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Partitioning the Uncertainty in Estimates of
Mean Basal Area Obtained from 10-year
Diameter Growth Model Predictions
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Abstract.—Uncertainty in model-based predictions of

individual tree diameter growth is attributed to three

sources: measurement error for predictor variables,

residual variability around model predictions, and

uncertainty in model parameter estimates. Monte Carlo

simulations are used to propagate the uncertainty from

the three sources through a set of diameter growth

models to estimate the total uncertainty in 10-year pre-

dictions of mean basal area per unit area for a sample

of Forest Inventory and Analysis plots. Response sur-

face methodology is used to partition the total uncer-

tainty by source. Of the three sources, the uncertainty

in parameter estimates contributes most to the variance

of the estimate of mean basal area per unit area.

The objectives of this study were threefold: (1) to obtain 10-

year predictions of mean plot basal area per unit area for a

sample of Forest Inventory and Analysis (FIA) plots using

diameter growth models; (2) to propagate uncertainty from

three sources (measurement error, residual variability around

model predictions, and uncertainty in parameter estimates)

through the models to estimate the total variance of mean plot

basal area per unit area, and (3) to partition the total uncertain-

ty in the mean plot basal area estimates by underlying source.

Methods

The FIA program of the USDA Forest Service has initiated an

annual forest inventory system featuring measurement of a pro-

portion of plots each year, 20 percent annually in much of the

eastern United States. One approach to calculating annual

inventory estimates using data obtained with the new system is

to update to the current year data for plots measured in previ-

ous years and then base estimates on the updated information

for all plots. If the updating procedure is sufficiently unbiased

and precise, this approach is nearly as precise as using all plots

but without the adverse effects of using out-of-date informa-

tion. With the latter estimation approach in mind, a set of indi-

vidual tree, diameter at breast height (d.b.h.) (1.37 m above

ground) growth models was constructed and calibrated for use

in updating FIA plot information. 

The mathematical form of the d.b.h. growth models is:

(1)  

where E(.) is statistical expectation, d.b.h. is annual d.b.h. growth,

the ∃ s are parameter to be estimated, and the Xs are predictor vari-

ables in addition to d.b.h. The additional predictor variables, X2-

X9, include a suite of tree and plot variables either measured by

FIA field crews or calculated from their measurements. Tree vari-

ables include d.b.h., crown ratio (CR), and crown class (CC) at the

time of the initial inventory. CR is the proportion of tree height that

is in the crown, and CC is a measure of a tree’s dominance in rela-

tion to adjacent trees in the same stand and is coded as follows: 1-

open grown; 2-dominant; 3-codominant; 4-intermediate; and

5-overtopped (USDA FS 2001). Plot variables include latitude

(LAT) and longitude (LON) of the plot center, plot basal area

(BA), and physiographic class (PC). PC is a measure of site soil

and water conditions that affect tree growth coded as follows: 3-

xeric; 4-xeromesic; 5-mesic; 6-hydromesic; 7-hydric; and 8-bot-

tomland (USDA FS 2001). Plot basal area in trees larger than the

subject tree (BAL) is a plot variable but is calculated for each tree.

BA and BAL are the sum of cross-sectional areas of live tree boles

at breast height and are scaled to a per unit area basis. Details

regarding calibration of model (1) are discussed by Lessard (2001).

The Annualized Inventory Database

An annualized 11-year database of plot and tree variables was

constructed using the methodology described by McRoberts

(2001) to provide a basis for estimating model prediction

uncertainty and the total uncertainty of mean plot BA esti-
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mates. The database was constructed using measurements of

forested FIA plots in Michigan, Minnesota, and Wisconsin in

Bailey’s eco-province 212 (Bailey et al. 1994) for the two most

recent USDA periodic inventories in each state (Michigan

1979: Spencer and Hahn 1984; Michigan 1993: Leatherberry

and Spencer 1996; Minnesota 1977: Spencer 1982; Minnesota

1990: Miles et. al. 1995; Wisconsin 1983: Raile 1983:

Wisconsin 1996; Schmidt 1998). Because special analyses were

necessary to estimate the uncertainty in the d.b.h. growth model

parameters, the data were restricted to plots that included only

the four most commonly occurring tree species on FIA plots in

eco-province 212: red pine, jack pine, balsam fir, and quaking

aspen. Thus, if any tree on a plot was any other species, the

data for that plot were excluded from the database. The result-

ing database included information for 2,900 trees on 185 plots. 

Beginning with the year 0 annual database values, the

models were used to predict d.b.h. growth to obtain d.b.h. esti-

mates each tree for years 1-10. Values of all predictor variables

dependent on d.b.h.s were recalculated each year based on the

d.b.h. predictions for that year. Estimates of mean plot BA and

the standard error of the mean were calculated using stratified

estimation (Cochran 1977) where the strata are defined by

quartile categories of plot BA, and plots are assigned to strata

on the basis of the year 0 plot BA. Estimates of mean plot basal

area and the standard error of the mean obtained using this pro-

cedure were designated the MODEL estimates. As a standard

for comparing the MODEL estimates, estimates of mean plot

basal area and the standard errors of the means were calculated

each year using the data in the annualized database with the

same stratified estimation techniques and were designated the

ANNUAL estimates.

Uncertainty in Model Predictions

Uncertainty in d.b.h. growth model predictions was attributed

to three sources: uncertainty in values of predictor variables

due to measurement errors, residual variability around model

predictions, and uncertainty in model parameter estimates.

Because of their minimal distributional and linearity require-

ments and because they produce reliable estimates of model

prediction distributions, Monte Carlo methods were used to

estimate the total uncertainty in predictions from the growth

models and to propagate the uncertainties to the mean plot BA

estimates. Before the simulations could be implemented, uncer-

tainty had to be quantified for the underlying sources: measure-

ment error for tree- and plot predictor variables, residual

variability, and uncertainty in parameter estimates. 

Uncertainty in Predictor Variables.—Distributions for meas-

urement errors for the tree predictor variables were obtained

from the literature. McRoberts et al. (1994) reported the results

of a study in which 9-10 FIA field crews independently meas-

ured the same plots. They estimated a curve for describing the

standard deviation of d.b.h. measurements as a function of

mean d.b.h. They also reported that the distribution of ocular

estimates of CR as a percentage in the 0-1 range often deviated

±0.3 around the median crew estimate. Nichols et al. (1991)

reported that when crews returned to plots later in the same

growing season to obtain second ocular estimates of CC, 80

percent of estimates were unchanged while the remaining 20

percent were evenly distributed in the two adjacent classes.

Although BA and BAL are plot variables, their estimates are

based on individual tree d.b.h. measurements and are also sub-

ject to d.b.h. measurement error. Uncertainty in BA and BAL

was simulated by using d.b.h. measurements that incorporated

simulated measurement error. Finally, because of the nonunifor-

mity of plot soil, topographic, and vegetation conditions, PC is

also subject to uncertainty due to sampling variability. However,

because no empirical estimates of the sampling variability for PC

were available, no uncertainty in the measurement of this vari-

able was considered. In addition, no uncertainty was considered

for the LON and LAT predictor variables.

Residual Variability.—Estimates of residual variability were

obtained as by-products of calibrating the models. Residuals

were assumed to follow a Gaussian distribution but with het-

erogeneous variances. The standard deviations of the distribu-

tions of residuals were found to be adequately described as:

(2)

where E(.) denotes statistical expectation, σres is the sample 

estimate of  Φ̂res , and              is predicted diameter growth from

the models.
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Uncertainty in Model Parameter Estimates.—Using the dis-

tributions of residual variability as previously described, distri-

butions of model parameter estimates were obtained using a

four-step Monte Carlo procedure:

1. The parameter estimates obtained from calibrating the mod-

els were used with the growth models (1) to predict d.b.h.;

using predicted d.b.h., and (2), a residual was randomly

selected and added to each prediction to simulate an obser-

vation of d.b.h.

2. Simulated measurement errors for d.b.h., CR, CC, and PC

were obtained by randomly selecting from the appropriate

distributions and adding them to the observed values to

obtain simulated observations of these predictor variables;

BA using the simulated d.b.h. observations was calculated

for each plot, and BAL was calculated for each tree on

each plot.

3. Using the simulated observations of d.b.h. from Step 1 and

the simulated observations of the predictor variables from

Step 2, the models were recalibrated, and the resulting

parameter estimates recorded.

4. Steps 1-3 were repeated 250 times to construct a distribu-

tion of simulated parameter estimates.

Uncertainty in Model Predictions.—Estimates of mean plot

BA and the standard error of the mean were obtained using

a four-step Monte Carlo procedure:

1. Year 0:

a. Each simulation was initiated by simulating measure-

ment of all plots by adding the year 0 observed values

of d.b.h., CR, and CC in the annualized database and

simulated measurement errors obtained by randomly

selecting values from the appropriate distributions;

b. BA for each plot and BAL for each tree on each plot

were calculated using the simulated d.b.h. observations;

c. Mean plot BA and the standard error of the mean were

calculated;

d. A set of model parameter estimates was randomly

selected from the distribution for each species.

2. Subsequent years:

a. Current year d.b.h. for each tree was calculated as the

sum of previous year’s d.b.h., the model prediction of

d.b.h., and a residual randomly selected from a

Gaussian distribution using predicted d.b.h. and [2];

b. BA for each plot and BAL for each tree on each plot

were calculated using the simulated d.b.h. observa-

tions;

c. Mean plot BA and the standard error of the mean were

calculated and recorded;

3. Step 2 was repeated 10 times to obtain estimates of mean

plot BA and the standard error of mean for years 1-10.

4. Steps 1-3 were repeated 250 times to obtain distributions of

estimates of mean plot BA and the standard error of the

mean for each year.

For this study, each simulation was considered a separate,

independent imputation. Rubin (1987) advocates multiple com-

pletions of data sets via imputation to allow assessing the

uncertainty in imputed variables and to protect against extreme

results and further recommends the separate estimates be com-

bined as follows:

(3)

and

(4)

where &      and              are the stratified estimates of the

mean plot BA and the variance of the mean, respectively, for

the kth simulation, and      is the variance among the separate

estimates of mean plot BA. For this study, m=250, far greater

than the m=2 or m=3 found to be adequate in unrelated studies

by Rubin and Schenker (1986).

Partitioning Uncertainty

The goal in partitioning uncertainty is to quantify the contribu-

tions of uncertainties from individual sources to the uncertainty

of the estimate of interest. For this study, the total variance of

the model-based estimates of mean plot BA for year 10 was

partitioned with respect to uncertainty from three aggregated

sources: (1) measurement error, (2) residual variability around

d.b.h. growth model predictions, and (3) uncertainty in parame-

ter estimates. The uncertainties from all sources were aggregat-

ed into these three sources; i.e., measurement errors for all

variables were aggregated into the single source, measurement

error; residual variabilities for all species were aggregated into
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the single source, residual variability; and uncertainties in all

parameter estimates were aggregated into the single source,

uncertainty in parameter estimates. The uncertainties for indi-

vidual sources are incorporated into the simulations separately,

but their contributions to the total uncertainty of the BA esti-

mates are combined within their respective aggregated sources.  

Two approaches to partitioning uncertainty are intuitive.

First, the contribution to uncertainty of a single aggregated

source may be estimated as the difference between the total

uncertainty obtained when the uncertainties for that aggregated

source are incorporated and the total uncertainty obtained when

no uncertainty from any source is incorporated. This approach

is denoted NONE+1. Second, the contribution of a single

aggregated source may be estimated as the difference between

the total uncertainty when the uncertainties for all sources are

incorporated and the total uncertainty when uncertainties for all

sources except the aggregated source of interest are incorporat-

ed. This approach is denoted TOTAL-1. Estimates of the contri-

butions of individual sources obtained using the NONE+1 and

the TOTAL-1 approaches are frequently biased. The bias may

be seen by comparing the sums of the estimates of the contri-

butions of all aggregated sources obtained using the NONE+1

and the TOTAL-1 approaches to the difference between the

total uncertainty when uncertainties for all aggregated sources

are incorporated and the total uncertainty when no uncertainty

for any source is incorporated. If the estimates of the contribu-

tions from the individual sources are unbiased, the former sums

should equal the latter difference. Typically they are not equal

when using the NONE+1 and TOTAL-1 approaches. The bias

is attributed to lack of independence among the effects of indi-

vidual sources of uncertainty inherent in the simulation process.

An approach that produces independent estimates of the con-

tributions to total uncertainty by aggregated source is based on

response surface methodology (Myers 1971, Khuri and Cornell

1996). With this approach, small-order polynomials are used to

describe the relationship between levels of uncertainty for under-

lying sources and the uncertainty of the estimate of interest. If

estimates of total uncertainty are obtained for a factorial arrange-

ment of the levels of uncertainties for the underlying sources and

coded through orthogonal transformations, then a response surface

may be constructed using orthogonal polynomials that produces

uncorrelated coefficient estimates for first-order variables.

For each of the three sources of uncertainty, three levels of

uncertainty were considered: the first level incorporated uncer-

tainties for all individual sources corresponding to the standard

deviations of the distributions of uncertainty for those sources;

the second level simultaneously incorporated uncertainties for

all individual sources corresponding to half the standard devia-

tions; and the third level corresponded to no uncertainty from

any component source. For the measurement error of predictor

variables, the standard deviations were those obtained from the

literature, and for residual variability, the standard deviations

were calculated from (2). For model parameter estimates,

uncertainties for the first level were incorporated in the simula-

tions by randomly selecting from the simulated distributions of

parameter estimates. For the second level, random selections

were made from the simulated distributions, the deviations of

these selections from the means of the distributions were calcu-

lated, and then half this deviation was added to the mean. For

the third level, the means of the simulated distributions were

used. Within each source, the combinations of levels of uncer-

tainty for the individual sources are limited to three: simultane-

ous use of the full standard deviations for all component

sources, simultaneous use of half the standard deviations for all

component sources, and no uncertainty for any component

source. Thus, 27 sets of simulations were conducted, one for

each of the 27 combinations resulting from the three levels of

uncertainty for each of the three sources. 

The levels of uncertainty for each aggregated source were

transformed to facilitate describing the total uncertainty of the

mean plot BA estimates using orthogonal polynomials. For

each aggregated source, Φmax represented the first level corre-

sponding to the full standard deviation, Φmin represented the

third level corresponding to no uncertainty, and Φ represented

an arbitrary level. Orthogonal transformations were then

applied using the coding formula of Khuri and Cornell (1996):

(5)

where Φ and Φ’ were the untransformed and transformed cod-

ings, respectively. Although the standard deviations of the dis-

tributions of uncertainties for the individual sources differed,

the transformed codings of the three levels of the uncertainties

were the same for all individual sources: Φ’=1 for the first
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level, Φ’=0 for the second level, and Φ’=-1 for the third level.

Thus, the three common values, (Φ’=1, Φ’=0, Φ’=-1) were used

to describe the levels of uncertainty for an entire aggregated

source. Orthogonal polynomials were based on the three values

for each of three predictor variables, Φ’1, Φ’2, and Φ’3, one for

each source. These 27 combinations of values of 1, 0, and -1 for

the three sources constituted an orthogonal design. Thus, Var(–Y)

was described using orthogonal polynomials ex-pressed using

linear, quadratic, and two-way interaction terms as:

(6)

where Var(–Y) is the estimated variance of mean plot BA

obtained from (4), Φ’i is the predictor variable associated with

the ith source of uncertainty, ∃ 0 is the intercept coefficient, the

∃ is are linear coefficients, the ∃ iis are quadratic term coeffi-

cients, and the ∃ ijs and interaction term coefficients.

Although the estimates of the ∃ is are uncorrelated with each

other because of the orthogonal design, the estimate of any ∃ i is

not uncorrelated with the estimate of ∃ 0, the estimates of the ∃ iis,

or the estimates of the ∃ ijs. Nevertheless, the coefficient esti-

mates may be used to estimate the contribution to the total vari-

ance of the estimate of mean plot BA from the three aggregated

sources and to partition the variance with respect to the contribu-

tions from those sources. The total uncertainty in the mean plot

BA estimates was calculated using (6) with Φ’1=Φ’2=Φ’3=1,

which corresponds to the maximum or first level of the uncer-

tainty for all component sources. The portion of the total uncer-

tainty attributed to the ith aggregated source was estimated by

setting Φ’i=-1, the minimum or third level of uncertainty for that

source, and setting Φ’=1, the maximum level, for the other

aggregated sources, calculating the uncertainty of the mean plot

BA estimate using (6), and subtracting the result from the total

uncertainty estimate. This approach is analogous to the NONE+1

approach, except that it is based on predictions from (6) rather

than simulated estimates. An approach analogous to the TOTAL-

1 approach was also used. The estimate of uncertainty remaining

after the contributions from each of the three sources have been

estimated was attributed to natural variability among plots, can

only be reduced by using techniques such as stratified estima-

tion, and was designated sampling variability. Because the esti-

mates of the contributions of aggregated sources are

independent, the NONE+1 and the TOTAL-1 approaches pro-

duce identical results when used with a linear model, but do not

necessarily produce identical results when the model includes

quadratic and/or interaction terms.

Results

The adequacy of the 250 simulations was checked by evaluat-

ing the stability of estimates of means and standard errors of

means. Plots were ordered by their variability over simulations

in these coefficients of variation, and a graph of coefficients of

variation versus simulation for the four plots with the greatest

variability revealed that stability was achieved by approximate-

ly 100-150 simulations. Therefore, 250 simulations were

deemed adequate to evaluate uncertainty.

The MODEL mean plot BA estimates tracked the ANNU-

AL means closely, while the MODEL standard errors were

only slightly greater than the ANNUAL standard errors (table

1). The Wilcoxon Signed Ranks test (Conover 1980) detected

no statistically significant differences (α = 0.05) between the

ANNUAL and the MODEL estimates of mean plot BA. The

slight differences in the standard error estimates indicate that

the additional uncertainty due to using the growth model pre-

dictions to predict d.b.h. introduced little additional uncertainty

into the standard errors of the 10-year mean plot BA estimates.

Year ANNUAL MODEL

Mean SE Mean SE

0 6.6413 0.2235 6.6413 0.2235

1 7.4136 0.2418 7.4574 0.2386

2 8.2129 0.2765 8.4553 0.2869

3 9.1482 0.3129 9.9568 0.3445

4 10.0728 0.3607 10.7690 0.4253

5 11.1123 0.4261 12.0680 0.5256

6 12.2704 0.5028 13.5109 0.6404

7 13.6350 0.5970 15.1985 0.7797

8 15.0879 0.6925 16.9822 0.9266

9 16.6195 0.7965 18.8644 1.0884

10 18.3350 0.9086 20.9654 1.2566

Table 1.—Comparisons of ANNUAL and MODEL estimates of
mean plot BA
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Of the three sources of uncertainty considered, parameter

uncertainty made the greatest contribution to total uncertainty,

while the contributions of measurement error and residual vari-

ability were negligible (table 2). A comparison of the Subtotal 1

and Subtotal 2 values for the NONE+1 and TOTAL-1

approaches revealed the bias inherent in the estimates of the

contributions of the aggregated sources. Although the differ-

ences were not great, the LINEAR and QUADRATIC response

surface models produced values that were nearly identical. Due

to orthogonality, this result was expected and necessary for the

LINEAR model but was an unexpected positive result for the

QUADRATIC model. Based on the large R2 =0.9999 for the

QUADRATIC model, the estimates of the contributions of the

aggregated sources were considered reliable. 

Conclusions

Two conclusions may be drawn from this study. First, the

model-based d.b.h. prediction technique had only a slight nega-

tive impact on the total uncertainty of 10-year predictions of

mean plot BA. Second, among the uncertainties propagated

through the model, uncertainty in the model parameter esti-

mates made the greatest contribution to the total uncertainty in

the mean plot BA estimates. Admittedly, a complete prediction

system also requires techniques for predicting the survival,

regeneration, and removal of trees, components that were not

considered in this study.
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