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Abstract.—Landsat Thematic Mapper (TM) satellite

imagery and Forest Inventory and Analysis (FIA)

plot data were used to construct forest/nonforest

maps of Mapping Zone 41, National Land Cover

Dataset 2000 (NLCD 2000). Stratification approach-

es resulting from Maximum Likelihood, Fuzzy

Convolution, Logistic Regression, and k-Nearest

Neighbors classification/prediction methods were

superior to an unstratified, simple random sampling

approach for producing stratum weights used to

lower the variance of estimates of FIA mean propor-

tion forest land. The stratification approaches were

comparable to one another.

Each of the Forest Inventory and Analysis (FIA) units of the

U.S. Department of Agriculture is required to report estimates

of forest land area for their respective regions every 5 years.

These estimates are obtained by multiplying total area invento-

ried by the mean proportion forest land estimated from forest

inventory field plots. Forest land, as defined by FIA, includes

commercial timberland; some pastured land with trees; forest

plantations; unproductive forest land; and reserved, noncom-

mercial forest land. Additional criteria for FIA forest land

include 10 percent minimum stocking (5 percent canopy cover

for several western woodland types where stocking cannot be

determined), minimum area of 0.405 ha (1 acre), and minimum

continuous canopy width of 36.58 m (120 ft) (USDA 2002).

National FIA precision standards limit the allowable error for

estimates of forest land area. Due to natural variability among

plots and budgetary constraints, sample sizes sufficient to satis-

fy national FIA precision standards are seldom achieved. To

meet these standards, a stratified estimation approach is used to

reduce errors of estimates.

Traditionally, FIA has interpreted a set of aerial photo

plots to obtain stratum weights (Phase 1). A subset of Phase 1

plots was measured in the field (Phase 2). This double sam-

pling approach produced estimates that attained national preci-

sion standards for forest area (Hansen 1990). However,

stratification based on aerial photography has some limitations:

It is labor intensive and subjective; photos are expensive and

cumbersome to transfer, handle and store, the interpretation is

prone to bias when field plots are interpreted differently than

nonfield plots; and the photos can be of variable quality and

timeliness (McRoberts et al. 2002a). 

To overcome these limitations, FIA is developing methods

of satellite image classification for creating Phase 1 strata.

Image pixels within an area of interest are divided into homo-

geneous classes, based on predictions of land cover. These

classes form strata for stratified estimation of Phase 2 data.

Stratified estimation can yield increases in precision, even

when within-stratum sampling intensities are independent of

stratification (McRoberts et al. 2002a). Advantages of using

satellite imagery for stratification include the following: the

resulting coverage is “border-to-border,” not a sample of the

analysis area; stratum weights are obtained easily from pixel

counts; Phase 2 plots are assigned objectively to strata using a

geographic information system (GIS); and satellite image strat-

ification can be much cheaper and faster than photo-based

stratification. The question is, How precise are estimates based

on these stratifications—do they satisfy allowable error stan-

dards?

The North Central Research Station (NCRS) FIA program

(NC-FIA) measures plots every 5 years across 11 States in the

upper Midwest and Great Plains. A stratification based on

Landsat-5 Thematic Mapper (TM) or Landsat-7 Enhanced

Thematic Mapper Plus (ETM+) imagery will require process-

ing of approximately 125 scenes in the NC-FIA region. Thus, a

need exists for rapid processing of TM imagery for creation of

Phase 1 strata used in stratified estimation. 
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The Multi-Resolution Land Characterization (MRLC) con-

sortium of the U.S. Geological Survey has mosaicked Landsat

TM and ETM+ imagery into regional mapping zones. These

National Land Cover Dataset 2000 (NLCD 2000) mapping zone

image data allow for more efficient image classification than

when individual TM scenes are used (Homer and Gallant 2001).

The objective of our study was to compare stratifications

produced from classifications of an NLCD 2000 mapping zone

data set using four approaches: (1) maximum likelihood super-

vised classification, (2) maximum likelihood fuzzy convolution

classification, (3) a classification using a logistic regression

modeling approach, and (4) a classification using a non-para-

metric, k-Nearest Neighbors (k-NN) approach.

Study Area

The study was conducted within NLCD 2000 Mapping Zone

41, hereafter referred to as Zone 41. This zone encompasses

181,000 square kilometers in portions of eastern Minnesota,

northwestern Wisconsin, and northwestern Michigan (fig. 1).

The area is characterized by prairie agriculture, a diverse mix-

ture of forest land including both coniferous and deciduous

species, and a portion of Lake Superior.

Data

Satellite Imagery

Satellite data for Zone 41 are from TM and ETM+ images (fig.

2). This set of images has the following attributes: (1) 30 m x 30

m pixels from bands 1-5 and band 7; (2) absolute radiance units

scaled to 8 bits; (3) processing to level 10: radiometrically cor-

rected, using satellite model and platform/ephemeris information,

rectified using ground control points and digital elevation model

terrain correction, and resampled, using cubic convolution with

resulting root mean square error less than 8.5 m; and (4) geo-ref-

erencing to USGS Albers Equal Area projection, NAD83. Image

data include optical band values and tasseled cap transformations

for three seasons: spring, leaf-on (summer) and leaf-off (late fall /

early winter). Kauth and Thomas (1976) introduced the “tasseled

cap” transformation of Landsat Multispectral Scanner (MSS)

imagery as an easily visualized, three-dimensional construct of

the most important phenomena of crop development. Key forest

attributes, e.g., species, age, and structure also may be revealed

by the transformation (Cohen et al. 1995). Crist and Cicone

(1984) modified the tasseled cap transformation for TM imagery.

Images resulting from the transformation collectively explain

about 97 percent of spectral variance within a scene while reduc-

ing six original TM bands to three components: brightness, green-

ness, and wetness.

Figure 2.—NLCD 2000 Mapping Zone 41, leaf-on, true color
image; TM/ETM+ bands 1 (blue), 2 (green), and 3 (red).

Figure 1.—NLCD 2000 Mapping Zones and the Zone 41 study
area (gray).
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FIA Plot Data

Under the FIA program’s annual inventory system, field plots

are established in permanent locations using a systematic sam-

pling design with each plot representing 2,403 ha (McRoberts

1999). Approximately 20 percent of the plots in each State are

measured annually. Locations of forested or previously forested

plots are captured using global positioning system (GPS)

receivers. Locations of nonforested plots are determined using

digitization methods.

Each field plot consists of four 7.31-m (24-ft)-radius circular

subplots, configured as a central subplot and three peripheral sub-

plots with centers separated by 36.58 m (120 ft) at azimuths of

0°, 120°, and 240° from the center of the central subplot (fig. 3). 

Observations obtained by field crews include the propor-

tions of subplot areas that satisfy specific land use conditions.

Plot-wise proportions of forest and nonforest land are deter-

mined by computing the mean proportions of these two land

uses across the four subplots. Measurements from 5,939 plots

associated with cloud-free areas of Zone 41 satellite imagery

were used in this study: 5,242 from Minnesota (years

1999–2001) and 697 from Wisconsin (years 2000–2001). Of

the measured plots, 2,439 were completely forested, 94 were

partially forested, and 3,406 were nonforested.

Methods

Mapping

Seven stratification maps were produced using variations of

two classification methods and two prediction methods: (1)

maximum likelihood (ML), (2) fuzzy convolution (Fuzz), (3)

logistic regression modeling (Log) and (4) k-Nearest Neighbors

(k-NN), respectively. Names of stratification approaches incor-

porate notation for the classification or prediction method (e.g.,

ML), the number of input training classes for the two classifi-

cation methods, and the presence or absence of edge strata

(table 1).

ML

ML classifications were produced using training data from the

following tasseled cap images: spring brightness, spring green-

ness, spring wetness, leaf-on greenness, and leaf-off brightness.

Figure 3.—FIA Phase 2 plot design.

Stratification Classification/ 

approach prediction Strata

method Inputs NF NFE F FE TNF W

ML2Edge ML Nonforest, forest X X X X

ML3 ML Nonforest, forest, water X X X

ML3Edge ML Nonforest, forest, water X X X X

Fuzz3 Fuzz ML3, distance X X X

Fuzz3Edge Fuzz ML3, distance X X X X

LogEdge Log Proportion forest land use X X X X

k-NNEdge k-NN Proportion forest land use X X X X

Table 1.—Approaches for producing stratified estimates of mean proportion forest land, NLCD 2000  Mapping Zone 41;
Nonforest (NF), Nonforest Edge (NFE), Forest (F), Forest Edge (FE), Terrestrial Nonforest (TNF), and Water (W) strata
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These image layers were selected to correspond with those iden-

tified as the “best” bands for k-NN analysis (see below). Chen

and Stow (2002) recommend using single pixels for training

because pixels that are contiguous or close together may exhibit

spatial autocorrelation. If training data are collected from auto-

correlated pixels, the variance of this training data tends to be

reduced. This may produce biased training signatures that are

less representative. Therefore, we used single pixels associated

only with central subplots, which are spatially separated from

pixels associated with central subplots of other plots. 

Based on proportion forest land use, each subplot was cat-

egorized as nonforest (< 0.25) or forest (≥ 0.25) before per-

forming the image classifications. The 0.25 minimum threshold

for proportion forest land is comparable to the definition of for-

est land currently used for the Natural Resources Conservation

Service (NRCS) Natural Resources Inventory (NRI) (Lessard et

al. 2003) and is approximately equivalent to FIA’s requirement

of 10 percent minimum stocking. In comparison, the NLCD

definition of forest is land that has 20 percent or more forest

cover (tree crown cover or crown closure); Anderson et al.

(1976) define forest land as having 10 percent or more tree-

crown density (crown closure percentage).

Nonforest and forest class signature files were created by

appending individual spectral signatures from image pixels

associated with each plot location. Due to the cumbersome

nature and long processing time associated with nearly 6,000

individual signatures (1 pixel for each central subplot), a guid-

ed clustering technique was used (Bauer et al. 1994, Lillesand

et al. 1998). Using this approach, two ISODATA unsupervised

classifications were performed, one for pixels associated with

central subplots defined as nonforest and one for pixels associ-

ated with central forested subplots. Parameters for both ISO-

DATA classifications were as follows: classes = 5, iterations =

20, convergence threshold = 0.98. The resulting five signatures

each for nonforest and forest were subsequently merged into

one signature for each of the two classes. A classification based

on these two signatures was used to produce the ML2Edge

stratification.

Merging the five nonforest signatures into a single signa-

ture resulted in a bimodal distribution of tasseled cap data—a

violation of the requirement for normal data distribution when

performing a maximum likelihood classification. Therefore,

ISODATA classes 1 and 2 and ISODATA classes 3, 4, and 5

were merged into two normally distributed signatures, charac-

teristic of water and terrestrial nonforest, respectively. Water,

terrestrial nonforest, and forest signatures were used to com-

plete a supervised classification using the ML parametric rule

and a fuzzy classification option. Output consisted of the three

best classes per pixel with a corresponding distance image.

Layer one of the fuzzy classification output represents the most

likely class for each pixel and was used to produce the ML3

stratification. Following classification, water and terrestrial

nonforest pixels were recoded as a single nonforest class,

resulting in a classification used for the ML3Edge stratification.

ML3Edge is comparable to ML2Edge, but the classification

used for ML3Edge conforms to the requirement for using nor-

mally distributed data in ML analyses.

Fuzz

Fuzzy convolution is a technique that creates a classification

layer by “…calculating the total weighted inverse distance of

classes in a window of pixels and assigning the center pixel the

class with the largest total inverse distance summed over the

entire set of fuzzy classification layers” (Pouncey et al. 1999).

Whereas classes with higher distance values may change to a

neighboring value, classes with a very small distance value will

remain unchanged. The result is a context-based classification

with reduced speckle. The Fuzz3 stratification was produced

using the ML3 fuzzy classification and distance layers described

above. The distance neighborhood weighting was calculated

within a 3-by-3 window with the central pixel weighted by 1.0,

four vertical/horizontal pixels weighted by 0.646, and four diag-

onal pixels weighted by 0.500. Following classification, water

and terrestrial nonforest classes were merged into a single non-

forest class. This nonforest class, along with the Fuzz3 forest

class was used to produce the Fuzz3Edge stratification.

Log

A logistic regression model with mathematical properties that

restrict predictions in the interval [0,1] was selected to accom-

modate forest land proportions, which also are constrained to

the interval [0,1]. McRoberts and Liknes (2002) describe this

approach for estimating proportion forest land. In this

approach, all four subplots associated with each plot were used.
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In brief, a three-step process was used to select spectral bands

for inclusion in models. First, the data were transformed to per-

mit use of a linear model, which accelerated  the computer pro-

cessing speed for selecting optimal image band combinations.

Second, simple linear regression models were fit to the trans-

formed observations. Third, Logistic models using the five best

combinations of bands with smallest Root Mean-Square Error

(RMSE) were fit to the forest land proportion observations

using weighted nonlinear regression where the weights reflect-

ed the correlations among observations of subplots within the

same plot. The model using the band combination and the cor-

responding parameter estimates obtained from the nonlinear

analyses was used to create a map of forest land proportion

predictions by calculating a prediction for each pixel. Each of

the five best Log models contained three spectral bands. The

best combination of bands identified for the Log approach were

leaf-off near infrared (TM band 4), leaf-off normalized differ-

ence vegetation index (NDVI), and leaf-on NDVI. Continuous

estimates of proportion forest cover were divided into forest

and nonforest land cover strata using the same definitions as

for ML, described above. 

k-NN

The k-Nearest Neighbors technique is a nonparametric

approach for predicting values of point variables. Similarity is

based on a covariate space between the point and other points

with observed values of the variable. McRoberts et al. (2002b)

describe the k-NN methodology used in this study to create

continuous estimates of forest cover. The observed values are

the forest cover proportions for each FIA subplot. The forest

cover prediction for each pixel is based on the average propor-

tion forest cover of the k subplots with corresponding pixel

spectral values nearest to that of the pixel in question.

Unweighted Euclidean distance was used to identify those k-

neighbors nearest in spectral space. The value of k was based

on the number that minimized RMSE for each combination of

spectral bands. The leaving-one-out method was used to obtain

RMSE of forest land proportion. The five combinations of

spectral bands with smallest resulting RMSE were used to pre-

dict proportion forest cover for each image pixel. The five best

k-NN calibrations had three to five bands. The best calibration

contained five bands (tasseled cap: spring brightness, spring

greenness, spring wetness, leaf-on greenness, leaf-off bright-

ness) and had a value of k=24. Continuous estimates of propor-

tion forest cover were divided into forest and nonforest land

cover strata using the same definitions as for ML and Log,

described above. 

Classifications based on ML, Fuzz, Log, and k-NN meth-

ods were processed further using clump and eliminate func-

tions (Pouncey et al. 1999) to remove isolated single pixels and

groups of pixels of one class when their contiguous area was

smaller than < 0.405 ha (FIA definition of 1-acre minimum

area).

Hansen and Wendt (2000) and McRoberts et al. (2002a)

reported that the efficiency of stratifications was improved

when separating edge strata from forest and nonforest strata at

forest/nonforest boundaries. Therefore, before performing strat-

ified estimation, image pixels were processed to subdivide both

forest and nonforest classes into interior and edge classes.

Pixels of either forest or nonforest class that are within a 2-

pixel distance (60 m horizontal/vertical distance, 85 m diagonal

distance) from a forest/nonforest boundary are labeled as edge

pixels. All other pixels are considered non-edge and retain their

original designation as forest or nonforest. This procedure

resulted in the following classes representing four strata: non-

forest, nonforest edge, forest, and forest edge (fig. 4). Edge

pixels were not identified for ML3 or Fuzz3 stratification

approaches (table 1).

Figure 4.—ML3Edge stratification: nonforest, nonforest edge,
forest, and forest edge strata.
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Stratified Estimation

Stratified estimates of mean plot forest land proportion,        ,

and estimated variance,                 , are calculated using formu-

lae for stratified analysis (Cochran 1977):

and

where h = 1,…,L denotes stratum; wh is the hth stratum weight;    

is the mean forest land proportion for plots assigned to the

hth stratum;  nh is the number of plots assigned to the hth stra-

tum; and        is the within-stratum variance for the hth stratum.

Variance estimates obtained using (2) ignore the slight effects

due to finite population correction factors and to variable,

rather than fixed, numbers of plots per stratum.

Stratum weights were determined as the proportions of

pixels assigned to strata. Each FIA plot was assigned to one

stratum. We avoided the mathematical complexity associated

with spatial correlation among four subplots by assigning plots,

rather than subplots, to strata. For this study, only the pixels

associated with central subplot locations (plot centers) were

used for assigning strata to plots.

Comparisons

Estimates of mean forest land proportion and the standard error

of the mean were calculated assuming simple random sampling

(SRS) for comparison purposes. Stratified analyses were con-

ducted using either three or four strata, as defined in table 1.

For the Log and k-NN analyses, stratifications from only the

single best models (based on the smallest standard error of

mean proportion forest land) were used (McRoberts 2002). 

Results

Zone 41 estimates of mean proportion forest land were similar

among all stratified approaches and were slightly smaller than

the SRS estimate. Standard errors (SEs) of these estimates were

noticeably smaller for the stratified approaches than for the SRS

unstratified approach. For ML classifications, replacing

bimodally distributed spectral signatures with signatures of nor-

mal distribution did not change estimates or standard errors of

estimates. Standard errors based on stratifications with four stra-

ta were indistinguishable for ML, Fuzz, and Log approaches,

and were slightly larger for the k-NN approach. Standard errors

were slightly smaller when using stratifications with four strata

(nonforest, nonforest edge, forest, and forest edge) than when

using stratifications with three strata (water, terrestrial nonforest,

and forest) for both ML and Fuzz approaches (table 2).

Discussion

Zone 41 stratifications derived from image classifications are

useful for reducing standard errors of mean proportion forest

land estimates. None of the stratification approaches is superior

to the others, but all are superior to the unstratified SRS

Estimate Stratification Mean proportion
approach forest land Standard error

Unstratified SRS 0.41 0.0061

Stratified ML2Edge .37 .0038

Stratified ML3 .38 .0040

Stratified ML3Edge .38 .0038

Stratified Fuzz3 .38 .0039

Stratified Fuzz3Edge .38 .0038

Stratified LogEdge .38 .0038

Stratified k-NNEdge .38 .0039

Table 2.—Simple random sampling and stratified estimation of mean proportion forest land, NLCD 2000 Mapping Zone 41
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approach. A vegetation index (NDVI) and a tasseled cap trans-

formation were more useful than TM/ETM+ optical band data

for the k-NN and Log approaches, respectively.

In two related studies, both within Zone 41, standard

errors of estimates from the Log approach were smaller than

for ML and larger than for k-NN approaches in a less heavily

forested area in central Minnesota (Nelson et al. 2002) but

smaller than for the k-NN approach in a more heavily forested

area in northeastern Minnesota (McRoberts 2002). 

The ML, Fuzz, Log, and k-NN approaches all require

acquisition and processing of satellite imagery. A visual com-

parison revealed the Fuzz approach produced smoothed vari-

ants of ML classifications, as expected. Although ML and Fuzz

approaches are available as standard components of image pro-

cessing software, Log and k-NN approaches are less accessible.

A tool currently being developed to allow k-NN processing

directly from ERDAS Imagine software will allow more wide-

spread use of k-NN for processing satellite imagery. Although

the k-NN technique is conceptually easy to implement, careful

attention must be paid to its calibration to achieve optimal

results. In addition, several precautions should be observed

when using the k-NN technique (McRoberts et al. 2002b).

More work is needed to determine the optimal threshold

for producing stratifications from continuous estimates of pro-

portion forest (e.g., Log and k-NN estimates). Rather than pro-

ducing a binary stratification (nonforest vs. forest) a

stratification with multiple strata could be tested, e.g., 0.0 –

0.2, 0.2 – 0.4, 0.4 – 0.6, 0.6 – 0.8, and 0.8 – 1.0 proportion for-

est land. Since the estimate of proportion forest land follows a

continuum, could we stratify along a comparable continuum?

Multiple iterations of stratified estimation could be run, select-

ing those thresholds where SE’s are minimized. If FIA policy

requires a nonforest/forest stratification, the above methods

could provide a benchmark of potential SEs to gauge perform-

ance of nonforest/forest stratification methods.

Zone 41 Landsat TM and ETM+ imagery consists of three

seasonal mosaics of adjacent, semi-overlapping scenes from

1999-2001. Spring, leaf-on, and leaf-off imagery include scenes

from early March through early May, early June through early

August, and mid October through mid November, respectively.

When producing zonal mosaics, MRLC gave precedence to

selecting overlapping portions of scenes to those dates with least

cloud cover. Despite these and other image processing steps

employed by MRLC, some cloud cover and scene-related radio-

metric variability is evident within each seasonal mosaic (fig. 2).

The classification/estimation of any portion of an NLCD 2000

mapping zone (e.g., individual TM/ETM+ scene) depends upon

the selection of plots and their associated pixels. Future study

could compare classifications of individual scenes using only the

pixels associated with plots in that scene with their correspon-

ding areas subset from classifications of zonal mosaics using

pixels associated with plots distributed throughout the zone.

When conducting stratified analyses requiring complete cover-

age of an area (assigning every pixel to a stratum for determin-

ing stratum weights), additional image processing of zonal

mosaics may be required to eliminate cloud cover. 
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