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Abstract.—We evaluate the applicability of Landsat

TM imagery for analyzing textural information of

pine forest images by exploring the spatial correlation

between pixels measured by semivariances and cross-

semivariances calculated from transects of the

Landsat TM images. Then, we explore differences in

semivariances associated with images of young, mid-

dle-aged, and old, and natural versus planted stands.

Finally, we compare semivariances for loblolly pine

(Pinus taeda L.) with those of longleaf pine (Pinus

palustris Mill.) in Georgia, U.S.A. The results show

that, in spite of the low Landsat TM resolution, the

semivariances and cross-semivariances may provide

useful additional information. 

Remotely sensed data are inexpensive supplements to ground

measurements and are frequently used in forest inventories of

large areas due to the cost efficiency and the ability to provide

a large amount of information in a short time (Campbell l994,

Vogelmann et al. 1998). Most common methods for image

classification of remotely sensed images are applied without

considering potentially useful spatial information among vari-

ous pixels. Semivariograms consider the spatial information

and have proved useful in analyzing various spatial data

(Curran 1988, Woodcock et al. 1988a, 1988b). So far, the semi-

variograms have been successfully used in forestry applications

only with expensive high-resolution data (St.-Onge and

Cavayas 1995, Treitz and Howarth 2000). 

The objective of our study was to evaluate the applicabili-

ty of the relatively inexpensive, low-resolution Landsat TM7

TM imagery for analyzing the textural information in images

of loblolly pine forests (Pinus taeda L.) in Georgia, U.S.A.,

using geostatistical methods. We analyzed different ages and

natural versus planted stands of loblolly pine using semivari-

ograms and cross-semivariograms. To check if semivariograms

can discriminate between different species, semivariograms for

loblolly pine were compared with those of longleaf pine (Pinus

palustris Mill.). 

We analyzed data from the Thematic Mapper sensor of the

Landsat TM7 satellite in combination with ground measure-

ments. We used information from the visible red (RED), the

near-infrared (NIR), and the middle-infrared (MIR) bands. The

Normalized Difference Vegetation Index (NDVI) as well as the

corrected NDVI (NDVIc) and MIR/RED indices were studied. 

Area Description, Methods, and Material
Studied

Study Site and Data Description

We linked remote sensing images to vegetation data by using

data collected in the field. The study area was located in west-

ern Georgia, U.S.A. The data collected contained stand infor-

mation including stand-polygon GIS/GPS coordinates,

vegetation type (e.g., species) as well as some quantitative data

(e.g., age, basal area, density). We also used data from longleaf

pine stands to compare their textural characteristics with anoth-

er species. We differentiated between planted and natural

stands, and divided all stands of both species into three age

classes: young (6–11 years), medium (16–26 years), and old

(older than 31 years). 

Landsat TM data are appropriate for mapping and investi-

gating broad vegetation types classified by the sensor’s spectral

and spatial characteristics. The important characteristics of the

Landsat TM7 satellite are:
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1. scene coverage–115 miles by 115 miles

2. spectral resolution–three bands in the visible portion of the

spectrum, three bands in the reflective-infrared portion of

the spectrum, one band in the thermal portion of the spec-

trum, and a panchromatic (black and white) band 

3. spatial resolution–30 meters for the visible band 

4. temporal resolution–16 days 

We used digital numbers (DN) from the RED band (red,

0.63-0.69µm), the NIR band (reflective-infrared, 0.76-0.90µm),

and the MIR band (mid-infrared 1.55-1.75µm). The RED band

is sensitive enough for discriminating between many plant

species. The NIR band is especially sensitive to the amount of

vegetation biomass present in a scene. The MIR band is sensi-

tive to the amount of water in plants (ERDAS Field Guide

1990). Finally, we also studied the geostatistical characteristics

of the Normalized Difference Vegetation Index (NDVI) by

Rouse (1973), and the corrected NDVIc as well as the MIR to

RED ratio vegetation index (MIR/RED) by Jordan (1969). The

NDVI was calculated according to the following formula:

where RED and MIR denotes the red and the near-infrared

reflectance. The NDVIc vegetation index is a NDVI modified

index, especially designed for distinguishing coniferous forests

(Nemani et al. 1993). NDVIc is given:

where the first factor in the equation is the NDVI and the sec-

ond factor is a correction of the NDVI. The NIRmin is the

reflectance value of pixels corresponding to field plots with the

lowest tree canopy, and NIRmax is the reflectance value of pix-

els with the highest canopy cover.

All remotely sensed images were analyzed using ERDAS

Imagine 8.5 Software.

Methods

Geostatistics comprises many methods for evaluating the auto-

correlation that commonly exists in spatial data. The main tool

of geostatistics is the semivariogram (semivariance), which is a

measure of spatial continuity. The experimental semivariogram

is derived by calculating half the average squared difference in

data values for every pair of data locations along a specified

direction:

where xi is a data location, h is a lag vector, Z(xi) is the data

value at location xi, N is the number of data pairs spaced a dis-

tance and direction h units apart. These values are then plotted

against the distances between data pairs. Such a plot is com-

monly referred to as a variogram and has a classic form shown

in figure 1.

Semivariograms are roughly defined by three characteristics: 

1. sill–the plateau that the semivariogram reaches. The sill is

the amount of variation explained by the spatial structure. 

2. range of the influence (correlation)–the distance at which

the semivariogram reaches the sill. 

3. nugget effect–the vertical discontinuity at the origin. The

nugget effect is a combination of sampling error and short-

scale variations that occur at a scale smaller than the clos-

est sample spacing. The sum of the nugget effect and the

sill is equal to the variance of the sample.

Figure 1.—The “classic” form of semivariance.
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The obtained experimental semivariogram is used to fit an

appropriate theoretical model, as e.g., spherical, exponential,

etc., and can be used in other geostatistical analyses, e.g. kriging.

Remotely sensed images can be also used in semivari-

ogram calculations. The semivariogram is calculated from the

transects running across a remotely sensed image using digital

numbers as data values Z(xi).

Another important measure of spatial correlation is the

cross-semivariogram:

where xi is a data location, h is a lag vector, Z(xi) and W(xi) are

the DN values at location x for different bands, N is the num-

ber of data pairs spaced a distance and direction h units apart.

The cross-semivariogram quantifies the joint spatial variability

(cross correlation) between two radiometric bands. 

Semivariograms can be a useful tool in classification, but

there are some important difficulties in applying semivari-

ograms to forest classification. First of all, often in forested

areas semivariograms are much more complicated than the

“classic” ones. For example, some periodic and aspatial varia-

tions of the classic semivariogram were often observed for

forested areas. The first type of semivariogram appears when a

repetitive pattern is studied, and the second one appears when

random patterns are investigated. There were also “unbounded”

forms of semivariograms observed in the study. The unbounded

semivariogram may represent a situation in which a trend or

many spatially correlated phenomena exist. These nonclassic

semivariograms are much more difficult to model and interpret. 

Results and Analyses

The basic descriptive statistics of the analyzed forest types (fig.

2) reveal some distinctions between the different stands but do

not provide any textural information. To explore the textural

continuity of studied stands, we calculated and analyzed the

semivariograms for RED, MIR, and NIR bands, as well as the

cross-semivariograms between these bands. The semivari-

ograms for the above mentioned vegetation indices were also

calculated. 

To understand better the factors that influence the semivari-

ograms, we calculated them in large and potentially homogeneous

areas, changing for comparison only one essential stand feature,

e.g., age (young, medium, old) or type of stand (planted, natural).

Figure 3 shows typical, standardized (divided by theirs variances)

Figure 2.—Mean of DN for loblolly pine and longleaf pine calculated from Landsat TM image, channels RED, NIR and MIR,
stand origin 1988.
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semivariograms, calculated for 12-year-old planted loblolly pine

stands. These semivariograms have a typical “unbounded” shape

showing many spatially correlated phenomena. 

For the small separation distances (a few lags) the semi-

variogram curve rises relatively fast. Then, at the greater dis-

tances it exhibits a gentle sloping and becomes almost linear.

The initial increase of the semivariogram curve results from the

fast decrease of spatial continuity at the distances of a few lags

(1 lag = 30 meters). This means that the spatial correlations

between pixels decreases rapidly for short distances. 

At longer distances, the semivariograms do not reach satu-

ration but increase almost linearly. This means that many sizes

and shapes of the forest stands are present in the scene. As was

already mentioned, these semivariograms are difficult to use for

classification purposes. For example, it is clear that the range

and the sill cannot be distinctive parameters for different vege-

tation communities (fig. 3).

To check whether the semivariograms can be treated as

“spatial signatures” of different type of coniferous forests, we

calculated them for different types of loblolly pine stands. We

calculated semivariograms using the DNs from RED, NIR, and

MIR bands as well as NDVI and MIR/RED indices. The largest

differences between semivariograms calculated for the investi-

gated loblolly pine stands were obtained from the RED and

MIR bands. The results of the calculations for the RED band

are shown in figure 4.

Distinctly smaller differences were observed between

semivariograms calculated for DN from the NIR band as well

as between semivariograms calculated from the vegetation

indices NDVI and MIR/RED. This somewhat surprising behav-

ior of semivariograms from vegetation indices can be explained

by the smoothing effect; these indices are the ratios of DNs

coming from different bands.

Natural stands have higher semivariogram values than

even-aged planted stands (fig. 4). This is because natural

stands’ have a higher textural variability than planted stands. 

We also compared semivariograms for different species of

pine by calculating semivariograms for planted and natural

stands of longleaf pine. The exemplary semivariograms of

loblolly pine and longleaf pine calculated from the DN for the

MIR band are shown in figure 5. 

Large differences exist between semivariograms calculated

from loblolly pine and longleaf pine stands. The semivariogram

values for longleaf pine are much higher than those of loblolly

pine, calculated for the stands of similar type and age. The val-

ues of semivariograms at the distance of a few lags can be also

used as a discriminative parameter. 

The cross-semivariograms quantify the joint spatial variabil-

ity between two bands. Therefore, they can be also used for tex-

ture-based classification adding new spatial information. So, at

the end of our analysis we calculated also cross-semivariograms

between bands RED, MIR, and NIR for planted and natural,

medium-aged stands of loblolly pine. The largest cross-correla-

tions were between the RED and MIR bands both for the planted

and for natural stands. The cross-correlations between bands

RED and NIR as well as between MIR and NIR were substan-

tially smaller. The values of the cross-semivariogram for natural

stands were much higher than for planted stands. The cross-cor-

Figure 4.—Isotropic semivariances for different types of loblolly
pine stands, calculated from Landsat TM image using RED band.

Figure 3.—Isotropic semivariances for a planted loblolly pine
stand calculated from Landsat TM images; stand origin 1988.
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relations between the RED and MIR bands calculated for studied

loblolly pine stands are shown in figure 6. Clearly, all age class-

es are well separated. The largest cross-semivariogram values

were obtained for young stands and the smallest for old stands,

both for planted and natural stands.

Conclusions

In spite of the low-resolution of the remote imagery, distinct

differences were found in semivariograms of images for the

studied forests. This means that such semivariograms can be

treated as “spatial signatures” for the studied forest stands. The

classical semivariogram’s parameters, such as range and sill,

are not appropriate as differentiated parameters because of the

low-resolution of the remote imagery and the nonclassic,

unbounded type of observed semivariograms. However, there

are important differences for semivariogram and cross-semivar-

iogram values at the distances of several lags. Our study sug-

gests that the semivariogram values for such separation

distances (e.g., from the 4th to the 7th lags) are appropriate for

these purposes. The observed differences between semivari-

ograms at distances of several lags arise from different spatial

correlations existing in the studied forest stands at distances of

a few tens to a few hundred meters. The low-resolution of

Landsat TM7 remote imagery does not allow distinguishing

separate trees. The observed spatial correlations can be attrib-

uted to the similarity in arrangements of bigger objects as

groups of trees (or stands), areas with similar underbrush, etc.

The largest differences in semivariograms were obtained for

RED and MIR bands. 
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