

CW = 2(√(K/π)) (2)

where:

CW is crown width, and

K is crown area according to equation 1.

By calculating crown width this way, one of the primary

goals of this study—to produce compatible stem diameter-crown

width and crown width-stem diameter models—is possible. Also,



2003 Proceedings of the Fifth Annual Forest Inventory and Analysis Symposium 187

based on assumptions about the stem diameter-crown width

relationship. Equations 3 and 4 are examples of simple crown

width equations, and both models have been used with and

without the intercept term (b0).

CW = b0 + b1D (3)

CW = b0 + b1Db2 (4)

where: 

CW is mean crown width in feet,

D is d.b.h. for forest species and d.r.c. for woodland

species, in inches, and

b0, b1, and b2 are parameters to be estimated.

These equations are starting points for the model building

process used in this study. As mentioned above, crown width

data usually have heterogeneous variance, and transformations

and weights have been used in previous studies. One such

option is to use a log-transformed version of equation 4 that

excludes the intercept term (equation 5). Although this equation

provides a simultaneous transformation and linearization of the

equation, the equation is technically (but perhaps not practically)

inconsistent with crown width data because it produces a crown

width of 0 at 0 d.b.h. Because crown width is measured at an

unspecified height, trees shorter than breast height (4.5 ft) have

a measurable crown width. The lack of an intercept term, how-

ever, should present no inconsistencies for species that have

diameter measured at the root collar.

logCW = b1+b2(logD) (5)

By taking these considerations into account, the model

building process used in this study will be data-driven and, at

the same time, will attempt to develop the simplest appropriate

model for a particular species. The steps may be summarized

as follows:

1. Fit the linear model (that is, equation 3) to the data.

2. Evaluate residuals for homogeneity.

3. If transformation is warranted, refit model using trans-

formed variables.

4. Evaluate residuals for linearity.

5. If nonlinear model is warranted, refit using nonlinear

model (equation 4).

6. Evaluate performance of linear versus nonlinear model.

Figure 2.—Three scatter plots that are representative of the
patterns observed for species included in this study: (a) linear
and well-behaved (ponderosa pine), (b) apparently nonlinear
(grand fir), and (c) highly variable (Rocky Mountain juniper).

(a)

(b)

(c)
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Using this process, developing the most parsimonious

model for each species should be possible while ensuring that

the model form best matches the data. The use of nonlinear

models may be precluded by the lack of an adequate number of

observations in some cases because the models may be “over-

fitted” and unduly influenced by outlying observations. After

the underlying pattern for a species is established, the influence

of other factors on crown width can be weighed. This may

require the assumption that the general stem diameter-crown

width relationship for a species follows the same pattern in all

parts of its geographic range.

Phase 2: Plot-Level Cover Models

The second phase of this study involves development of canopy

cover models according to forest type or species compositional

mixture. Overlap of crowns can be approximated on fixed-area,

stem-mapped plot designs, such as the one currently used in

FIA surveys (Birdsey 1995, Hahn et al. 1995). Measured or

modeled crown diameters can be located according to stem

location coordinates, allowing the calculation of a total canopy

cover estimate that includes crown overlap. This should allow for

improvement of the Canopy Cover Extension that is currently

used with the FVS (Crookston and Stage 1999).

Crookston and Stage (1999) assumed a random stem distri-

bution in their calculation of overlap-adjusted canopy cover

(equation 6). This assumption may be inappropriate for some

species, especially those that are shade intolerant or have been

shown to exhibit crown shyness (for example, Long and Smith

1992). Equation 6 also has some practical limitations that are

discussed below. 

Co = 100[1-exp(-xC’)] (6)

where: 

Co is adjusted canopy cover,

C’ is unadjusted canopy cover, and

x is 0.01 for a random stem arrangement.

Crookston and Stage (1999) recognized the limitations of a

fixed model and stated that the “ability to represent uniform

distributions and some special attraction and repelling of canopies

(to clump trees or clump openings, as the case may be) would

depend on empirical relations not currently available” (Crookston

and Stage 1999, 2). They appeared somewhat pessimistic about

prospects for improving the model, however, stating “experience

shows that little accuracy would be gained by including more

refinements” (Crookston and Stage 1999, 2). In any case,

because such a simple model is unlikely to adequately represent

all forest compositions and structures, exploring alternative

models is sensible. 

When considering the appropriate overlap model, consider

also the function of the model in conceptual terms. The hypoth-

esized space, in terms of the relationship between unadjusted

and adjusted canopy cover, that the model should be capable of

predicting can be determined using a few benchmarks and simple

assumptions. When a sufficiently flexible model has been

developed, the only remaining question is whether the patterns

produced by different cover types can be distinguished (i.e., a

statistically significant difference exists). The overlap relationship

is explored in figure 3. 

In figure 3, the x-axis represents unadjusted canopy cover,

or, simply, the sum of the projected cover of all individual trees.

The y-axis represents adjusted cover, or that which accounts for

overlap of individual trees. Line A represents an obvious boundary,

which represents the 1:1 relationship between unadjusted and

adjusted canopy cover. In such a stand, trees might be evenly

spaced, but more important, the crowns would be sufficiently

plastic so that the projected canopy cover achieved 100 percent

before any two individual crowns began to overlap. 

Figure 3.—Relationship between the sum of cover of individual
trees (unadjusted canopy cover) and canopy cover that accounts
for overlap (adjusted canopy cover).
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Imagining plantation-grown trees behaving this way is

easy, at least to a point. Mitchell and Popovich (1997) showed a

1:1 relationship and the point at which adjusted canopy cover

breaks away from the 1:1 line for natural ponderosa pine stands

in the Front Range of Colorado. Other species, such as lodge-

pole pine, have been shown to exhibit crown shyness and are

unlikely to achieve 100-percent canopy cover in a mature,

even-aged stand before understory reinitiation begins (Long

and Smith 1992). Such stands may achieve their peak canopy

cover at a relatively young age, because crowns are effectively

trimmed back by abrasion caused by wind-driven sway as the

stand grows taller (Long and Smith 1992). 

Although achieving 100-percent cover without overlap

may be theoretically possible, such an achievement is unlikely

for most forest types; thus, an unknown boundary exists (fig. 3,

line B) that probably varies by forest type. Line C in figure 3

represents the cover relationship for a random stem distribution,

as modeled by Crookston and Stage (1999). This might be

considered an average or typical model that lies somewhere

between evenly spaced and clumpy crown arrangements.

Therefore, the conceptual model can be completed by the addi-

tion of a lower boundary (line D) that represents some degree

of clumpiness. The possible space occupied by the relationship

between unadjusted and adjusted canopy cover is therefore

bounded by lines A and D, with the likelihood that conditions

do not exist in nature above line B.

The primary limitations of equation 6 are that only a single

parameter (x) exists in the model, and curves produced by the

model are asymptotic to 100-percent adjusted canopy cover. By

decreasing the value of x (fig. 4), curves representing increas-

ingly clumpy crown arrangements can be produced but not the

1:1 cover relationship. Increasing x produces curves that cross

above the 1:1 line and therefore represent an impossible condi-

tion—in other words, adjusted canopy cover that exceeds the

sum of the individual trees.

Many options exist for producing canopy cover models

with sufficient flexibility to reflect the conditions defined by

the conceptual space in figure 3. Equation 6 may be modified,

for example, by removing the constraint imposed by the

asymptote of 100-percent cover. A flexible asymptote would

permit the lower segments of some curves to closely follow the

1:1 line, although such curves could also cross into impossible

space (adjusted cover > 100 percent). Mitchell and Popovich

(1997) accomplished the transition between the 1:1 relationship

and overlapping crowns using a segmented model. A full treat-

ment of model options is not possible here, but the conceptual

space in figure 3 can be likely modeled adequately.

The potential ability of a flexible canopy cover model can

be explored by examining the stand dynamics that are expected

to occur in contrasting forest types. The aspen and spruce fir

types of the Intermountain West represent opposite ends of the

shade tolerance range found among forest types of the region,

with aspen being very intolerant, subalpine fir being very tolerant,

and Engelmann spruce somewhat less tolerant than the fir (Long

1995). As with figure 3, certain benchmarks can be plotted in

the space that represents the relationship between unadjusted

and adjusted canopy cover in these two forest types (fig. 5). 

Following fire, logging, or other disturbances, aspen com-

monly regenerate in large numbers by suckering. Regeneration

on the order of 10,000 stems per acre or more is not uncommon

(Long 1995). Considering that at maturity, perhaps in 50 years

or less, the same stand will be at a density of a few hundred

stems per acre, the sensitivity of aspen to competition is imme-

diately apparent. Because of this sensitivity, expecting minimal

crown overlap is logical, regardless of stand age. As noted earlier,

an upper limit may exist to the amount of unadjusted cover that

precludes adjusted cover from reaching 100 percent, at least as

long as the stand remains pure and even-aged. Aspen stands are

Figure 4.—Curve behavior for three values of x in the equation
Co = 100[1-exp(-xC’)], where Co is adjusted canopy cover, C’
is unadjusted canopy cover, and x is 0.01 for a random stem
arrangement.
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subject to invasion by a number of conifers that are more shade

tolerant, however, including Engelmann spruce and subalpine

fir (Mueggler 1987). Although the addition of more aspen

canopy is unlikely, compositional change due to succession may

increase unadjusted and adjusted canopy cover (fig. 5). 

On the other hand, spruce fir stands tend to be clumpy.

Engelmann spruce seedlings have difficulty surviving in open

conditions and typically require shelter to regenerate successfully.

This characteristic tends to influence the spatial arrangement of

stems, making the distribution of crowns in spruce fir stands

characteristically different from that in aspen stands. Modeling

canopy cover for stands that behave similarly to those illustrated

in figure 5 should be possible, based on stand composition and

structure. 

Conclusions

The modeling effort described in this article is multifaceted.

Some of the anticipated outcomes are based on conceptual

models, but the ability to achieve the desired results will depend,

in part, on whether the data are sufficiently well behaved.

Preliminary results suggest that the desired results can be

achieved. Despite the large numbers of crown measurements

available for analysis, comprehensive treatment of the species

in the Intermountain West cannot be accomplished in this study.

Additional data are needed for species that are poorly represent-

ed in the collected database. Preliminary analysis also suggests

that regional differences are important. Therefore, crown width

data are needed for Montana because models developed for the

other states may not be applicable there. 
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Species Composition of Down Dead and
Standing Live Trees: Implications for Forest
Inventory Analysis

Christopher W. Woodall1 and Linda Nagel2

Abstract.—The assessment of species composition in

most forest inventory analysis relies solely on standing

live tree information characterized by current forest

type. With the implementation of the third phase of

the U.S. Department of Agriculture Forest Service’s

Forest Inventory and Analysis program, the species

composition of down dead trees, otherwise termed

coarse woody debris (CWD), is now available to

inventory analysts. To evaluate the possible contribution

of CWD inventory data to forest ecosystem assessments,

the species compositions of standing live and down

dead trees for FIA plots across north-central States

were compared within the context of forest inventory

analysis. Results indicate that CWD species composition

data may refine understanding of past tree mortality

patterns in the context of stand development and

species composition shifts. Further, CWD species

composition data provide analysts with an additional

categorical unit for inventory reports. Although use of

CWD species composition data may be limited by

measurement error and sparse sampling intensity,

such data complement standing live tree data for a

range of inventory analysis procedures.

Introduction

Forest types (FTs), otherwise known as forest cover types, are

categories of forest defined by constituent vegetation (Eyre

1980, Helms 1998). The single attribute of forest vegetation

often used as a delimiter of FT is the species composition of

living forest biomass present in the stand/plot being typed (Eyre

1980, Helms 1998). Additionally, FTs may be defined by current

or potential vegetation (Daniel et al. 1979). The Forest Inventory

and Analysis (FIA) program of the U.S. Department of

Agriculture (USDA) Forest Service uses a definition of FT that

deals mainly with the species composition of current tree biomass

on a plot, “classification of forest land based on the species

presently forming a plurality of the live-tree stocking” (Smith

et al. 2001, 43). FT information has been used as a categorical

variable for ecological analyses for decades and forms the basis

of numerous forest reports produced by FIA and its cooperators

(H. John Heinz III Center for Science 2002, Miles et al. 2003,

Smith et al. 2001, USDA Forest Service 1965). Recent forest

resource reports have placed additional emphasis on FT analyses

(Heinz Center 2002, Smith et al. 2001) because changes in FTs

across the United States may indicate effects of urbanization

and climatic variations. 

Because forest typing procedures usually include only living

trees, the identifiable species composition of down dead trees

is often omitted in forest inventories and subsequent analyses.

Down and dead trees, otherwise known as coarse woody debris

(CWD), serve as critical habitat for numerous flora and fauna.

Flora use the microclimate of moisture, shade, and nutrients

provided by CWD for regeneration establishment (Harmon et

al. 1986). CWD provide a diversity (stages of decay, size class-

es, and species) of habitat for fauna ranging from large mam-

mals to invertebrates (Bull et al. 1997, Harmon et al. 1986,

Maser et al. 1979). Besides providing assessments of habitat,

CWD may contain the history of the species composition of

any particular stand, possibly refining understanding of mortal-

ity trends over time (i.e., succession). CWD studies to date

often quantify only the volumes, sizes, and diameters of CWD

with incidental information regarding CWD species composi-

tion (Goodburn and Lorimer 1998, Pedlar et al. 2002). Given

the importance of CWD, a new categorical variable is proposed

that may benefit CWD assessments and overall inventory

analyses. “Coarse Woody Type” (CWT) may be defined as a
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broad categorization of the species composition of the dead tree

biomass in a forest stand. Because FIA inventory data may be

used to determine both FT and CWT on selected inventory

plots, the FT and CWTs may be used separately or in combina-

tion to refine understanding of forest attributes and stand

dynamics.

The goal of this study was to determine if information on

down dead tree species composition could be used to refine

analytical procedures that have typically used only FT information.

Specific objectives were to (1) assess difficulties in developing

a CWD typing algorithm, (2) compare FT and CWT paired by

individual plot and correlate them with the stand attributes of

total stand basal area, stand age, and site index, and (3) link

plot-level FT and CWTs to successional and stand development

patterns regionally observed for common FTs. 

Methods

As defined by the FIA program, CWD are down logs with a

transect diameter ≥ 3 in and a length ≥ 3 feet. CWD are sampled

during a specific phase of FIA’s multiscale inventory sampling

design (USDA 2002). CWD are sampled on transects radiating

from each FIA subplot center (fig. 1). Each transect is 24 feet

long, three per subplot. Information collected for every CWD

piece intersected on each of three 24-foot transects on each FIA

subplot is transect diameter, length, small-end diameter, large-end

diameter, decay class, species, evidence of fire, and presence of

cavities (fig. 1). Transect diameter is the diameter of a down

woody piece at the point of intersection with a sampling tran-

sect. Decay class is a subjective determination of the amount of

decay present in an individual log. Decay class 1 is the least

decayed (freshly fallen log), while decay class 5 is an extremely

decayed log (cubicle rot pile). The species of each fallen log is

identified through determination of species-specific bark,

branching, bud, and wood composition attributes (excluding

decay class 5 CWD pieces). If a CWD piece is too decomposed

to identify its species, a hierarchy of species identification is

followed: species, species group, conifer or hardwood, or

unknown. 

CWD inventory data, along with corresponding tree and

stand information, for this study were obtained from selected

forested plots (n = 345) in the north-central States. Plots were

sampled during the summers of 2001 and 2002. DeVries’ line-

intercept estimators were used to determine CWD volume per

acre by species (DeVries 1986). A CWT was determined for

each sample plot based on the species with the plurality of CWD

volume per acre. Although a CWT algorithm may eventually be

developed to readily determine CWTs, that objective was beyond

the purview of this study. For this study, the CWT for each plot

was determined by the species with the most cubic foot volume

per acre using decay class, species, and log dimension information

(volume per unit area estimators) of individual CWD pieces. 

FTs were determined by field crews based on visual

observations of the plot (USDA Forest Service 2002). Because

numerous FTs may be present on any selected phase 2 plot, the

FT for the condition class occupying the greatest proportion of

the plot area was selected. If two or more FTs occupied the same

area proportion, the FT of the proportion with the most basal

area was selected. Both FTs and CWTs were broadly assigned

to the following FT/CWT groups: pine, spruce/fir, oak/pine, oak/

hickory, elm/ash/cottonwood, maple/ beech/birch, and aspen/birch

(Smith et al. 2001). To accomplish the second objective of this

study, all study plots were stratified into two classes for analysis:

(1) plots that had different CWTs and FTs, and (2) plots that

had no difference in CWTs and FTs (the species composition of

down dead tree biomass is roughly equivalent to the species

composition of the standing live tree biomass). 

Figure 1.—Line-intercept coarse woody debris sampling design
for the Down Woody Materials Indicator of the USDA Forest
Service FIA program.



2003 Proceedings of the Fifth Annual Forest Inventory and Analysis Symposium 195

Results/Discussion

Preliminary determination of a CWT by using existing CWD

data collected on FIA subplots provides an initial framework

for developing a formal CWT algorithm. Many challenges exist

to the development of a CWT algorithm using FIA data. First,

the CWT for a forested plot may resemble no currently defined

FT. For example, plots in the Southern United States may have

a significant amount of large chestnut (Castanea dentata) down

logs present on a plot dominated by standing northern red oak

(Quercus rubra) trees. Therefore, in this case, the CWT would

be chestnut, which no longer exists as a FT in the Southern

United States. Second, a hierarchy of species identification may

complicate typing algorithms. Field crews may readily identify

the particular species of individual CWD pieces but may only

identify other CWD pieces as unknown hardwood or conifer

because of decay. Third, for decay class 5 logs, no species

identification is possible because the logs are too decayed. For

some plots, a majority of the CWD volume may be in decay

class 5 and, thus, these null values would confound CWT efforts.

Fourth, the effects and importance of CWD decay classes on

the typing process need to be resolved. The species identification

of a freshly fallen (decay class 1) CWD piece is more certain

than the identification of a partially rotten (decay class 4)

CWD piece. Fifth, latitude and climate may affect decay rates

that may cause a spatial bias to CWT algorithms. Plots located

in Minnesota or Wisconsin may have older logs of previous FTs

that occupied the plot versus plots in Missouri where decay

rates are faster with less chance of CWTs differing from that of

current FTs. Thus, plots in more northerly latitudes or xeric

sites may be more difficult to type. Finally, crew measurement

error may affect CWD species identification in certain FTs.

Some FTs, such as paper birch (Betula papyrifera), may have

CWD that decays rather rapidly, while other FTs in adjacent

areas may have CWD that is more resistant to decay. Therefore,

field crews may have more uncertainty with species identification

in paper birch forests than in other forests with more decay-

resistant species such as black walnut (Juglans nigra). 

For all 345 study plots, 52 percent displayed a difference

between FT and CWT. The remainder of the plots (48 percent)

showed no difference between CWT and FT. When the plots

were examined in the context of three common FT groups of the

Lake States (spruce/fir, maple/beech/birch, and aspen/birch),

distinct differences existed in FT and CWT comparisons between

the conifer and hardwood FTs (figs. 2a–b). When considering

the distribution of FTs between the two strata of difference/no

difference, the proportion of plots in northern hardwood forests

(maple/beech/birch and aspen/birch) that had a difference in FT

and CWT (61 percent) was less than the proportion of plots

with no difference in FT and CWT (84 percent) compared to

spruce/fir FTs (figs. 2a–b). For spruce/fir forests, this trend

was reversed: the difference in FT and CWT (39 percent) was

greater than the proportion of plots with no difference in FT

and CWT (16 percent) (figs. 2a–b). These results suggest that

spruce/fir forests are more likely to have CWD of a different

species from the FT than maple/aspen/birch forests, a result

attributable to the regional maturation of aspen/birch FTs and

understory development of more shade-tolerant climax

spruce/fir forests (Kotar et al. 2002).

Figure 2.—Percentage of study plots by selected FT for North
Central States (USDA Forest Service, FIA program) by study
strata of (a) no difference between forest and coarse woody
types and (b) differences between forest and coarse woody types.

(a)

(b)
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For Lake State forests in particular, differences between

FTs and CWTs may help elucidate successional and mortality

trends occurring between maple/aspen/birch and spruce/fir

forests. To determine if differences between FTs and CWTs

were due to recent disturbances, the proportion of study plots in

the two study strata were examined. As related to recent stand

disturbances identified by field crews, 81 percent of plots that

had a difference between FTs and CWTs showed no evidence

of recent stand disturbances, and 83 percent of plots that had no

FT and CWT differences had no recent stand disturbances. Due

to the scarcity of recent stand disturbance events across a

region, CWTs may not fluctuate in short time frames, especially

within the sample plot sizes (24-ft radius) the FIA program uses.

Rather, CWTs may potentially quantify species composition

changes during extended years of stand development (FTs of

the past, deceased forests in general). In addition, mature or old

spruce/fir FTs are often maintained through small-scale, wind-,

and disease-related gap dynamics (Frelich and Reich 1995), with

remnant early successional species possibly comprising the CWD

found on the forest floor. As stand development progresses in a

northern hardwood FT, gap dynamics characterized by small

windfall events perpetuate shade-tolerant species, such as sugar

maple, that may have been present at stand initiation (Frelich

2002), resulting in the same CWT and FT over time. Both of

these disturbance types are relatively small scale and may not

be observed by field crews. 

Mean proportions of plots having differences in FTs and

CWTs among north-central States were examined (table 1).

Northern latitude States (Minnesota, Wisconsin, and Michigan)

showed more of a difference between FTs and CWTs than more

southerly forests (i.e., Missouri). These results may be due to

two reasons: (1) successional trends in spruce/fir forest climax

types in Northern States, and (2) regional climatic gradients.

For forests in high latitude/elevation and/or xeric regions of the

United States, slow decay rates may preserve CWD pieces for

decades thus exacerbating differences between down dead and

standing tree species compositions. The results in table 1 also

support the concept of successional shifts in Lake States forests

causing differences in FTs and CWTs by FT. Shifts in CWTs

and FTs, as suggested by results in this study, may not be related

to recent stand disturbances but rather to long-term successional

shifts. For FT groups in this study, the successional pathways of

the hardwood forests of maples, aspen, and birches succumbing

over time to developing spruce/fir forests may be evidenced by

the prevalence of spruce/fir study plots having differences in

their respective CWTs and FTs (figs. 2a–b). 

The means and associated standard errors for stand-level

variables of stand age (yrs), basal area (ft2/ac), and site index

(base age of 50 yrs) were compared between the two study strata

of FT and CWT differences/no differences. Plots that had a

difference between standing live and down dead tree species

composition were generally older stands, had greater basal area,

and were on poorer quality sites than plots that had no difference

in FTs and CWTs, although incorporation of summary statistics

might alter those conclusions (figs. 3a–b). First, older stands

(fig. 3a) are more likely to have disturbance and successional

related mortality. These results may be justified by the fact that

older stands have a longer time to accumulate CWD from a

variety of species that may or may not be present in the current

forest. Second, forests with greater levels of stand basal area

(fig. 3b) may be more susceptible to density-related mortality.

With greater levels of mortality over time, the greater the chance

that the species composition of the CWD of a stand may not

resemble the standing tree species. Third, forests on higher

quality sites may have faster decay rates for CWD, less accu-

mulation of CWD over time, and therefore less chance for a

difference between FTs and CWTs. If a particularly high-quality

site can grow trees faster (Assman 1970), the site may be able

to grow more fungi and microbes to decompose CWD at faster

rates. Overall, if stand and site attributes (density, site quality,

or stand age) partially control the accumulation and decay of

CWD, the hypothesis may be promulgated that examination of

CWTs may indicate the past influence of stand/site attributes in

forest stands. 

States Plots with FT and 
CWT difference (%)

Indiana 7
Iowa 23
Kansas 33
Michigan 81
Minnesota 81
Missouri 34
Nebraska 13
Wisconsin 54

Table 1.—Percentage of CWD plots showing a difference in FT
and CWT by North Central State (2001–02).
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Conclusions

Despite obvious difficulties and hurdles to developing CWD

species composition typing algorithms, CWTs may afford

inventory analysts with another categorical variable of analysis.

Study results suggest that comparisons between FTs and CWTs

may serve as an indicator of successional change at landscape

scales. Additionally, FTs and CWTs may refine analysis of the

complex relationships between stand/site factors and stand

development. If the thesis statement—that CWD species

composition indicates the historical mortality patterns of any

particular stand—is correct, CWTs may afford opportunities to

refine our understanding of CWD and its role as an indicator

of forest health. 
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Access and Use of FIA Data Through FIA
Spatial Data Services

Elizabeth LaPoint1

Abstract.— Forest Inventory and Analysis (FIA)

Spatial Data Services (SDS) was established in May

2002 to facilitate outside access to FIA data and allow

use of georeferenced plot data while protecting the

confidentiality of plot locations. Modification of the

Food Security Act of 1985 legislated the protection of

information on plot location and ownership. Penalties

were put in place for violations. Because of this change

in the law, many customers have been served by FIA

SDS, and demand for spatial analyses continues to

grow. More than 130 requests for spatial data or other

information have been received from academia, State

and local governments, Federal agencies, and forest

industry. This article describes how projects progress

from inception to completion, including security

concerns.

Introduction

Forest Inventory and Analysis (FIA) has been collecting data

and reporting on the status of the Nation’s forests for more than

70 years. Sample plots are located across the landscape and are

revisited periodically. In recent years, plot locations have been

recorded using Global Positioning System (GPS) technology,

which has resulted in new uses for FIA data.

The Privacy Issue

With passage of the fiscal year (FY) 2000 Consolidated

Appropriations Bill (Public Law 106-113), the Food Security

Act of 1985 (7 U.S.C. 2276(d)) was modified, making it illegal

to reveal information on FIA plot locations or ownership.

Penalties for violating the law can include fines up to $10,000

and/or a year in jail. 

Even before the change in the law, FIA treated ownership

information and plot location in a confidential manner for the

following reasons: (1) to maintain goodwill because FIA relies

on private landowners for access to their property, and they

must understand that FIA is not concerned with any regulatory

or taxation issues; (2) to eliminate unnecessary site visits that

might damage or alter the plot; and (3) to ensure management

decisions are not influenced by knowledge of a plot’s location.

Background

FIA Spatial Data Services (SDS) was created in May 2002 to

assist customers in accessing and using FIA data spatially within

the bounds of existing legislation. FIA SDS also provides assis-

tance with Geographic Information System (GIS) technology

and in linking to non-FIA data, in addition to attempting to

answer users’ questions about the data. Although FIA SDS was

established partly in response to the change in the privacy law,

FIA’s national management realized that users needed a single

contact point for questions related to the FIA data confidentiality.

Almost one-third, 32 percent, of the requests for data have

been from academia. Other consumers include other Federal

agencies such as the Environmental Protection Agency and Bureau

of Land Management as well as non-FIA U.S. Department of

Agriculture Forest Service employees and State agencies.

Academia and Federal agencies account for 63 percent of the

data requests received in FY 2003. 

Data Request Process

After customers initially contact FIA SDS, the data request is

typically revised or refined for some period of time. Often,

requesters are unaware of the kinds of data collected by FIA,

how these data are collected, or the differences in data collection

between States and FIA units and/or privacy issues related to

the use of FIA data. Protecting the location of the plots and

landowner privacy are the primary concerns of FIA SDS with

1 Forester, Northeastern Research Station, U.S. Department of Agriculture, Forest Service, Newtown Square, PA 19073. Phone: 610–557–4049; fax: 610–557–4250;
e-mail: elapoint@fs.fed.us.
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every data request—for example, ensuring that the data provided

cannot be back-engineered to reveal plot location or ownership

information.

As part of refining a request, FIA SDS describes the relevant

data to the requester with respect to the specific area of interest.

Revising a data request, whether for security purposes or other

reasons, can take weeks to months depending on the request’s

complexity, the requester’s motivation level, the extent of com-

munication between FIA SDS and the requester, and the work

backlog at FIA SDS. 

FIA data limitations are described while discussing the data

request with the requester; for example, the variations in the

quality of plot location data are pointed out. Originally, plots were

georeferenced by digitizing their positions on aerial photographs

or maps. These digitized positions are rarely as accurate as the

GPS coordinates currently being collected for sample plots.

Unfortunately, plot locations with no GPS coordinates still exist.

GPS-derived plot locations also are subject to inaccuracies due

to user error, signal degradation, or satellite configuration.

Some of these problems should be resolved with the national

standardization of GPS data collection methods and increased

recognition of the importance of accurate locations. 

Another limitation is that some areas of the Nation have few,

if any, FIA plots. In the past, plots were not always established

in wilderness areas or areas with no timberland, for example,

western Texas and parts of California. Some areas, such as interior

Alaska, had no plots established due to their remoteness.

Another issue that may affect a data request is that inventories

in neighboring States may have occurred as many as 10 years

apart, and, therefore, the data requested may not be current.

However, FIA’s recent transition to an annual inventory will

result in more timely information. 

After the data request has been refined and meets security

requirements, the request is forwarded to the appropriate FIA

program manager(s) for approval. Often, the security review by

FIA SDS entails processing a portion of the data request and

examining the results. Each FIA unit can refuse a data request

or recommend additional refinement, use its own staff to process

the request, or approve the request and redirect it to SDS for action.

When a request is approved, SDS completes its processing

and forwards the results to the program manager(s) for final

review. If the release of the data is approved, the results are

forwarded to the customer. If a request is denied, SDS will work

with the customer to accept an alternative that best meets the

customer’s needs.

Revisions to the data request and communications among

the requester, FIA SDS, and FIA management make up most of

the time spent on a request. As data requests become more

complex, the amount of time required to supply the data also

will increase. Data requests that cover multiple States or FIA

units can become more complicated due to differences in the

data between States or units. 

During FY 2003, 95 data requests were received, and an

average of 5.5 requests were filled each month. Almost from its

inception, FIA SDS has experienced a work backlog due to

needed refinements in requests and/or communication time lags

between SDS and the customer. In FY 2003, 67 percent of the

requests received were filled within 4 weeks; the overall average

fulfillment time was 7 weeks.

A customer can work with FIA SDS at its office at Newtown

Square, PA, or submit a request at any regional FIA location. 

Examples of Requests

Simple Example

A common request is for a data summary for plots that fall

within the requester’s area of interest, for example, a summary

of growth and removals within a given distance of a mill location.

Because the data provided to the requester is summarized, no

concerns exist related to disclosing information on plot location

or ownership. The only security concerns are ensuring that the

area of interest is of sufficient size to prevent plot location dis-

closure, and that the area of interest covers at least three private

landowners. Current restrictions on FIA Mapmaker (http://ncrs2.

fs.fed.us/4801/fiadb/fim_tab/wc_fim_tab.asp), an Internet-based

data query and mapping application, prohibit circular retrieval

with a radius less than 25 miles (1,256,637 acres). Generally,

tables are created only if at least 12 forested plots fall within

the area of interest; i.e., a circle with a minimum of 72,000

forested acres. 

Creating tables of growth and removals at the county level

can create security problems. Figure 1 depicts circular retrieval

on a map containing county lines. If summarized data are provided
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for the entire circle, the security issue is moot. If the customer

wants county-level summaries, however, a security issue arises

because overlaying the circular area onto the county layer creates

a sliver polygon. The sliver may be small enough to locate the

plot on the ground, or the owner of that area may be known. FIA

SDS assumes that the customer has access to GIS technology

and is able to overlay the circle onto the county layer. 

Complex Example

A more complex request is one that entails overlaying plot

locations onto a polygon layer to associate a polygon label or

attribute with each plot—for example, the customer wants to

assign a soil polygon to each FIA plot. The ideal solution is to

provide summarized data for polygons and restrict the data to

polygons with a minimum of three plots, which avoids creating

sliver polygons. Figure 2 shows how overlaying a watershed

layer onto a county layer can create polygons that would reveal

plot location or ownership.

A possible solution to the security problem is to ensure

that at least three privately owned plots exist in each polygon,

although the three plots may be owned by the same person.

Another solution is to make the polygon larger than common

land holdings in the area of interest. This minimum size varies

greatly between regions. For example, a polygon that encompasses

100 acres on the coast of Rhode Island likely will contain the

required three private owners, but that same parcel size may be

woefully inadequate in north-central Maine. Ideally, FIA SDS

would provide data summarized for the polygons rather than

provide the polygon ID for each FIA plot.

FIA SDS also handles requests involving remotely sensed

imagery or other raster data. These are often data requesters

sending in satellite imagery they have previously classified,

SDS overlays the FIA plots and then returns information on the

classes of the imagery. These requests are similar to the previous

example with soil polygons. Providing summarized information

for each class, or ensuring both a minimum of three privately

owned plots in each class/county combination and that each

class/county combination covers enough acreage to prevent

disclosure of plot locations, avoids security issues. 

Fuzzing and Swapping

To make using spatial data more accessible to customers, the

FIA database has coordinates available for downloading. The

coordinates associated with the plots are altered to protect

ownership information and prevent locating plots on the ground. 

Figure 1.—Fifty-mile-radius circle retrieval around potential
mill location. The single plot in lower right quadrant could
reveal location or ownership information if county level summaries
are provided. (Plots shown are fictitious.)

Figure 2.—Overlaying a watershed layer onto a county layer
can create sliver polygons that can reveal plot location or
ownership information; i.e., the southeast corner of Schuyler
County and the northwest corner of Susquehanna County.
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The process of altering the plots entails “fuzzing” the plot

locations and then swapping coordinates for a certain percentage

of plots. Fuzzing involves creating a buffer area of 0.5 to 1.0

miles around each plot and randomly selecting a point within

that circle as the “new” coordinate for that plot (fig. 3). This

procedure is performed for all plots to prevent users from locating

the true plot locations. 

To protect landowner privacy, the location coordinates of

up to 20 percent of privately owned forested plots are swapped

with similar plots in the same county or supercounty (aggregation

of two or more adjacent counties in the same State). For example,

if plots A and B are selected as a swapping pair, plot A’s data

will be assigned to plot B’s location, and plot B’s data will be

assigned to plot A’s location. The plots are determined to be

similar based on criteria established by each FIA unit. Plots

usually will not be swapped outside their county.

Customers can download the fuzzed and swapped data and

perform their own spatial analyses. In some cases, data requests

are not significantly affected by using fuzzed and swapped

coordinates, for example, when evaluating mill locations. In

others, customers may want to use the fuzzed and swapped

coordinates to examine and refine their data needs before

submitting a data request.

Summary

FIA SDS has made great strides in improving access to FIA’s

spatial data. FIA SDS was begun as a pilot project; since then,

however, the need for this service has been demonstrated. By

establishing FIA SDS, FIA has shown a commitment to its

customers. As FIA’s commitment to spatial products continues

to grow, so will the variety of spatial tools and spatial data

available to FIA customers.

Figure 3.—Plots with a 1-mile-radius circle depict the area
from which a new “fuzzed location” would be randomly selected.
(Plots shown are fictitious.)
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The Open-Source Movement: An Introduction
for Forestry Professionals

Patrick Proctor, Paul C. Van Deusen1, Linda S. Heath, and

Jeffrey H. Gove2

Abstract.—In recent years, the open-source movement

has yielded a generous and powerful suite of software

and utilities that rivals those developed by many com-

mercial software companies. Open-source programs are

available for many scientific needs: operating systems,

databases, statistical analysis, Geographic Information

System applications, and object-oriented programming.

Using “real world” examples, including applications

employed by Federal agencies, we address the concerns

associated with open-source software deployment:

cost, security, software availability, and usability. The

potential for application to U.S. Department of

Agriculture Forest Service Forest Inventory and

Analysis data is discussed.

The growing availability of open-source software is causing

many businesses and organizations to consider its adoption.

Open-source software has advanced to the point where it has

become a viable alternative. “Open source” does not just mean

free software that is distributed with its source code. For software

to be considered open source, it must comply with 10 criteria

of the Open Source Definition (Open Source Initiative 2004).

The Open Source Initiative, a registered nonprofit organization,

broadly oversees the certification of software distributed under

a license that conforms to the Open Source Definition. This

article will explore the nature of open source, compare it with

similar proprietary corporate platforms, and address many of

the concerns voiced by today’s information technology (IT) user.

We believe the merits of open source allow for a formidable

and attractive platform. 

The Open-Source Philosophy

Raymond (2000) describes the major differences in the devel-

opment paradigms between closed- and open-source software.

He compares the former to the building of a cathedral, where

the design, progress, and management of a software project are

conducted under strict regiment in a group that is closed to non-

members. Such models normally apply to corporate projects,

although in the past they have also been applied to open-source

software projects. By contrast, the development of the popular

GNU Emacs editor (Free Software Foundation 2003a) exemplifies

the open-source approach. This latter model is compared to a

bazaar, which seems at first appearance to be chaotic and

uncontrolled, but when the model is viewed with scrutiny, it more

closely resembles the working of a diverse yet controlled system.

Linus Torvalds was the first to popularize this open-source model

with his “release early and often, delegate everything you can”

(Raymond 2000, 2) philosophy. Torvalds is the creator of Linux,

currently the most accessible and widely used open-source

operating system. In this developmental model, users are often

also contributors. One of the major keys to success of such

ventures is that people contribute not because they were assigned

to but out of love for the project.

Central to the open-source model and considered the core

difference between the cathedral and bazaar models is Linus’s

Law: “Given enough eyeballs, the bugs are shallow” (Raymond

2000, 9). In the cathedral model, bugs are insidious and often

difficult to correct, if found at all, because of the limited number

(and often high turnover) of programmers with access to the

code. The bazaar model, however, draws on the talents of often

thousands of “hackers”; with such a base to draw from, an

insidious bug becomes something simply fixed not by the group

as a whole but by the one or two people out of the many with

the specific talent. “Release often,” then, becomes the vehicle for

rapid development and evolution toward an unbreakable system.

1 Supervisory Research Forester and Research Forester, respectively, U.S. Department of Agriculture, Forest Service, PO Box 640, Durham, NH 03824. Phone:
603–868–7612; e-mail: lheath@fs.fed.us.
2 Supervisory Research Forester and Research Forester, respectively, U.S. Department of Agriculture, Forest Service, PO Box 640, Durham, NH 03824. Phone:
603–868–7612; e-mail: lheath@fs.fed.us.
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The best example of the bazaar model, as Raymond (2000)

points out, is Linux itself. The Linux platform is available in a

number of “distributions” made by various software groups or

companies that include Red Hat, Debian, and Yellow Dog.

Although groups may package and sell the code, the source

code is free and available to be compiled, and contributions are

considered and encouraged from all. The Linux kernel—which

is stable and often termed unbreakable—can scale from embedded

devices (Embedded Linux Consortium 2003) to clusters running

at supercomputer speed, including the world’s third fastest

supercomputer as of June 2003 (TOP500 2003). Finally, as

evidenced by the visionary GNU Project (Free Software

Foundation 2003b) and the thousands of tools produced directly

by members of the Free Software Foundation or under the GNU

General Public License (Free Software Foundation 2003c), a large

community of users have based their work on a Linux platform.

Security

As expected, security is a primary concerns when switching to

an open-source platform. The security measures available in

open-source operating systems are comparable to those available

in proprietary, closed-source operating systems such as Microsoft

Windows (Microsoft 2004). Remote access to machines is

controlled by a series of “ports,” each of which is assigned to a

particular function (e.g., HTTP, FTP, Telnet). Access to these

ports, in turn, is controlled by a firewall that blocks outside

users and illegal ports. This user control (available in Linux

distributions and in Microsoft Windows versions 2000 and XP

only) is accomplished through a user name/password-based

access system, which requires users to be verified by a system

administrator before gaining access.

Because Microsoft Windows is the most used desktop

operating system in the world, its exploitation by hackers is

more likely for a number of reasons. First, more users in the

form of individual desktop systems exist to “attack,” which makes

an attractive target. Also, viruses and worms can spread more

rapidly because of the large user base. Second, on Microsoft

Windows systems, software, such as web browsers, are allowed

to run scripts that, if the author is clever enough, can directly

access the operating system files—something that is not allowed

on open-source Linux. Third, patches must go through a corporate

testing and clearance process before being released to the public.

This results in a long lag time until a resulting virus “cure” is

built into the system itself. Typically, a patch, when finally

released, is available exclusively through Microsoft servers. The

code cannot be checked by outside sources because of its

unavailability to the general public, and the reliability of the

patch is based entirely on internal Microsoft control mechanisms.

Although Microsoft has a full staff of software testers and

security analysts, hackers consistently exploit Windows system

vulnerabilities before these “holes” are discovered internally.

Some recent examples include the Blaster and SoBig viruses

(Cable News Network 2003). Unfortunately, Microsoft provides

no means for users to assist in solving this problem other than

to be aware of and follow Microsoft advisories. If Windows

users want to address these security concerns, they often are

required to look to third-party providers.

As mentioned above, the open-source community has a far

less restrictive management system for vulnerabilities. Bugs are

often discovered and patched by any of the numerous users

involved in open-source development. Before code is put into

practice, the code is checked and rechecked by a literally world-

wide network of developers. Patches are quickly and freely

distributed to anyone who wants them. Because the patches are

open source, they can be hosted on any server, provided the

server abides by the GNU General Public License (Free Software

Foundation 2003c). The open-source community is always

searching for new vulnerabilities, and community groups, such

as the Linux Security Audit Project, exist for the sole purpose is

finding and patching Linux vulnerabilities (Linux Security

Audit Project 2003). In addition, efforts such as the National

Security Agency’s Security-enhanced Linux project (National

Security Agency 2003) provide even more protection if desired

(Coker 2003).

Although debates occur about which distribution and patching

system is more efficient or desirable, open-source solutions are

in no way less secure than their proprietary counterparts. They

clearly offer a well-documented and tested security alternative

to proprietary operating systems. 
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Cost

Cost often is cited as a significant factor in the success of the

open-source movement. Although prices of retail software con-

tinue to rise, open-source software remains entirely free or

affordable to license and install. As table 1 shows, a number of

retail closed-source packages have open-source counterparts,

and the savings in using them can be immense (Newegg 2003).

Although a cost advantage clearly exists to using open-source

products, the argument can be made that the savings in retail

cost is eclipsed by the time cost of retraining employees on

new and/or unfamiliar applications. 

Five to 10 years ago, when Linux was largely text-based,

training users may have been costly. The Linux user interface

has been redefined to be accessible to any user, however. A

number of graphical interfaces are available to choose from,

e.g., GNOME (GNOME Foundation 2003) and KDE (KDE e.

V. 2003), all of which draw on industry-standard interfaces as

their inspiration. Any user familiar with the Microsoft Windows

operating system’s graphical user interface could switch to the

current Linux environment and find similar functionality. The

same holds true for vital applications such as office productivity

and photo-editing programs. Linux user interfaces will be

familiar to Microsoft Windows users, and they also feature

extensive online help. Also, databases based on the structured

query language (SQL) must adhere to the SQL standard. Queries

and databases written for retail programs, such as those from

Oracle, can easily be migrated to the popular open-source data-

base MySQL (MySQL AB 2003, Oracle 2004). Developers

familiar with Oracle database products will find MySQL to be

a similar, if not almost identical, environment. One major cor-

poration that made the switch to open source was the Ernie

Ball Guitar String Corporation. Ernie Ball’s CEO, Sterling

Closed source Price ($) Open source equivalent Price ($)

Microsoft Windows 2000 Server 870 Linux 0
Adobe Photoshop 565 GIMP 0
Oracle (1 computer) 15,000 MySQL 0
Microsoft Office XP 297 Open Office 0
Total: 16,732 — 0

Table 1.—Popular closed- and open-source software packages and their retail prices (Newegg 2003).

Ball, disputed analysts’ predictions of tremendous cost and user

transition difficulties when migrating from Windows to Linux:

It’s the funniest thing—we’re using it for e-mail

client/server, spreadsheets and word processing. It’s

like working in Windows. One of the analysts said it

costs $1,250 per person to change over to open source.

It wasn’t anywhere near that for us. I’m reluctant to

give actual numbers. I can give any number I want to

support my position, and so can the other guy. But I’ll

tell you, I’m not paying any per-seat license. I’m not

buying any new computers. When we need something,

we have white box systems we put together ourselves.

It doesn’t need to be much of a system for most of

what we do. (Becker 2003)

Availability

One possible downside of open-source software is its lack of

retail availability. Although more popular open-source packages

are becoming available in stores and catalogs, most open-source

software must be downloaded from the Internet. This often

requires a high-speed connection or a long time waiting for

downloads to complete. As high-speed Internet access continues

to proliferate, this issue is becoming less of a problem. In fact,

the online availability of open-source programs is actually

becoming a benefit: no packaging materials are used, no shipping

time is required to get the latest version of a program, and no

money is wasted on programs that do not meet the user’s needs.

For users with high-speed connections, the available delivery

mechanisms, such as apt-get (Chiba Industries 2003), RPM

(RPM Community 2002), or yum (Duke University 2002), are

superior to those of their retail counterparts.
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Code Accessibility

As mentioned in the first section, because of the open-source

principles, code for open-source projects is freely available.

Source code is the software component that is readable by

humans before it is compiled into machine-readable code.

Source code, considered intellectual property, is the component

of software to which software copyrights apply. In retail products,

source code is not openly available. For users adept at program-

ming, being able to view the source code offers many distinct

advantages: bugs can be fixed, features can be added, modules

can be enhanced, and security features can be checked by outside

sources. 

“Real World” Applications

The real world applications of open-source software are numerous

and diverse. Organizations and individuals are adopting the

open-source platforms for a number of reasons: costs are reduced,

capacity for customization is increased, licensing maintenance

is eliminated, and security is easily maintained. A short list of

organizations that use open source indicates the widespread

acceptance of the technology. The following is a list of organi-

zations that have given open source a central role:

• Amazon.com (Adelson 2002).

• Toyota USA (IDC 2001).

• Massachusetts Institute of Technology.

• Harvard University.

• U.S. Department of Energy (Weiss 2001).

• U.S. Navy (Orlowski 2003).

Each of these organizations cited reasons along the lines of

those previously mentioned for switching to open-source software.

Security, cost, software availability, and customization were all

contributing factors. In some of these cases, immediate cost

savings were as high as $17 million (Adelson 2002). In the case

of the U.S. Navy, the open-source code enabled the security

customization required for specialized projects aboard nuclear

submarines (Orlowski 2003). The Department of Energy has

used open-source programs to create clustered supercomputers

at an affordable price (Weiss 2001). On college campuses,

open-source software enables students to work with the source

code and generally function on the leading edge of technology.

These real world success stories also are contributing to

the viability of open source as a retail offering. Many hardware

retailers, including Dell, IBM, and Target, are offering open-

source-based hardware solutions to their customers. These

solutions can range from “clean” systems with no retail software

installed to default open-source installations to customized

open-source platforms created for customers. These examples

and the increasing demand for availability clearly indicate

open-source software’s success.

Application of Open Source to Forest Analysis

Where possible, gradually replacing corporate software packages

with their open-source counterparts would be a beneficial and

exciting option. The result would be a decrease in cost, an

increase in security and stability, and a more flexible computing

environment. The easiest initial change would be to upgrade

servers to open-source software. They could continue to interface

with Microsoft Windows desktops for file sharing through

Samba (Samba Team 2003) and act as servers for various FIA

operations. This change would be largely transparent to the end

user, especially because Forest Service servers are currently

Unix-based. It would yield numerous benefits for the organization.

Funding could be saved on software licenses for Oracle database

software, Microsoft Windows operating systems, and other

retail software. Additionally, use of the Linux kernel increases

server stability and eliminates viruses, worms, and Trojan horses

written to exploit Microsoft system and application vulnerabilities.

Although upgrading systems to open source can be a significant

and possibly daunting step, it can decrease IT overhead for an

entire organization. Such an upgrade also establishes a niche at

the forefront of a movement on the verge of changing the world

of computing forever.

A clear example of open source being implemented success-

fully in a forest analysis project is Carbon On-Line Estimation

(COLE) (Proctor et al., in press). For this project, open-source

development tools and practices are used exclusively. The result

is a comprehensive data analysis solution produced at a fraction

of the cost of using retail tools. Additionally, as COLE comes into
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its own, it, too, will become a registered open-source project.

This step will allow other developers to contribute to the devel-

opment of COLE and enhance it to suit their own research. In

short, the open-source development cycle will come full cycle.

Conclusion

The open-source movement is a useful and viable option in

today’s computing world. In nearly all areas, open source either

meets or exceeds the features and quality of proprietary retail

software. Most importantly, open source presents owners and

managers with an alternative that alleviates many of the problems

that currently plague the IT infrastructure of many organizations:

security, licensing costs, viruses, and scalability. Perhaps the

advantages of open source are best summarized by Sterling

Ball on his company’s transition to an all open-source office:

I’m not making calls to Red Hat (Linux) [for

support]; I don’t need to. I think that’s propaganda….

What about the cost of dealing with a virus? We don’t

have ‘em. How about when we do have a problem,

you don’t have to send some guy to a corner of the

building to find out what’s going on—he never leaves

his desk, because everything is server-based. There’s

no doubt that what I’m doing is cheaper to operate.

The analyst guys can say whatever they want.

(Becker 2003)

The open-source revolution is clearly becoming a dominant

force in computing, and the more its user base increases, the

more it will gain power. Only time will tell if organizations will

have the vision to take this powerful option to the next level.
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A Knowledge Base for FIA Data Uses

Victor A. Rudis1

Abstract.—Knowledge management provides a way

to capture the collective wisdom of an organization,

facilitate organizational learning, and foster opportunities

for improvement. This paper describes a knowledge

base compiled from uses of field observations made by

the U.S. Department of Agriculture Forest Service,

Forest Inventory and Analysis program and a citation

database of more than 1,400 bibliographic entries

from the past quarter-century. This synthesis provides

highlights of early novel uses from the 1930s through

1976, suggests evolving approaches toward compre-

hensive assessments, and refers to the usefulness of

forward-looking efforts to document the types of

users, available attributes requested, and information

in demand. 

Introduction

The challenges of assessing forest lands for their ability to provide

products, services, and values to an increasingly diverse society

have grown progressively complex. Integrated knowledge is

essential when selecting relevant attributes for measurement

and common procedures for data collection, management, and

analysis. For any organization concerned with efficient collection

and distribution of data about field observations, a strategic

business plan that considers the multiple processes involved in

addressing current and satisfying future customer needs will be

necessary. 

Knowledge management, a formal term with many definitions

(Full Circle Systems 2003), provides a way for an organization

to capture the collective wisdom about such processes, facilitate

appropriate responsiveness to challenges, and foster innovation.

Feedback from customers in the form of documented attributes

of interest, the kinds of analysis requested, and the multiple and

varied interpretations of data provides some of the knowledge

needed for long-term planning. The same is true for public

agencies, whose supporters include not only the customary end

users of data, but also legislators, nongovernmental organizations,

businesses, and individuals. An agency’s decisionmakers need

information about promising new ventures when funding is

increased or may need to take cost-cutting actions and periodi-

cally reassess priorities in years of lean funding. 

This brief synthesis is intended to facilitate organizational

learning of U.S. Department of Agriculture Forest Service

Forest Inventory and Analysis (FIA) program staff, affiliates,

and potential cooperators. Recent efforts now being used to

capture what data are being used, what issues the data are

addressing, and the FIA program’s knowledge of data uses and

users are problematic. The paper highlights a retrospective

compilation of the last quarter-century’s reports that used FIA-

based field observations for novel uses (Rudis 2003a). Included

are early efforts involving nontraditional uses, other disciplinary

perspectives, and evolving approaches to conducting compre-

hensive forest resource assessments. Recent findings and new

opportunities to assemble knowledge of unpublished data uses

and users also are described.

Early Milestones

A search of the literature on FIA-associated data reveals an

evolving program (Rudis 2003a, 2003b). When FIA surveys

were initiated in the 1930s, the chief goal was to identify timber

resources, such as lumber and naval stores. But almost from the

beginning, a broader audience was attracted to the information

provided, particularly land use, forest land area, and forest types.

Not long after the first reports came out, this single-purpose

forest survey became a source of spatial information for an

array of users. Map displays always have been a popular cross-

disciplinary feature of forest survey reports and continue to this

day to serve a diverse audience. 

In the 1950s, a second generation of reports included

county-based representations of otherwise tabular FIA data,

1 Research Forester/Landscape Ecologist, U.S. Department of Agriculture, Forest Service, Southern Research Station, Forest Inventory and Analysis Unit, 4700 Old
Kingston Pike, Knoxville, TN 37919.
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including tree distributions of individual species for Mississippi

(Sternitzke and Duerr 1950), timber supplies for Florida counties

(Larson 1952), and hickory timber volume in the South

(Cruikshank and McCormack 1956). The audience for the data

remained diverse, but reports of the time focused primarily on

directly measured attributes of timber supply. 

A decade later, the American Forestry Association sponsored

a series of regional, community-based assessments of forest

management across the country. This effort produced three

book-length (300-plus page) reports that synthesized biological

and physical attributes, ownership patterns, and geopolitical

contexts for three regions, as represented by three States:

California (Dana and Krueger 1958), Minnesota (Dana et al.

1960), and North Carolina (Pomeroy and Yoho 1964).

Information assembled came from the forest survey as well as a

much wider range of sources than was common in later decades.

These reports served and may continue to serve as models of an

accomplished synthesis from vastly different disciplines and

sources. Although dated, they remain a treasure trove of infor-

mation for people who want to compare historic land use, forest

ownership patterns, and land management practices across regions.

Beginning in the 1960s, the forest survey began to expand

into other disciplinary arenas. The then-pioneering concept of a

“multipurpose” inventory focused on the feasibility of combining

deer browse inventories with forest surveys in the Southeastern

United States to address wildlife management concerns (Moore

et al. 1960). In the 1970s, understory plants were used to identify

potential wood productivity in the Pacific Northwest (MacLean

and Bolsinger 1973) and forest range resources in the south-

central United States (Pearson and Sternitzke 1974). Other reports

were generated to document tree damage agents; e.g., laminated

root rot (Gedney 1976). At the same time, growing recognition

that more sociological information was needed to assess the

availability of timber for harvest led to coordinated studies of

nonindustrial owner intentions in the Northeastern United

States (Kingsley and Finley 1975). 

By the mid-1970s, laws were enacted requiring compre-

hensive forest resource assessments, which included reports of

associated social issues and related resources such as range,

recreation, water, and wildlife habitat. Efforts varied widely by

region and are reported elsewhere (Rudis 1991, 2003a, 2003b). 

Evolving Approaches Toward Assessments

Varied approaches toward forest resource assessments have

been taken, and many were intended to be comprehensive.

Rudis (2003a) provides details, but in brief, such approaches

have ranged from those designed by (1) a singular discipline

with a single data source for a single-discipline audience to

address a single purpose, (2) a representative team of selected

disciplines with a limited array of data sets to focus on a specific

issue or topic, or (3) multiple disciplines and data sources to

address a selected range of objectives. In the past quarter-century,

FIA assessments have evolved from the first approach principally

by making efforts to reach a broader audience. 

Individual scientists and teams in selected disciplines also

have made use of publicly available FIA data to address specific

issues in subject matter journals; e.g., for modeling biogenic

emissions (Wiedinmyer et al. 2001), urbanization of forest

ecosystems (Kline et al. 2001), and conducting regional assess-

ments of early successional habitat for wildlife (Trani et al. 2001).

In recent years, awareness of the FIA program has reached the

point where its data are cited commonly in national studies of

forest resource issues; e.g., stewardship of private forest land

(Best and Wayburn 2001). The prominence of studies that syn-

thesize FIA data with other data sets cannot be overemphasized.

Such studies often surface in widely read interdisciplinary jour-

nals; e.g., Science (Caspersen et al. 2000), newspapers, or other

popular media.

Adapting and incorporating data and knowledge from other

resource inventories and disciplines are hallmarks of a truly

comprehensive forest resource assessment. The extensive time

required to align data from disparate inventories and communicate

relevant knowledge among scientists in other disciplines, how-

ever, is a common problem in preparing such assessments

(Rudis 1993). Multidisciplinary forest assessments that focus

on specific regions or issues are popular approaches toward

streamlining the development of an integrated data set and an

interdisciplinary synthesis. 

An approach toward such an undertaking for an environ-

mental analysis of land cover and land use in the early 1980s

produced one of the first integrated data sets, now known as the

GEOECOLOGY database (Olson et al. 1982). A landmark,

multidisciplinary, team-oriented scientific effort conducted in
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the 1990s assessed timber harvesting in the State of Minnesota

(Jaakko Poeyry 1994), with support provided to collect addi-

tional data and analysis to fill in some of the then-recognized

knowledge gaps. Narrowing the scope and streamlining data

integration to complete the task in a time-efficient manner

reduces the burden of commitment by individual team members

and facilitates timely reporting of results. One recent approach

in Arkansas employed a 6-month maximum analytical time

frame and a series of reports on new FIA survey data by invited

experts with different perspectives (Guldin 2001). Another

approach relied on a 1- to 2-year analysis primarily of existing

data, models, or published studies, and a multiple-team synthesis,

e.g., the Southern Forest Resource Assessment (Wear and Greis

2002). 

In all these approaches, common challenges are the limited

time available to fill strategic cross-disciplinary information

gaps and the paucity of protocols for modeling and analyzing

data from several disciplinary perspectives. One interdisciplinary

need, for example, is a way to link ecological land type classi-

fication systems with timber growth (Song 1994). Addressing

such a seemingly intractable problem often is left to imaginative

early-career researchers, most notably graduate students. I

compiled and indexed abstracts of known graduate student

reports (Rudis 2003b). I highlighted an array of new approaches

to analyzing FIA data, which integrates the data with other

relevant data sets or enables viewing the data through the lens

of other disciplinary perspectives or concepts. 

Knowledge of Data Users and Uses

Efforts to document uses of FIA data began in 1989 with an

informal query of nontraditional uses; however, expanded efforts

found many more novel uses. Over time, the list of citations has

been updated as an online citation database (Rudis 2002-04).

Citations include reports of studies that used FIA’s regional,

field-sample-based forest surveys, as well as graduate student

reports, collected works, and selected documents concerning

integrated assessments and multidisciplinary surveys. The list

also includes representative timber resource assessments since

1975. The primary focus of this database is on nontraditional

and original technical uses associated with FIA data from 1975

through 2001. Recent citations also include entries that reference

other data collected on FIA plots from sampling protocols

established by the Forest Health Monitoring Program (Mangold

1998).

To obtain knowledge of data uses that may not be associated

with publications, current sources of information include tallies

of data requests made through FIA customer service centers,

which includes requester data. Requests for National FIA Spatial

Data Services (http://www.fs.fed.us/ne/fia/spatial/ request.html)

indicate the types of customers that request spatial data retrievals.

LaPoint (2005) noted that the largest group of requesters for this

data in fiscal year (FY) 2003 was from academic institutions.

The complete list of the groups and percentages follow:

• Individuals from academic institutions—32 percent.

• Other Forest Service personnel—15 percent.

• Other Federal personnel—16 percent.

• Other State personnel—13 percent.

• FIA staff—7 percent.

• Forest industry—7 percent.

• Nongovernmental organizations—4 percent.

• National Forest System—1 percent.

• Others—5 percent.

For the same period, the Southern Research Station FIA

recorded that 16 percent of data requests came from universities

and a similar number came from environmental groups.2 This

type of data, when considered with additional information

about the types of requesting organizations, attributes used, and

periodic tracking by year, may provide valuable feedback for

decisionmakers to discern topical issues, set data collection,

analysis, and distribution priorities, and modify or retain attributes

frequently requested by such users. 

The Internet server that maintains the FIA MapMaker 

(http://www.ncrs2.fs.fed.us/4801/FIADB/fim_tab/wc_fim_tab.a

sp) is a Web-based application for generating tables and shaded

maps, as well as a potential source of information about both

FIA data uses and users. Security software automatically

records the Internet Protocol address and domain name of the

2 Carol Perry, Customer Service Representative, U.S. Department of Agriculture, Forest Service, Southern Research Station, Forest Inventory and Analysis Unit,
200 W.T. Weaver Blvd., Asheville, NC 28804. E-mail to author, April 16, 2004.
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user, and can be programmed to tally the attributes requested.

Domain names by themselves are not definitive, but they do

provide clues to the broad categories of users. In FY 2002, the

categories of domain names and percentages of individual

accesses were the following (Miles 2002): 

• Forest Service (fs.fed.us)—34 percent.

• Commercial firms—19 percent (forest industry—7 per-

cent, other or unknown—12 percent).

• AOL.com—2 percent.

• Miscellaneous (net—12 percent).

• Academic institutions (edu)—12 percent.

• Government (gov) and nonprofit organizations (org) com-

bined—1 percent.

• Other unknown—20. 

Figure 1 illustrates the top 10 attributes requested from the

FIA MapMaker Web site for FYs 2002 (Miles 2002) and 2003

(Miles 2003), other than county and State. A quick glance suggests

that stand size and forest type are most requested, and that there

has been some change in the frequency of attributes requested.

Interpretation of figure 1 should proceed with caution, however,

as attribute requests may be closely tied to the organization and

availability of choices presented on the Web site. 

For future planning, customer service requests from FIA

MapMaker, other FIA-sponsored Web sites, and other customer

service centers may supply insight into current and changing

interests for already available online data, as well as information

in demand but not currently available. Software may be applied to

the discovery of knowledge from extensive records of customer

requests. Cooley et al. (2000) provides an overview of the ter-

minology and references for techniques to analyze Web user

activities. Cooley et al. (1999) suggests initial data preparation

of Web server data logs is a key to obtain more sophisticated

information. 

Acknowledgments

Carol Perry and Dennis Jacobs of the Southern Research

Station, Elizabeth LaPoint of the Northeastern Research

Station, and Pat Miles of the North Central Research Station

reviewed an earlier draft and offered several valuable suggestions.

Their help is greatly appreciated.

Literature Cited

Best, C.; Wayburn, L.A. 2001. America’s private forests: status

and stewardship. Washington, DC: Island Press. 224 p.

Caspersen, J.P.; Pacala, S.W.; Jenkins, J.C.; et al. 2000.

Contributions of land-use history to carbon accumulation in

U.S. forests. Science. 290(5494): 1148–1151.

Cooley, R.; Mobasher, B.; Srivastava, J. 1999. Data preparation

for mining World Wide Web browsing patterns. Knowledge and

Information Systems. 1: 5–32. http://maya.cs.depaul.edu/

~classes/ect584/papers/cms-kais.pdf. (6 April 2005).

Cooley, R.; Tan, P.; Srivastava, J. 2000. Discovery of interesting

usage patterns from web data. In: Spiliopoulou, M.; Masand,

B., eds. Advances in web usage analysis and user profiling.

Lecture Notes in Computer Science. 1836: 163–182.

http://www.cs.umn.edu/research/websift/papers/ lncs99.ps. (6

April 2005).

Figure 1.—Top 10 attributes requested of the FIA database by
number of requests, exclusive of county and State, fiscal years
2002 and 2003 from data supplied in Miles (2002, 2003).



2003 Proceedings of the Fifth Annual Forest Inventory and Analysis Symposium 213

Cruikshank, J.W.; McCormack, J.F. 1956. The distribution and

volume of hickory timber. Hickory Task Force Report No. 5.

Asheville, NC: U.S. Department of Agriculture, Forest Service,

Southeastern Forest Experiment Station. 12 p.

Dana, S.T.; Allison, J.H.; Cunningham, R.N. 1960. Minnesota

lands: ownership, use, and management of forest and related

lands. Washington, DC: The American Forestry Association.

[Distributed to the trade by the Livingston Publishing

Company, Narberth, PA.] 463 p.

Dana, S.T.; Krueger, M. 1958. California lands: ownership,

use, and management. Land ownership series. Washington, DC:

The American Forestry Association. 308 p.

Full Circle Systems, Inc. 2003. Knowledge management strategy.

http://www.fullcirclesystems.com/knowledge_management_

strategy.php. (6 April 2005).

Gedney, D.R. 1976. The occurrence of laminated root rot on

nonfederal timberland in northwest Oregon, 1976. Res. Note

PNW-381. Portland, OR: U.S. Department of Agriculture,

Forest Service, Pacific Northwest Forest and Range

Experiment Station. 7 p.

Guldin, J.M., tech. comp. 2001. Proceedings of the symposium

on Arkansas forests: a conference on the results of the recent

forest survey of Arkansas; 1997 May 30–31; North Little Rock,

AR. Gen. Tech. Rep. SRS-41. Asheville, NC: U.S. Department

of Agriculture, Forest Service, Southern Research Station. 125 p. 

Jaakko Poeyry Consulting, Inc. 1994. Final generic environ-

mental impact statement study on timber harvesting and forest

management in Minnesota. Tarrytown, NY: Jaakko Poeyry

Consulting, Inc. http://www.iic.state.mn.us/download/geis/

main/geismain.htm. (6 April 2005).

Kingsley, N.P.; Finley, J.C. 1975. The forest-land owners of

Delaware. Resour. Bull. NE-38. Broomall, PA: U.S. Department of

Agriculture, Forest Service, Northeastern Forest Experiment

Station. 78 p. 

Kline, J.D.; Moses, A.; Alig, R.J. 2001. Integrating urbanization

into landscape-level ecological assessments. Ecosystems. 4(1):

3–18.

LaPoint, E. 2005. Access and use of FIA data through FIA

spatial data services. In: McRoberts, R.E.; Reams, G.A.; Van

Deusen, P.C.; McWilliams, W.H., eds. 2005. Proceedings of the

fifth annual forest inventory and analysis symposium; 2003

November 18–20; New Orleans, LA. Gen. Tech. Rep. WO–69.

Washington, DC: U.S. Department of Agriculture, Forest

Service. 222 p.

Larson, R.W. 1952. The timber supply situation in Florida.

Forest Resour. Rep. 6. Washington, DC: U.S. Department of

Agriculture. 60 p. and map.

MacLean, C.D.; Bolsinger, C.L. 1973. Estimating productivity

on sites with a low stocking capacity. Res. Paper RP-PNW-152.

Portland, OR: U.S. Department of Agriculture, Forest Service,

Pacific Northwest Forest and Range Experiment Station. 18 p. 

Mangold, R.D. 1998. Forest health monitoring field methods

guide. Revision O. 429 p. On file with: U.S. Department of

Agriculture, Forest Service, Southern Research Station, Forest

Health Monitoring Program, P.O. Box 12254, Research

Triangle Park, NC 27709.

Miles, P. 2002. FY02 forest inventory mapmaker report. 18 p.

On file with: U.S. Department of Agriculture, Forest Service,

North Central Research Station, Forest Inventory and Analysis

Unit, 1992 Folwell Avenue, St. Paul, MN 55108.

Miles, P. 2003. FY03 forest inventory mapmaker report. 17 p.

On file with: U.S. Department of Agriculture, Forest Service,

North Central Research Station, Forest Inventory and Analysis

Unit, 1992 Folwell Avenue, St. Paul, MN 55108.

Moore, W.H.; Ripley, T.H.; Clutter, J.L. 1960. Trials to deter-

mine relative deer range carrying capacity values in connection

with the Georgia forest survey. In: Proceedings of the 14th

annual conference of the Southeastern Association of Game

and Fish Commissioners. Columbia, SC: Southeastern

Association of Game and Fish Commissioners. 14: 98–104.



214 2003 Proceedings of the Fifth Annual Forest Inventory and Analysis Symposium

Olson, R.J.; Emerson, C.J.; Nungesser, M.K. 1982. Geoecology

county-level environmental data for the United States, 1964–1979

[database]. http://www.daac.ornl.gov/VEGETATION/guides/

geoecology_data.html. (6 April 2005).

Pearson, H.A.; Sternitzke, H.S. 1974. Forest-range inventory: a

multiple-use survey. Journal of Range Management. 27(5):

404–407.

Pomeroy, K.B.; Yoho, J.G. 1964. North Carolina lands; owner-

ship, use, and management of forest and related lands. Land

ownership series. Washington, DC: American Forestry

Association. [Distributed to the trade by the Livingston

Publishing Company, Narberth, PA.] 372 p. 

Rudis, V.A. 1991. Wildlife habitat, range, recreation, hydrology,

and related research using forest inventory and analysis surveys:

a 12-year compendium. Gen. Tech. Rep. SO-84. New Orleans,

LA: U.S. Department of Agriculture, Forest Service, Southern

Forest Experiment Station. 61 p. 

Rudis, V.A. 1993. The multiple resource inventory decision-

making process. In: Lund, H.G.; Landis, E.; Atterbury, T., eds.

Stand inventory technologies 92: proceedings of the stand

inventory technologies: an international multiple resource

conference; 1992 September 13–17; Portland, OR. Bethesda,

MD: American Society for Photogrammetry and Remote

Sensing: 180–192.

Rudis, V.A. 2002–04. The FIA citation database. http://srsfia1.

fs.fed.us/fia_citation_database.php. (6 April 2005).

Rudis, V.A. 2003a. Comprehensive regional resource assessments

and multipurpose uses of forest inventory and analysis data,

1976 to 2001: a review. Gen. Tech. Rep. SRS-70. Asheville,

NC: U.S. Department of Agriculture, Forest Service, Southern

Research Station. 129 p. 

Rudis, V.A. 2003b. Fresh ideas, perspectives, and protocols

associated with forest inventory and analysis surveys: graduate

reports, 1974 to July 2001. Gen. Tech. Rep. SRS-61. Asheville,

NC: U.S. Department of Agriculture, Forest Service, Southern

Research Station. 49 p. 

Song, U. 1994. Use of a land classification system in growth

and yield prediction on the Cumberland Plateau. Knoxville,

TN: University of Tennessee. 53 p. M.S. thesis.

Sternitzke, H.S.; Duerr, W.A. 1950. Tree distribution in

Mississippi. Forest Survey Release 64. New Orleans, LA: U.S.

Department of Agriculture, Forest Service, Southern Forest

Experiment Station. 19 p.

Trani, M.K.; Brooks, R.T.; Schmidt, T.L.; et al. 2001. Patterns

and trends of early successional forests in the Eastern United

States. Wildlife Society Bulletin. 29(2): 413–424.

Wear, D.N.; Greis, J.G., eds. 2002. Southern forest resource

assessment. Gen. Tech. Rep. SRS-53. Asheville, NC: U.S.

Department of Agriculture, Forest Service, Southern Research

Station. 635 p. 

Wiedinmyer, C.; Guenther, A.; Estes, M.; et al. 2001. A landuse

database and biogenics emissions inventory for the State of

Texas. Atmospheric Environment. 35: 6465–6477.



2003 Proceedings of the Fifth Annual Forest Inventory and Analysis Symposium 215

Comparison of Programs Used for FIA
Inventory Information Dissemination and
Spatial Representation

Roger C. Lowe1 and Chris J. Cieszewski

Abstract.—Six online applications developed for the

interactive display of Forest Inventory and Analysis

(FIA) data in which FIA database information and

query results can be viewed as or selected from inter-

active geographic maps are compared. The programs

evaluated are the U.S. Department of Agriculture Forest

Service’s online systems; a SAS server-based mapping

system developed by the Cooperative Extension

Service at the University of Georgia (UGA); and three

online applications developed at the D.B. Warnell

School of Forest Resources, UGA: HTML and Java-

based ESRI ArcIMS applications, HTML-based

hypermaps, and a prototype Macromedia Flash-based

application. Our study compared the following features

in these Web applications: application scope, data

resolution, number of available layers, number of

variables, reporting capabilities, user interaction

capabilities, and user interaction timing. 

Much effort has been put into designing and implementing the

nationwide U.S. Department of Agriculture (USDA) Forest

Service Forest Inventory and Analysis (FIA) program.

Numerous bits of information are collected in the field and

later summarized and tabulated. The extensive information

contained in the FIA database is a valuable source of forest

land estimates to many public and private agencies. To facili-

tate sharing this data, several online programs have been devel-

oped that enable users to query different databases and

generate various types of reports and maps. 

Applications 

Each application compared is briefly described below.

USDA Forest Service’s Mapmaker

The USDA Forest Service’s Mapmaker (fig. 1) is a server-side

Web application that enables users to query, report, and map the

most current FIA nationwide data available. Through a series

of Web pages, the user enters the geographic area of interest,

attribute of interest, query filters, and classification variables to

query the FIA database and produce custom tables and maps. 

USDA Forest Service’s Ramiform

The USDA Forest Service Ramiform program (fig. 2) is a server-

side application being developed by the USDA Forest Service

at the North Central Research Station to serve nationwide FIA

database information through the Web. This application enables

users to query information derived from the 2002 Resources

Planning Act (RPA) summary database, map the results to

hexagon units, generate dot density displays, and tabulate area

summaries by USDA Forest Service region for the query. 

Georgia Statistics System

The Georgia Statistics System (GSS) (fig. 3) is the server-side

Web application developed by the Center for Agribusiness and

Economic Development, Cooperative Extension Service at the

University of Georgia (UGA). GSS was developed to provide

access to Georgia data from the Georgia County Guide (GCG),

the multiple Farmgate Value Reports (FVR), and selected FIA

database information. This application enables users to perform

a cross-sectional, time series, analysis of county information. 

Forest Maps Applications

The Fiber Supply Assessment group at the D.B. Warnell School

of Forest Resources (WSFR), UGA, developed a set of applica-

tions consists of a large suite of Web pages designed for users

to view, query, tabulate, and map the most current FIA database

information for Georgia. 

• The Unique Selected (Uni-select) maps for 13 Southern

States (fig. 4) offers fast client-side access to multiback-

1 GIS Analyst and Corresponding Author, Associate Professor, D.B. Warnell School of Forest Resources, University of Georgia, Athens, GA 30602. 
E-mail: rcl7820@owl.forestry.uga.edu.
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Figure 1.—USDA Forest Service Mapmaker, version 1.0.

Figure 2.—USDA Forest Service Ramiform.
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Figure 3.—Center for Agribusiness and Economic Development, Cooperative Extension Service, University of Georgia, Georgia
Statistics System (GSS).

Figure 4.—D.B. Warnell School of Forest Resources (WSFR), University of Georgia. Uni-select maps.
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ground statistics for cross-sectional selections of Georgia’s

Rural Development Centers (RDC) regions, FIA units,

physiographic regions, Timbermart South regions, and

counties. 

• HTML- and Java-based Environmental Systems Research

Institute, Inc.’s (ESRI’s) ArcIMS® server-side platforms

provide users with the ability to query and report FIA

database information, and geographic information system

capabilities such as buffering and subselections (fig. 5). 

• The InFORM client-side application (fig. 6) makes available

compiled FIA inventory information useful for high-level

discussions and Georgia’s inventory analyses. Users can

display multiple FIA database variables as a choropleth map

and tabulate FIA information for single, select, and subse-

lections of counties. 

Methods

The online applications were compared between November 10

and 15, 2003. Updates applied to the sites after this week may

not be represented in the comparisons. All assessments were

made from a home computer through a dial-up modem with a

49 kbps connection. Where applicable, at least 15 page loads

were timed and averaged. After each page load, the Internet

browser was closed and the Internet cache cleared. Note that

physical proximity to the application server computer may affect

the page load timing. To minimize this effect and mitigate the

impact of heavy online traffic, evaluations were conducted

between 1:00 a.m. and 5:00 a.m. eastern standard time.

Results

The applications were compared on general features such as

scope (geographic extent of analysis), data resolution (the

smallest unit that can be mapped), and the number of layers and

variables available for viewing and mapping were made (table

1). The two USDA Forest Service applications, Mapmaker and

Ramiform, provide analysis capabilities at the national level;

the others focus on Georgia. The Ramiform application’s data

resolution is the hexagon. The other applications use county-level

resolution. ArcIMS can display 11 different layers, such as county

and RDC boundaries, more than all the other applications.

Ramiform makes 10 different layers available; the Uni-select

maps have 5 layers that can be displayed on 5 backgrounds; and

the remaining programs have single county boundaries. Mapmaker

offers the largest number of variables, such as timberland and

forestland area, that can be mapped or tabulated, followed by

Ramiform, InFORM, Uni-select maps, GSS, and ArcIMS.

Figure 5.—D.B. Warnell School of Forest Resources (WSFR), University of Georgia, ArcIMS.
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The applications were also compared on user interaction

functionality, such as reporting, zoom, pan, variable display,

and selection (table 1). All except ArcIMS have reporting capabil-

ities. (Although ArcIMS can be programmed to offer reporting,

its development team does not consider this functionality to be

critical to the application’s development path.) Mapmaker,

Ramiform, ArcIMS, and InFORM programs provide zoom and

pan capabilities; Uni-select maps and GSS do not. ArcIMS site

is the only application with buffer capabilities. 

Ramiform, ArcIMS, and InFORM enable the user to display

more than one variable at a time—for example, to show conifer

and deciduous timberland area simultaneously. Users are able to

simultaneously select more than one feature, such as a county

or region, from a map, in Ramiform, ArcIMS, InFORM

Mapmaker, GSS, and the Uni-select maps do not provide this

capability. In addition to single click-and-select, InFORM and

ArcIMS enable the user to select multiple features with a user-

defined box, circle, and polygon computing in real time summary

statistics for the chosen selections. Ramiform had also a capabil-

ity of selections, though without real time computing. Instead, a

link function is used that was supposed to submit the selection

to the Mapmaker (we were unsuccessful testing this external to

the native application functionality). Furthermore, InFORM is

the only application that allows for progressive increase in

selections, in which selections of individual units can be added

to circle selections by radius, which can be added to rectangle

selections, which can be added to arbitrary selections, which

can be altered by individual deselecting, and so forth. 

Table 1 presents average times, in seconds, from multiple

trials conducted with all the applications. The following events

were timed: (1) initial load time, (2) layer load time, (3) selection

time, and (4) report generation time. Ramiform had the longest

Figure 6.—D.B. Warnell School of Forest Resources (WSFR), University of Georgia, InFORM. 
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initial load time for the application to fully load in the Web

browser. The other applications loaded in less than 10 seconds.

Vector data layers loaded quickly (less than 3 seconds) in those

apps that provide that functionality. The raster layers in

Ramiform took a bit longer (17 seconds). Selection time—how

long it took to graphically display selected features—was relatively

short, fewer than 4 seconds for Ramiform, ArcIMS, and InFORM.

The time required to generate a tabular report was less than 7

seconds for the Uni-select maps, InFORM, and CAED GSS; it

took much longer—42 seconds—for Ramiform to create this

type of report. 

Table 1.—Internet application comparisons.

1 Applications under continued development.
2 Includes report variables.
na: not applicable on the date of timing.
nt: event not timed; requires multiple queries.

Center for 
Agribusiness 

and Economic 
Development,
Cooperative 

D.B. Warnell School of Forest Resources (WSFR), Extension 
University of Georgia (UGA) USDA Forest Service Service, UGA

Uni-select InFORM1 ArcIMS Ramiform1 Mapmaker Ga. stat.

Scope Georgia Georgia Georgia Nation Nation Georgia
Resolution County County County FIA Hex. County County
No. of layers 5 1 11 10 1 1
Simult. lyrs. No Yes Yes Yes No No
No. of variables 792 902 11 97 Numerous 43
Reports Yes Yes No Yes Yes Yes

User interaction

Pan No Yes Yes Yes Yes No
Zoom No Yes Yes Yes Yes No
Buffer No No Yes No No No

Interactive selections

Single Yes Yes Yes Yes No Yes
Box No Yes Yes Yes No No
Polygon No Yes Yes Yes No No
Circle No Yes Yes Yes No No
User-defined No Yes Yes Yes No No
Query No Yes Yes Yes Yes No

Interaction time (seconds)

Initial load 2 2 10 43 6 2
Vector load 1 na 2 3 na na
Raster load na na 4 17 na na
Selection na 1 4 4 na na
Report 2 2 na 42 nt 7
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Center for Agribusiness and Economic Development,

Cooperative Extension Service at the University of Georgia.

Georgia Statistics System. http://www.georgiastats.uga.edu.

[Date accessed unknown.]

Center for Agribusiness and Economic Development,

Cooperative Extension Service at the University of Georgia.

http://www.agecon.uga.edu/~caed/staffreports.html. [Date

accessed unknown.]

Fiber Supply Assessment Group, D.B. Warnell School of Forest

Resources, University of Georgia. Fiber Supply Assessment

about the forestry growth and yield. http://growthandyield.com.

[Date accessed unknown.]

Fiber Supply Assessment Group, D.B. Warnell School of Forest

Resources, University of Georgia. Unique selected maps for 13

Southern States. http://growthandyield.com/main/maps_uni.htm.

[Date accessed unknown.]

Fiber Supply Assessment Group, D.B. Warnell School of Forest

Resources, University of Georgia. The Internet Map Service for

Forest of Georgia. http://growthandyield.com/main/maps_ims.htm.

[Date accessed unknown.]

Fiber Supply Assessment Group, D.B. Warnell School of Forest

Resources, University of Georgia. minn_meeting1. http://

growthandyield.com/inform/tty/minn_meeting1.html. [Date

accessed unknown.]

U.S. Department of Agriculture (USDA) Forest Service.

Mapmaker, version 1.0. http://ncrs2.fs.fed.us/4801/FIADB/

index.htm. [Date accessed unknown.]

USDA Forest Service. Ramiform. http://ncrs2.fs.fed.us/zope/

ramiform. [Date accessed unknown.]

Summary

Our study evaluated six online systems developed to disseminate

forest inventory information based on FIA data for the United

States. The systems were assessed on scope, data resolution,

simultaneous number of themes that can be displayed, reporting

ability, interactivity, and speed in performing simple tasks. The

Web applications currently being developed and maintained by

the USDA Forest Service—Mapmaker and Ramiform—are

national in scope and serve data at the county or RPA hexagon

level. Applications based at The University of Georgia are

statewide in scope and serve data at the county level. Mapmaker

provides access to the largest number of variables for analysis

than all the other applications, followed by Ramiform, InFORM,

Uni-select maps, the Georgia Statistics System (GSS), and the

D.B. Warnell School of Forest Resources (WSFR), University

of Georgia’s application, ArcIMS. Users can generate tabular

output in each application except ArcIMS, although this func-

tionality can be programmed. InFORM, Ramiform, Mapmaker,

and ArcIMS provide zoom and pan capabilities: Uni-select maps

and GSS do not. ArcIMS is the only one with buffer capabilities.

Ramiform, Uni-select maps, and ArcIMS can display multiple

layers simultaneously. InFORM, ArcIMS, GSS, and Ramiform

provide interactive selection tools to select many features at the

same time; the Uni-select maps and GSS provide individual

county, FIA region, RDC region, and physiographic region

selection functionality. Mapmaker is a query-driven application

that does not allow user-driven selections from a map. Based

on application event timing, the client-side applications load,

select, and report data faster than the server-side applications. 
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