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A rich set of analysis tools exists for categorical

data when sample sizes are large. However, due to

constraints in the frequency of the phenomenon

under study or resources available for gathering

data, researchers often find themselves with sample

sizes too small for reliable inference using asymp-

totic methods. And, unfortunately, they have no

good guides to tell them when a data set is “too

small” for asymptotic methods—sample size inter-

acts with table structure in unpredictable ways.

Expected values less than five commonly trigger

sample size warnings in standard statistical soft-

ware (e.g., Systat). However, there is also evidence

that expected cell sizes can be as small as 1.0 with-

out adversely affecting the P-values (Fienberg

1980, Appendix IV). Historically, very few alterna-

tives to asymptotic analyses were available, so

researchers have had to hope for the best. How-

ever, as microcomputers became faster, the use of

randomization methods became feasible. Research

in efficient computation of exact distributions

brought further improvements. For example, the

commercial software program StatXact (Mehta and

Patel 1995) performs many small sample-analyses

either exactly or using randomization methods.

TableSim, the program described in this manual,

performs four types of small-sample categorical

data analysis.

1. Test of homogeneity or independence for r

x c tables.

2. Test of homogeneity of an r x c table across

k strata.

3. Comparison of an observed r x c table to a

specified distribution.

4. Test of homogeneity or independence for r x

c tables with repeated measures (aggregated

data) in the rows. This module is also useful

for large-sample inference.

Of these analyses, only the first is directly available

in StatXact.

In this manual I will describe how to make

TableSim correctly execute its functions and how

the program does its work. Examples are provided

for each function, showing how to set up and run

the analyses and how to interpret the output.

Finally, some guidance is provided for making the

source code run under operating systems other

than Windows.

The primary audience for this program is

statisticians, researchers, and technicians who are

already familiar with standard asymptotic

categorical data methods, but who need to apply

those methods to small-sample data sets. This

publication is not a primer on categorical data

analysis. Excellent introductions to categorical data

analysis can be found in Fienberg (1980) and

Agresti (1996). The secondary audience is

programmers making modifications to the original

program.
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TableSim runs from the command prompt of any

32-bit Microsoft® Windows® operating system (see

User Note 1). Being a command line program,

TableSim requires no special installation—simply

copy the file “tablesim.exe” into a directory. This

installation method, while simple and flexible,

provides no program icon in the “Start” menu. To

minimize the amount of path information to be

typed in, a copy of the program can be put in the

directory holding the data being worked on.

The size of problem handled by these routines is

limited primarily by the amount of RAM available

on the computer. The secondary limit is that the

program will only read or write lines that are

shorter than 500 characters, which affects the

number of columns in a table. (Modifying this is

discussed in the Source Code Issues section.) No

constraints on the number of rows, columns, or

tables are hard-coded into the software. All testing

of the program was performed under Windows

2000 Professional.

File Structures

General input file structure
While most of the analyses have some special

requirements for their input files, as described in

the analysis sections below, the input file generally

has this structure:

• Line 1 is the analysis label; it must be

≤ 100 characters and enclosed in quotes.

• Line 2 is the analysis keyword, and must

be enclosed in quotes.

• Line 3 is the dimension of the problem.

• Line 4 is the number of random tables

the program uses to estimate the P-value.

• Line 5 is blank.

• The next lines contain the observations;

these must be integers.

• There is a blank line after the last row of

observations.

Program Documentation

There are some general rules for formatting input

files.

• All values on a particular line of an input file

must be separated by at least one space, as

shown in the figures referenced in the

sections below.

• Quotation marks can be single or double as

long as they are used consistently on a

particular line.

• Blank lines require only a carriage return.

• The number of simulations to run must

always be specified. The program will

execute properly using any integer from 1 to

2,147,483,647.

A common question is how many simulations to run;

10,000 is a reasonable minimum. More will be

needed if the P-value needs to be determined to a

very high precision (recall that the variance of the P-

value is P*(1-P)/N, where N = number of

simulations). More simulations are also needed when

the P-value is very small, and the analyst wants to

know just how small, rather than simply reporting,

say, P < 0.0001. The smallest P-value the program can

report is 1/N, where N is the value specified in the

input file. The observed data form the first

simulation, consistent with standard practice for

randomization tests (Manly 1997, page 7).

General output file structure
The general output file structure is:

• the user-provided analysis label;

• observed data structure as a check that the

program worked on the desired data, and as

an additional reminder about what the

analysis pertains to;

• expected data structure under the null

hypothesis;

• standardized residual matrices;

• Pearson X2 and likelihood ratio G2 statistics,

and their Monte Carlo P-values.
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The standardized residual matrices (Agresti 1990,

page 224) are computed using the formula:

(observed count – expected count)/(square root of

expected count).

Like regression residuals, standardized residuals

show where the model that generated the expected

values is failing to explain the observed values.

Clearly, positive residuals mean that more observa-

tions were recorded than expected, and negative

residuals mean that fewer observations were

recorded than expected. The formula should be

familiar to most users—sum the squared residuals,

and the result is the Pearson X2 statistic.

Data Analysis Routines
Figure 1a and figure 1b show two example data

analysis runs of TableSim. The program is invoked,

and it asks for the name of an input file. After

ensuring that the input file exists, the program

requests the name of an output file. The specified

output file is created or the user is asked whether

to overwrite the existing file with that name. If the

user chooses not to overwrite, the program asks for

a new output file name. Given the file information,

the program executes and terminates.

Independence in r x c tables
This is the standard analysis for two-dimensional,

unordered data. Figure 2a shows a sample input

file; figure 2b shows the resulting output file.

Homogeneity of an r x c table across k
strata
This analysis is a special extension of indepen-

dence into three dimensions. The cell probabilities

in the r x c table are of general form—neither

independence nor any other structure is assumed.

In principle, the analysis constructs a pooled r x c

table and then compares the k observed tables to

their expected values based on the pooled table.

StatXact’s test for strata is not comparable to this

analysis. However, StatXact will run this analysis

indirectly—set up a 2-way table with k rows and r

x c columns and request a test of independence.

TableSim employs this structure internally, but

allows the user to set up the problem with the

more obvious structure. Figure 3a shows a sample

input file for this analysis; figure 3b shows the

resulting output file.

Figure 1a.—Command prompt execution of TableSim, a simple example. The program could have been

invoked with only lowercase letters, i.e., as ‘tablesim’. Note that the program tells the user which analysis it

thinks it has been asked to run.
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Figure 1b.—Command prompt execution of TableSim, a complex example. After three unsuccessful attempts to acquire an

input file name, the program changes tactics. In this case, a simple ‘dir m*’ was used to list all files beginning with ‘m’ in the

directory. Windows Explorer could also be used to figure out what the right file name is.
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Figure 2a.—Input file structure for analyzing independence in r x c tables. This example comes from

table 17.1 of Mehta and Patel (1995).

• Line 1 is the analysis label; it must be ≤100 characters and enclosed in quotes.

• Line 2 is the keyword “marginal” (quotes required).

• Line 3 is the number of rows and columns.

• Line 4 is the number of random tables the program uses to estimate the P-value.

• Line 5 is blank.

• The next lines contain the observations; these must be integers.

• There is a blank line after the last row of observations.

“Test of small sample marginal using 9x3 table (17.1)”
“marginal”
9 3
10000

0  1  0
8  1  8
0  1  0
0  1  0
0  1  0
0  1  0
0  1  0
1  0  1
1  0  1
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Test of small sample marginal using 9x3 table (17.1)

Observed matrix:
     0     1     0
     8     1     8
     0     1     0
     0     1     0
     0     1     0
     0     1     0
     0     1     0
     1     0     1
     1     0     1

 Expected matrix:
     0.37    0.26    0.37
     6.30    4.41    6.30
     0.37    0.26    0.37
     0.37    0.26    0.37
     0.37    0.26    0.37
     0.37    0.26    0.37
     0.37    0.26    0.37
     0.74    0.52    0.74
     0.74    0.52    0.74

 Chi residual matrix:
    -0.61    1.45   -0.61
     0.68   -1.62    0.68
    -0.61    1.45   -0.61
    -0.61    1.45   -0.61
    -0.61    1.45   -0.61
    -0.61    1.45   -0.61
    -0.61    1.45   -0.61
     0.30   -0.72    0.30
     0.30   -0.72    0.30

For testing the table:
Based on  10000 samples, P(X^2 >=    22.099) = 0.02750
                         P(G^2 >=    23.297) = 0.03540

Figure 2b.—Output for analysis of independence of r x c tables; input file in figure 2a. (StatXact (Mehta and Patel 1995) reports

exact P(X2) = 0.0269; exact P(G2) = 0.0356; asymptotic P = 0.14.)
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Figure 3a.—Input file structure for assessing homogeneity of r x c table across k strata.

• Line 1 is the analysis label; it must be ≤100 characters and enclosed in quotes.

• Line 2 is the keyword “strata” (quotes required).

• Line 3 is the number of rows, the number of columns, and the number of strata.

• Line 4 is the number of random tables the program uses to estimate the P-value.

• Line 5 is blank.

• The next lines contain the observed values for the strata. The values must be integers; blank lines separate the strata.

• There is a blank line after the last row of observations.

“Test of small sample strata routine using 3x4x3 table”
“strata”
3 4 3
10000

2  3  1  2
0  3  0  0
4  1  1  1

3  0  1  3
0  4  3  0
4  3  0  3

0  1  4  1
4  1  3  4
4  1  3  3
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Figure 3b.—Output for

homogeneity of r x c table across

k strata; input file in figure 3a.

(StatXact reports Monte Carlo

P(X2) = 0.043, asymptotic P(X2)

= 0.054, Monte Carlo P(G2) =

0.035, asymptotic P(G2) =

0.008.)

Test of small sample strata routine using 3x4x3 table

Observed matrices
     2     3     1     2
     0     3     0     0
     4     1     1     1

     3     0     1     3
     0     4     3     0
     4     3     0     3

     0     1     4     1
     4     1     3     4
     4     1     3     3

 Expected matrices:
      1.27     1.01     1.52     1.52
      1.01     2.03     1.52     1.01
      3.04     1.27     1.01     1.77

      1.69     1.35     2.03     2.03
      1.35     2.70     2.03     1.35
      4.06     1.69     1.35     2.37

      2.04     1.63     2.45     2.45
      1.63     3.27     2.45     1.63
      4.90     2.04     1.63     2.86

 Chi residual matrices:
     0.65    1.97   -0.42    0.39
    -1.01    0.68   -1.23   -1.01
     0.55   -0.24   -0.01   -0.58

     1.01   -1.16   -0.72    0.68
    -1.16    0.79    0.68   -1.16
    -0.03    1.01   -1.16    0.41

    -1.43   -0.50    0.99   -0.93
     1.85   -1.25    0.35    1.85
    -0.41   -0.73    1.07    0.08

For testing the table:
Based on  10000 samples, P(X^2 >=    33.560) = 0.04330
                         P(G^2 >=    41.287) = 0.03560
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This analysis would be useful in two main cases.

The first is when the r x c structure is of interest,

but is not modeled until any effect of the strata is

determined. The second case is when the r x c

structure is not of primary interest, but comparing

that structure across strata is of interest. An

example of the latter is r x c tables that are Markov

chain transition count matrices, and the strata are

different time periods. The analysis objective is to

assess the homogeneity of the Markov chain

structure.

Comparison of r x c table to
theoretical distribution
This analysis compares an observed vector to an

expected vector, an observed matrix to a common

expected vector, or an observed matrix to an

expected matrix. Figure 4a shows a sample input

file; figure 4c shows the resulting output file. The

theoretical distribution vectors are real numbers

and, in principle, are the expected probabilities.

Because the program always normalizes each

expected vector to sum to 1.0, expected values or

values proportional to the expected probabilities

are also allowed. Figure 4b restates figure 4a using

an alternative expected structure.

Figure 4a.—Input file structure for comparing observed to theoretical distributions. As noted in text, quote marks can be

single or double, but must match on a given line.

• Line 1 is the analysis label; it must be ≤ 100 characters and enclosed in quotes.

• Line 2 is the keyword ‘theory’ (quotes required).

• Line 3 is the number of rows and columns.

• Line 4 is the number of random tables the program uses to estimate the P-value.

• Line 5 is blank.

• The next lines contain the observed values; these must be integers.

• There is a blank line after the last row of observations.

• The next row contains the number of expected vectors; this number must be either ‘1’ or the number of rows.

• The next line is blank.

• The next lines contain the theoretical distribution vectors. These are real numbers and, in principle, are the

expected probabilities. Because the program always normalizes each expected vector to sum to ‘1’, expected

values or values proportional to the expected probabilities are also allowable input.

• There is a blank line after the last expected vector.

“Large sample test of theoretical distribution analysis”
‘theory’
1 6
20000

45  60  70  54  80  64

1

.167  .167 .167  .167  .167  .167
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Figure 4b.—Input file structure

for comparing observed to

theoretical distributions using

an alternative expression of the

expected distribution. This

formulation gives the same

result as the formulation in

figure 4a, despite using expected

values that are not probabilities

and improperly using integer

instead of real values (no

decimal points).

“Large sample test of theoretical distribution analysis”
‘theory’
1 6
20000

45  60  70  54  80  64

1

1  1  1  1  1  1

Figure 4c.—Display of output

file for comparison of observed

to theoretical distribution;

output corresponds to input file

in figure 4a. (With 5 degrees of

freedom, asymptotic P(X2) =

0.03416 and P(G2) = 0.03296.)

Large sample test of theoretical distribution analysis

Observed matrix:
    45    60    70    54    80    64

 Expected matrix:
    62.2   62.2   62.2   62.2   62.2   62.2

 Chi residual matrix:
    -2.18   -0.27    0.99   -1.04    2.26    0.23

For testing the table:
Based on  20000 samples, P(X^2 >=    12.046) = 0.03475
                         P(G^2 >=    12.137) = 0.03445
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If the number of expected vectors is 1, then that

vector is applied to either the single observed

vector or to each row in the observed matrix,

whichever case is applicable. An example of the

latter case is a matrix with bird species as rows and

habitat types as columns. The counts are number

of birds of species i caught in habitat j. The

common expected probability vector is the

proportion of total net hours in each habitat. This

analysis yields an omnibus test for random use of

the landscape by the collection of bird species

trapped.

Independence in r x c tables with
repeated measures in the rows

Background—In the standard contingency table

setup, only one observation is made on each

independent experimental unit. It is not unusual,

however, to have studies in which multiple

observations are made on each experimental unit.

Most often, this would take the form of multiple

observations on individuals. For example, if we

were studying differences in food preferences

between males and females (populations), we

would observe a number of independent organ-

isms (clusters within populations). Each organism’s

preference distribution (response) would be

ascertained from counting preferences for a

number of trials. These preference counts would

not be independent, and simply pooling results

across individuals to assess sex-based differences

would generally yield a misleading analysis.

The repeated measures can also take the form of

what is often called aggregated data. In this case, a

single observation is taken on each of a number of

individuals in a group, but the aggregated obser-

vations don’t follow the standard multinomial dis-

tribution. The repeated measures structure comes

from viewing the groups as the sampling units,

which are measured multiple times. For example,

when studying spatial differences in species distri-

butions we might define a set of areas (popula-

tions) and then randomly select a number of places

to collect samples (clusters within populations).

Each place’s species composition (response) would

be the usual frequency count of species present in

the sample. Traditionally, samples within an area

are pooled, and the resulting area x species table is

analyzed for independence. Again, this will

generally yield a misleading result. A more

complete introduction to the aggregation problem

in ecology can be found in Garson and Moser

(1995).

There is no standard approach to analyzing this

type of data set. The program implements three

approaches and automatically runs all three. In the

descriptions below, Population is indexed by j, and

ranges from j = 1, …, J. Cluster is indexed by k,

and ranges from k = 1, …, K
j
. Response category is

indexed by i, and ranges from i = 1, …, I. The

number of responses in a particular cluster is given

by n
jk
.

Simple randomization—In the first approach,

the test statistic is calculated by pooling across

clusters and doing the standard test on the matrix

of populations x responses. The test statistic is

compared to a randomization distribution. Each

population is allocated the appropriate number of

clusters from the collection of all clusters using

sampling without replacement, because under the

null hypothesis all clusters come from the same

underlying population. The resulting table is then

analyzed with standard methods as described

above. Repeated a sufficient number of times, this

procedure generates a distribution for the test

statistic that accounts for the correlated responses.

The P-value is, as usual, based on the number of

times the randomization statistic is equal to or

larger than the test statistic. This analysis, because

it shuffles a limited number of clusters, tends to be

rather fast.

Manly’s model—The second approach uses a

model by Manly (1997, section 12.4). A standard

chi-square test is computed for each population.

The test statistic is the sum of the population

statistics. As in the first approach, clusters are

randomly allocated to populations. Within-

population chi-square tests are computed and

summed across populations to give a

randomization value. Repeated many times, this

procedure generates a distribution for the test

statistic that accounts for the correlated responses.

For this approach, the P-value is based on the

number of times the randomization statistics are
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equal to or smaller than the test statistic. The idea

is that if the populations differ, then the within-

population variation, as described by the within-

population chi-square test, will be larger for the

randomized arrangements of clusters than for the

observed arrangement. Because it shuffles a limited

number of clusters, this analysis also tends to be

rather fast. The program’s implementation is

particularly fast because the cluster randomizations

generated by the first analysis are re-used for this

analysis.

Dirichlet-Multinomial Model
The third approach is a model-based analysis

developed by Koehler and Wilson (1986, section

3), hereafter referred to as KW. A simple version of

this analysis was presented in Garson and Moser

(1995), hereafter referred to as GM. The analysis is

based on the idea of there being more variability

across clusters than is accounted for in the multi-

nomial model used to derive the standard test. To

save the non-statistician from translating KW, let’s

set up the procedure here.

Recall the basic structure of the problem. There are

populations of interest (indexed by j, ranging in

value from 1 to J), each of which has some number

of clusters sampled (indexed by k, ranging in value

from 1 to K
j
). Individual observations on the

clusters are classed into response categories

(indexed by i, ranging from 1 to I). For a particular

cluster in a given population, the true probability

distribution for the response categories is given by

the vector p
jk
. KW treats this distribution as a

random value from a Dirichlet distribution with

mean vector πππππj
 (the true mean vector of category

probabilities for population j) and scale parameter

γ
j
 (a measure of variability). The method estimates

π
ij
 as n

ij
/n

j
, and p

ijk
 as n

ijk
/n

jk
, and uses these values

to estimate the C
j
 parameter described in the KW

and GM papers. C
j
 ranges from 1 (independent

data) to n
j
 (very dispersed data). C

j
 is then used to

estimate γ
j
, which ranges from 0 (when C

j
 = n

j
) to

infinity (when C
j
 = 1). In this context, the scale

parameter can be thought of as the “effective

sample size”—when the scale parameter is small,

the response probability distribution is not well

determined and can vary a lot across clusters;

when the scale parameter is at its maximum, there

is no extra variability, so the cluster response

distribution is always the population response

distribution.

{C
j
} are also used to compute weights, {α

j
}. The

weights are used to properly pool the population

response distributions into an overall average

distribution, πππππ. To generate the null distribution of

the test statistics, the program sets πππππ, rather than πππππ
j
,

as the center of the Dirichlet distribution, while the

scale parameters remain population-specific. Random

response distributions for each population’s clusters

are created, and then an appropriate number of

observations are generated for each cluster using

those distributions. The test statistics take the form of

X2
DM

 in KW (equation 3.3).

The program uses the C
uj
 estimator for estimating C

j

and thence γ
j
. This is a more general version of the

approach described in GM. Although Garson and

Moser do not point it out, the GM procedure requires

identical sample sizes in each cluster from a given

population, i.e., n
jk
 = n

j
. The C

uj
 estimator allows

these sample sizes to vary in an arbitrary manner.

Sometimes, the experimental design suggests a

repeated measures analysis, but the data that are

collected appear to be independent. A nice feature of

the KW approach is that if none of the sampled

populations displayed overdispersion, the analysis

adjusts gracefully and provides the same results as if

running the small-sample test of independence. That

this has happened is clear from C
j
 estimates equal to

1. This is much simpler than the equivalent ANOVA

analysis, which requires determining if the repeated

measures structure can be ignored and then running a

separate ANOVA.

TableSim’s implementation of the method has a few

special features stemming from being a small-sample

implementation of a large-sample method. First, it

treats estimates of C
j
 below 1.05 as being equal to

1.00. Second, it perturbs cell counts away from zero

when zeros cause computational problems. Third, this

analysis can take a lot of time if there are many

observations in the clusters. Because of this, the

program prints a message to the screen after

completing every 1,000 simulations. Fourth, when a

population has only 1 cluster, the program uses an ad

hoc averaging approach to guess a value for C
j
. This

averaging approach does not always work well—it

can give values that are outside the allowed range or

ˆ

ˆ
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values that are very different from those for the

other populations and therefore suspect. So, the

program displays the multi-cluster C
j
 values, and

allows the user to alter the values assigned to

single-cluster populations. In these circumstances,

multiple runs can be made using different values

for the assigned C
j
 values, thereby evaluating the

impact on the P-value for the test of homogeneity.

Sometimes, a single-cluster C
j
 value will generate

the error message “Gamma < 0!” In such cases, a C
j

value inside the estimated valid range printed by

the program can be tried. While C
j
 values outside

the valid range are guaranteed not to work, a sub-

range inside the valid range may not work either

for a single-cluster population. If the next try

doesn’t work either, the direction of movement of

the printed γ
j
 value should be examined. The

objective is to choose a C
j
 value that will make γ

j

greater than zero.

File structure information—Figure 5a shows

the input file structure for the problem presented

in example 12.3 of Manly (1997). The populations

are habitat types, the clusters within populations

are snail colonies, and the response is shell type.

The counts are number of snails in a colony with a

particular shell type. The analysis asks whether

shell type distribution varies across habitat types,

while allowing colonies to have their own shell

type distribution within each habitat type.

Figure 5a.—Input file structure for analyzing independence in r x c tables with repeated measures. The Manly shell data

problem is described in the text.

• Line 1 is the analysis label; it is ≤ 100 characters, and must be enclosed in quotes.

• Line 2 is the keyword “randomize” (quotes required).

• Line 3 is the number of response categories (columns) and populations (rows).

• Line 4 lists the number of clusters (sub-rows) in each of the populations.

• Line 5 is the number of random tables the program uses to estimate the P-value.

• Line 6 is blank.

• The next lines contain the observed values; these must be integers.

• There is a blank line after each population of clusters, including the last.

“Test of randomization using Manly shell data”
“randomize”
10  6
2  3  5  4  2  1
20000

15  24    0   0   76   39   0    0   1   1
17  25    0   0   41    7   0    0  57   9

 1   4    1   1    5   22   4    1  30  17
 0  24    1   0   51   80   7   16   0   6
 9   6    4   3  135  165  62  138  59   0

 2   1    3   0   33    4  11    4   8   0
 1   7   33  28   15   15  54   40  24   6
 0   0    4   2    6    5   9    5   4   0
 1   4   18  14   17    3   8   10  23   1
 7   0    3   4    7    0  12   11   8   0

 2   1   10   3    0    0   2    2   0   1
17  25   46  26    7   27  59   61   9   2
 5   2    5   6    4    1   5    3   0   0
 1   1   10   2    0    1  42   19   0   0

 0  66  185  23    0   32  82   11   8  20
 0  11   21  34   19    6  33   31   0   0

47  21    0   6    5   13   0    7  49  16
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Figure 5b shows the output file for the analysis.

For this analysis, the output file has three parts.

The first part is the standard restatement of the

analysis problem. The second part presents the

Pearson X2 and likelihood ratio G2 statistics and

associated P-values for the simple randomization

and Manly analyses. The third part presents the

KW analysis. The KW output begins with the

cluster-specific response probability distributions;

these tables give some sense of the intrapopulation

variability relevant to the KW analysis. A

parameter estimate table follows, displaying the C
j
, γ

j
,

and α
j
 values. A γ

j
 value of −99.000 indicates that the

null response distribution was used as the actual

response distribution for all clusters in that

population. This will generally be associated with a C
j

value of 1. The response category probabilities are

displayed for each population, along with the

weighted null distribution. The unweighted null

distribution is also printed to show how much change

was caused by violations of assumptions in the data

set structure. The output file concludes with the KW

test statistics and associated P-values.

Figure 5b.—Display of output

file for the analysis of

independence of r x c tables

with repeated measures; output

based on input file in figure 5a.

The C
j
 value of 31.00 for

population 6 was assigned.

Manly (1997) reported a

randomization probability of

0.001 using his method (n =

1000 samples).

Test of randomization using Manly shell data
Observed matrices
    15    24     0     0    76    39     0     0     1     1
    17    25     0     0    41     7     0     0    57     9

     1     4     1     1     5    22     4     1    30    17
     0    24     1     0    51    80     7    16     0     6
     9     6     4     3   135   165    62   138    59     0

     2     1     3     0    33     4    11     4     8     0
     1     7    33    28    15    15    54    40    24     6
     0     0     4     2     6     5     9     5     4     0
     1     4    18    14    17     3     8    10    23     1
     7     0     3     4     7     0    12    11     8     0

     2     1    10     3     0     0     2     2     0     1
    17    25    46    26     7    27    59    61     9     2
     5     2     5     6     4     1     5     3     0     0
     1     1    10     2     0     1    42    19     0     0

     0    66   185    23     0    32    82    11     8    20
     0    11    21    34    19     6    33    31     0     0

    47    21     0     6     5    13     0     7    49    16

Collapsed observed matrix:
    32   49    0    0  117   46    0    0   58   10
    10   34    6    4  191  267   73  155   89   23
    11   12   61   48   78   27   94   70   67    7
    25   29   71   37   11   29  108   85    9    3
     0   77  206   57   19   38  115   42    8   20
    47   21    0    6    5   13    0    7   49   16

Under simple randomization:
Based on  20000 samples, P(X^2 >  1829.912) = 0.00080
                         P(G^2 >  1922.039) = 0.00020

Under the Manly test:
Based on  20000 samples, P(X^2 <   824.814) = 0.00025
                         P(G^2 <   803.702) = 0.00020

K-W analysis output
Cluster-specific response probabilities
Pop   Cluster          Response Probability Distribution
  1      1      0.0962  0.1538  0.0000  0.0000  0.4872  0.2500  0.0000  0.0000  0.0064  0.0064
  1      2      0.1090  0.1603  0.0000  0.0000  0.2628  0.0449  0.0000  0.0000  0.3654  0.0577

  2      1      0.0116  0.0465  0.0116  0.0116  0.0581  0.2558  0.0465  0.0116  0.3488  0.1977
  2      2      0.0000  0.1297  0.0054  0.0000  0.2757  0.4324  0.0378  0.0865  0.0000  0.0324
  2      3      0.0155  0.0103  0.0069  0.0052  0.2324  0.2840  0.1067  0.2375  0.1015  0.0000

  3      1      0.0303  0.0152  0.0455  0.0000  0.5000  0.0606  0.1667  0.0606  0.1212  0.0000
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  3      2      0.0045  0.0314  0.1480  0.1256  0.0673  0.0673  0.2422  0.1794  0.1076  0.0269
  3      3      0.0000  0.0000  0.1143  0.0571  0.1714  0.1429  0.2571  0.1429  0.1143  0.0000
  3      4      0.0101  0.0404  0.1818  0.1414  0.1717  0.0303  0.0808  0.1010  0.2323  0.0101
  3      5      0.1346  0.0000  0.0577  0.0769  0.1346  0.0000  0.2308  0.2115  0.1538  0.0000

  4      1      0.0952  0.0476  0.4762  0.1429  0.0000  0.0000  0.0952  0.0952  0.0000  0.0476
  4      2      0.0609  0.0896  0.1649  0.0932  0.0251  0.0968  0.2115  0.2186  0.0323  0.0072
  4      3      0.1613  0.0645  0.1613  0.1935  0.1290  0.0323  0.1613  0.0968  0.0000  0.0000
  4      4      0.0132  0.0132  0.1316  0.0263  0.0000  0.0132  0.5526  0.2500  0.0000  0.0000

  5      1      0.0000  0.1546  0.4333  0.0539  0.0000  0.0749  0.1920  0.0258  0.0187  0.0468
  5      2      0.0000  0.0710  0.1355  0.2194  0.1226  0.0387  0.2129  0.2000  0.0000  0.0000

  6      1      0.2866  0.1280  0.0000  0.0366  0.0305  0.0793  0.0000  0.0427  0.2988  0.0976

Pop   # clusters    C(j)     gamma(j)   alpha(j)
  1        2       10.372     15.539      0.157
  2        3       35.277     11.955      0.126
  3        5        6.665     24.024      0.371
  4        4        9.602     23.168      0.221
  5        2       30.593     10.947      0.099
  6        1       31.000      4.433      0.028

Population                   Response probabilities
   1        0.1026  0.1571  0.0000  0.0000  0.3750  0.1474  0.0000  0.0000  0.1859  0.0321
   2        0.0117  0.0399  0.0070  0.0047  0.2242  0.3134  0.0857  0.1819  0.1045  0.0270
   3        0.0232  0.0253  0.1284  0.1011  0.1642  0.0568  0.1979  0.1474  0.1411  0.0147
   4        0.0614  0.0713  0.1744  0.0909  0.0270  0.0713  0.2654  0.2088  0.0221  0.0074
   5        0.0000  0.1323  0.3540  0.0979  0.0326  0.0653  0.1976  0.0722  0.0137  0.0344
   6        0.2866  0.1280  0.0000  0.0366  0.0305  0.0793  0.0000  0.0427  0.2988  0.0976
wtd null    0.0475  0.0713  0.1220  0.0688  0.1578  0.1079  0.1622  0.1319  0.1090  0.0216

unwtd null  0.0448  0.0795  0.1232  0.0544  0.1508  0.1504  0.1397  0.1286  0.1003  0.0283

Under the KW model:
Based on  20000 samples, P(X^2 >=    96.655) = 0.00080

                         P(G^2 >=   108.512) = 0.00005

Figure 5b.—continued

Benchmarking—It is difficult to check the

performance of this routine, because there are no

benchmarks for comparison. However, one

fundamental check for the first analysis method is

how it behaves when each individual in a group

has only one observation – this is the underlying

structure of the standard test of independence in r

x c tables, for which checks are available. Figure 6a

provides a constructed data set for this check;

figure 6b provides the results. The close agreement

between the “randomization” routine results and

the “marginal” routine results suggests that the

software behaves as desired. In a similar vein, for

the KW analysis, we can check the behavior when

{C
j
} = 1. The analysis should give the results

similar to the “marginal” routine, and it does (fig.

7a, b). We can also create a large-sample KW

analysis, and compare the program’s output to the

expected large-sample results. The results (fig. 8a,

b) show the program behaving properly.
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‘Test of randomization using single observations per individual’
‘randomize’
3 3
31 14 22
10000

1 0 0 0 1 0
1 0 0 0 1 0 1 0 0
1 0 0 0 1 0 1 0 0
1 0 0 0 1 0 1 0 0
1 0 0 0 1 0 1 0 0
1 0 0 0 1 0 1 0 0
1 0 0 0 0 1 0 1 0
1 0 0 0 0 1 0 1 0
1 0 0 0 1 0
1 0 0 1 0 0 0 1 0
1 0 0 1 0 0 0 1 0
1 0 0 1 0 0 0 1 0
1 0 0 0 1 0 0 1 0
1 0 0 0 1 0 0 1 0
1 0 0 0 1 0 0 1 0
1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 0 1
1 0 0 0 0 1 0 0 1
1 0 0 0 0 1 0 0 1
0 1 0 0 0 1 0 0 1
0 1 0 0 0 1 0 0 1

Figure 6a.—Input file structure

for checking the simple

randomization routine against

the marginal routine using a

constructed data set. Because of

the length of this data set, the

observations have been strung

into columns; in the actual data

file, there is only one column of

data.

Test of randomization using single observations per individual

Collapsed observed matrix:
    21    8    2
     3    6    5
     5    9    8

Under simple randomization:
Based on  10000 samples, P(X^2 >=    15.754) = 0.00280
                         P(G^2 >=    16.861) = 0.00390

Test of randomization using single observations per individual; marginal

Observed matrix:
    21     8     2
     3     6     5
     5     9     8

 Expected matrix:
    13.42   10.64    6.94
     6.06    4.81    3.13
     9.52    7.55    4.93

 Chi residual matrix:
     2.07   -0.81   -1.88
    -1.24    0.54    1.05
    -1.47    0.53    1.39

For testing the table:
Based on  10000 samples, P(X^2 >=    15.754) = 0.00200

                         P(G^2 >=    16.861) = 0.00280

Figure 6b.—The first section

summarizes relevant output

from the input file in figure 6a.

The second section displays the

output file for the equivalent

marginal analysis. For the

marginal analysis, StatXact

reports exact P(X2) = 0.0028 and

P(G2) = 0.0035.
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“Randomization test of independent data, Cleth. gapperi captures”
“randomize”
4  2
3  3
20000

  2    1     0    3
  0    4     2    4
  2    4     1    3

  0    0     0    2
  0    0     1    0
  0    0     2    1

“Marginal test of independent data, Cleth. gapperi captures”
“marginal”
2  4
20000

  4    9     3   10
  0    0     3    3

Figure 7a.—Input file structure for

checking KW randomization

routine against marginal routine

using a data set with {C
j
} = 1.

17

Randomization test of independent data in repeated measures design

Collapsed observed matrix:
     4    9    3   10
     0    0    3    3

Under simple randomization:
Based on  20000 samples, P(X^2 >=     7.006) = 0.20110
                         P(G^2 >=     8.522) = 0.20110

Under the Manly test:
Based on  20000 samples, P(X^2 <=     8.726) = 0.09285
                         P(G^2 <=    11.804) = 0.20110

K-W analysis output
Cluster-specific response probabilities
Pop   Cluster          Response Probability Distribution
  1      1      0.3333  0.1667  0.0000  0.5000
  1      2      0.0000  0.4000  0.2000  0.4000
  1      3      0.2000  0.4000  0.1000  0.3000

  2      1      0.0000  0.0000  0.0000  1.0000
  2      2      0.0000  0.0000  1.0000  0.0000
  2      3      0.0000  0.0000  0.6667  0.3333

Pop   # clusters    C(j)     gamma(j)   alpha(j)
  1        3        1.000    -99.000      0.813
  2        3        1.000    -99.000      0.188

Population                   Response probabilities
   1        0.1538  0.3462  0.1154  0.3846
   2        0.0000  0.0000  0.5000  0.5000
wtd null    0.1250  0.2813  0.1875  0.4063

unwtd null  0.1250  0.2813  0.1875  0.4063

Under the KW model:
Based on  20000 samples, P(X^2 >=     7.006) = 0.06400
                         P(G^2 >=     8.522) = 0.04570

Randomization test of independent data in repeated measures design; marginal

For testing the table:
Based on  20000 samples, P(X^2 >=     7.006) = 0.05185
                         P(G^2 >=     8.522) = 0.05570

Figure 7b.—The first section

summarizes output from the

first analysis of the input file in

figure 7a; the second section

summarizes the second analysis

output.



“Test of asymptotic randomization using modified Fraser krill data”
“randomize”
8  5
9  8  9  8  8
10000

 20   70   521  594   154  441   87   55
 58   85   271  105   556  391  127    8
  2   47   169  236   716  633  144   15
 18   60    21  694   154  341   87   55
 58   85   171  205   556  491  127    8
  2   97    69  236   716  563  144    5
 22   50   121  994   154  341   87   55
 58   85   171  505   556  291  127   18
  2   17    69  236   716  363  144    5

 38   35    58  102   122  162  201    5
 52    2    62  867   265  134   89    7
 11  124   182  462   751  596  123   93
 32  100   320  263   309  660  229   49
  8   35    58  202   122  162  101    9
 12    2    62   67   265  134  189   10
 41  124   182  362   751  396  223   53
112  100   320  263   309  660   29   49

 40   32    62  215   517  975  344   19
  3   71    41  608   500  272   19   10
 42  172   730  658   680  515  219    2
 40   72   162  115   517  675  444   29
  3   71   641  708   712  172   19   15
142  272   230  958   380  215   19   12
 60   17   162  215   517  875  444  119
 13   71    41  708   500  172   19   20
 92  252   550 1058   380  315   19   12

 23  186   347  440   153  180  427   12
 39   18    71  582   813  244  189   50
 27  186   447  440   273  380   27   92
 22    8    71  582  1213  444  289   60
 53  186   447  440   253  580   27   22
 15    8    71  582   833  444   89   55
 23  186   447  440   253  880  227   32
 10    8    71  582   913  444   89   40

 11    8    30  941    99  250  624   20
 58   85   171  405   556  491  127    8
  2   17    69  236   716  763   44    5
 38   35    58  102   122  162   10   30
 52    2    62   67   265  134  289   10
 40  172   162  215   617  675  104  119
  3   71   641  708   500  172   19   22

 23  186   447  440    53   80   27   32

Figure 8a.—Input file structure

for checking large-sample KW

randomization routine against

analytical large-sample results.
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Test of asymptotic randomization using modified Fraser krill data

Collapsed observed matrix:
   240  596 1583 3805 4278 3855 1074  224
   306  522 1244 2588 2894 2904 1184  275
   435 1030 2619 5243 4703 4186 1546  238
   212  786 1972 4088 4704 3596 1364  363
   227  576 1640 3114 2928 2727 1244  246

K-W analysis output
Pop   # clusters    C(j)     gamma(j)   alpha(j)
  1        9        9.583    203.505      0.295
  2        8       10.943    176.249      0.197
  3        9       17.753    137.155      0.203
  4        8       15.055    153.663      0.205
  5        8       22.972     80.330      0.100

Population                   Response probabilities
   1        0.0153  0.0381  0.1011  0.2431  0.2733  0.2462  0.0686  0.0143
   2        0.0257  0.0438  0.1044  0.2172  0.2428  0.2437  0.0994  0.0231
   3        0.0217  0.0515  0.1310  0.2621  0.2351  0.2093  0.0773  0.0119
   4        0.0124  0.0460  0.1154  0.2393  0.2753  0.2105  0.0798  0.0212
   5        0.0179  0.0453  0.1291  0.2452  0.2305  0.2147  0.0979  0.0194
wtd null    0.0183  0.0443  0.1136  0.2413  0.2557  0.2277  0.0817  0.0175

unwtd null  0.0184  0.0454  0.1171  0.2435  0.2522  0.2232  0.0829  0.0174

Under the KW model:
Based on  10000 samples, P(X^2 >    52.224) = 0.00500

                         P(G^2 >    52.027) = 0.00410

Figure 8b.—Summary of output

file for test of large-sample KW

randomization analysis of

independence of r x c tables

with repeated measures; input

file shown in figure 8a.

Asymptotically, with 28 degrees

of freedom, P(X2) = 0.0037 and

P(G2) = 0.0038. Note that a

naïve analysis would conclude

that X2 ≈ G2 = 695, with P <<

0.00001.

A krill sampling example—Now that we

understand what the repeated measures routine is

doing, and have confidence that it is doing it

correctly, let us work through an example in some

detail. Consider comparing the size distribution of

krill in the diets of five penguins in various years,

as described in Fraser and Hofmann (in press) and

Hofmann and Fraser (in press). In our abstract

terms, the problem has five popula-tions (the

penguins), a variable number of clusters within

populations (the years, ranging from 1 to 4), and

an 8-category response (size class counts of the

krill taken from a penguin’s stomach in a particular

year; see figure 9a for data).

When we run this problem through the program,

it asks us what to do about the value of C
j
 for the

fifth population, which has only 1 cluster. One

response is to let the program use the estimate it

generated; the results of this decision are displayed

in figure 9b. Another response is to tell the pro-

gram to use a different value; the results of one

such choice are displayed in figure 9c.

The output displayed in figure 9b shows that the

test statistic values for the plain randomization

methods are rather large, but the associated P-

values are also rather large. In the KW output

section, the {C
j
} are much larger than 1 and the {γ

j
}

show that the effective sample sizes are much

smaller than the organism counts would indicate.

The differences between the unweighted null

response distribution and the proper weighted null

distribution show the effects of the {C
j
} being

different. Compare this to the results in figure 8b,

where the {C
j
} are clearly greater than 1, but are

fairly similar among themselves. There are still

clear effects on the tests, but the weighted and

unweighted response distributions are much

closer. Finally, when we look at the test statistics, it

is clear that the KW algorithm reduced the test

statistic values by two to three orders of

magnitude. Such a large impact is not too

surprising given the relation of the {γ
j
} to the

observed counts.

Considering the output displayed in figure 9c, we

see that for this data set a fairly large perturbation

in C
5



“Test of randomization using Fraser krill data”
“randomize”
8  5
3  4  3  2  1
10000

  0    0    21   94   154  441   87   55
 58   85   171  405   556  491  127    8
  2   17    69  236   716  763  144    5

 38   35    58  102   122  162  201    0
 52    2    62   67   265  134  289    0
 61  124   182  362   751  696  423  223
 92  100   320  263   309  660  429   49

 40  172   162  215   517  675  444  119
  3   71   641  708   500  172   19    0
142  372  1330  858   380  115   19    2

 23  186   447  440   253   80   27    2
  0    8    71  582  1013  444   89    0

  0    1    30   41   199  250   24    0

Figure 9a.—Input file for krill

example. Five populations, with

from 1 to 4 clusters sampled per

population. Size class counts are

in the columns.

had relatively small effects on the weighted

response distribution and moderate impacts on the

test statistics. However, the estimated P-values

were reduced by about 50 percent.

Having an explicit approach to how the data

structure deviates from a standard multinomial

creates a very firm foundation for generating the

null distribution of the test statistics. Although the

Manly shell data (figure 5) showed that the three

analyses can give fairly consistent results for some

data structures, it appears equally clear that the

KW analysis can be much more powerful than the

other two analyses. Moreover, the degree of

similarity between the KW and plain randomiza-

tion methods depends on the value chosen for C
6
.

The KW P-values are much smaller than the other

P-values for some C
6
 values. A strong argument

can be made that results from the two plain

randomization methods should be treated as being

presented only for historical completeness. Indeed,

these two methods are likely to be deleted in future

versions of TableSim.

Multiple Analyses
A single input file can contain multiple analyses for

the program to run. Simply leave one or more

blank lines after the data for a given analysis before

starting the control language for the next analysis.

All results are written to the same output file.

Figure 10a shows an example input file; figure 10b

shows the corresponding output file. This feature

is particularly useful on slower machines, because

it allows the user to run a number of analyses on

the system overnight. On faster machines, this

feature allows the user to set up some analyses and

let them run in the background while other tasks

are performed in the foreground.
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Test of randomization using Fraser krill data

Observed matrices
     0     0    21    94   154   441    87    55
    58    85   171   405   556   491   127     8
     2    17    69   236   716   763   144     5

    38    35    58   102   122   162   201     0
    52     2    62    67   265   134   289     0
    61   124   182   362   751   696   423   223
    92   100   320   263   309   660   429    49

    40   172   162   215   517   675   444   119
     3    71   641   708   500   172    19     0
   142   372  1330   858   380   115    19     2

    23   186   447   440   253    80    27     2
     0     8    71   582  1013   444    89     0

     0     1    30    41   199   250    24     0

Collapsed observed matrix:
    60  102  261  735 1426 1695  358   68
   243  261  622  794 1447 1652 1342  272
   185  615 2133 1781 1397  962  482  121
    23  194  518 1022 1266  524  116    2
     0    1   30   41  199  250   24    0

Under simple randomization:
Based on  10000 samples, P(X^2 >=  4766.887) = 0.23800
                         P(G^2 >=  4718.594) = 0.28750

Under the Manly test:
Based on  10000 samples, P(X^2 <=  5566.043) = 0.26760
                         P(G^2 <=  5826.359) = 0.28750

K-W analysis output
Cluster-specific response probabilities
Pop   Cluster          Response Probability Distribution
  1      1      0.0000  0.0000  0.0246  0.1103  0.1808  0.5176  0.1021  0.0646
  1      2      0.0305  0.0447  0.0900  0.2130  0.2925  0.2583  0.0668  0.0042
  1      3      0.0010  0.0087  0.0353  0.1209  0.3668  0.3909  0.0738  0.0026

  2      1      0.0529  0.0487  0.0808  0.1421  0.1699  0.2256  0.2799  0.0000
  2      2      0.0597  0.0023  0.0712  0.0769  0.3042  0.1538  0.3318  0.0000
  2      3      0.0216  0.0439  0.0645  0.1283  0.2661  0.2466  0.1499  0.0790
  2      4      0.0414  0.0450  0.1440  0.1184  0.1391  0.2970  0.1931  0.0221

  3      1      0.0171  0.0734  0.0691  0.0917  0.2206  0.2880  0.1894  0.0508
  3      2      0.0014  0.0336  0.3032  0.3349  0.2365  0.0814  0.0090  0.0000
  3      3      0.0441  0.1156  0.4133  0.2666  0.1181  0.0357  0.0059  0.0006

  4      1      0.0158  0.1276  0.3066  0.3018  0.1735  0.0549  0.0185  0.0014
  4      2      0.0000  0.0036  0.0322  0.2637  0.4590  0.2012  0.0403  0.0000

  5      1      0.0000  0.0018  0.0550  0.0752  0.3651  0.4587  0.0440  0.0000

Pop   # clusters    C(j)     gamma(j)   alpha(j)
  1        3       55.878     30.547      0.292
  2        4       45.974     46.495      0.501
  3        3      232.521     10.429      0.115
  4        2      173.368     10.070      0.073
  5        1      103.839      4.290      0.018

Population                   Response probabilities
   1        0.0128  0.0217  0.0555  0.1562  0.3031  0.3603  0.0761  0.0145
   2        0.0366  0.0393  0.0938  0.1197  0.2182  0.2491  0.2023  0.0410
   3        0.0241  0.0801  0.2779  0.2320  0.1820  0.1253  0.0628  0.0158
   4        0.0063  0.0529  0.1413  0.2789  0.3454  0.1430  0.0317  0.0005
   5        0.0000  0.0018  0.0550  0.0752  0.3651  0.4587  0.0440  0.0000
wtd null    0.0253  0.0392  0.1065  0.1541  0.2509  0.2634  0.1340  0.0266

unwtd null  0.0220  0.0505  0.1535  0.1883  0.2469  0.2189  0.1000  0.0199

Under the KW model:
Based on  10000 samples, P(X^2 >=    43.941) = 0.04880
                         P(G^2 >=    43.170) = 0.00940

Figure 9b.—Output file for test

of krill data; input file shown in

figure 9a. C(j) proposed by

program for population 5

accepted by user. Note that a

naïve analysis would conclude

X2 = 4767 and G2 = 4719, and

with 28 degrees of freedom P <<

0.00001.



Test of randomization using Fraser krill data

K-W analysis output
Cluster-specific response probablities
Pop   Cluster          Response Probability Distribution
  1      1      0.0000  0.0000  0.0246  0.1103  0.1808  0.5176  0.1021  0.0646
  1      2      0.0305  0.0447  0.0900  0.2130  0.2925  0.2583  0.0668  0.0042
  1      3      0.0010  0.0087  0.0353  0.1209  0.3668  0.3909  0.0738  0.0026

  2      1      0.0529  0.0487  0.0808  0.1421  0.1699  0.2256  0.2799  0.0000
  2      2      0.0597  0.0023  0.0712  0.0769  0.3042  0.1538  0.3318  0.0000
  2      3      0.0216  0.0439  0.0645  0.1283  0.2661  0.2466  0.1499  0.0790
  2      4      0.0414  0.0450  0.1440  0.1184  0.1391  0.2970  0.1931  0.0221

  3      1      0.0171  0.0734  0.0691  0.0917  0.2206  0.2880  0.1894  0.0508
  3      2      0.0014  0.0336  0.3032  0.3349  0.2365  0.0814  0.0090  0.0000
  3      3      0.0441  0.1156  0.4133  0.2666  0.1181  0.0357  0.0059  0.0006

  4      1      0.0158  0.1276  0.3066  0.3018  0.1735  0.0549  0.0185  0.0014
  4      2      0.0000  0.0036  0.0322  0.2637  0.4590  0.2012  0.0403  0.0000

  5      1      0.0000  0.0018  0.0550  0.0752  0.3651  0.4587  0.0440  0.0000

Pop   # clusters    C(j)     gamma(j)   alpha(j)
  1        3       55.878     30.547      0.287
  2        4       45.974     46.495      0.492
  3        3      232.521     10.429      0.112
  4        2      173.368     10.070      0.072
  5        1       50.000     10.102      0.037

Population                   Response probabilities
   1        0.0128  0.0217  0.0555  0.1562  0.3031  0.3603  0.0761  0.0145
   2        0.0366  0.0393  0.0938  0.1197  0.2182  0.2491  0.2023  0.0410
   3        0.0241  0.0801  0.2779  0.2320  0.1820  0.1253  0.0628  0.0158
   4        0.0063  0.0529  0.1413  0.2789  0.3454  0.1430  0.0317  0.0005
   5        0.0000  0.0018  0.0550  0.0752  0.3651  0.4587  0.0440  0.0000
wtd null    0.0248  0.0385  0.1055  0.1526  0.2531  0.2672  0.1322  0.0261

unwtd null  0.0220  0.0505  0.1535  0.1883  0.2469  0.2189  0.1000  0.0199

Under the KW model:
Based on  10000 samples, P(X^2 >=    46.502) = 0.02240

                         P(G^2 >=    45.912) = 0.00520

Figure 9c.—Summary of output

file for second test of krill data;

input file shown in figure 9a.

C(j) proposed by program for

population 5 was changed by

user to “fit in” with lower value

populations. This change

affected only the KW analysis

output.
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“Test of small sample marginal using 9x3 table (17.1)”
“marginal”
9 3
1000

0  1  0
8  1  8
0  1  0
0  1  0
0  1  0
0  1  0
0  1  0
1  0  1
1  0  1

“Large sample test of theoretical distribution analysis”
‘theory’
1 6
1000

45  60  70  54  80  64

1

.167  .167 .167  .167  .167  .167

Figure 10a.—Example input

file structure for performing

multiple analyses in a single

run.



Test of small sample marginal using 9x3 table (17.1)

Observed matrix:
     0     1     0
     8     1     8
     0     1     0
     0     1     0
     0     1     0
     0     1     0
     0     1     0
     1     0     1
     1     0     1

 Expected matrix:
     0.37    0.26    0.37
     6.30    4.41    6.30
     0.37    0.26    0.37
     0.37    0.26    0.37
     0.37    0.26    0.37
     0.37    0.26    0.37
     0.37    0.26    0.37
     0.74    0.52    0.74
     0.74    0.52    0.74

 Chi residual matrix:
    -0.61    1.45   -0.61
     0.68   -1.62    0.68
    -0.61    1.45   -0.61
    -0.61    1.45   -0.61
    -0.61    1.45   -0.61
    -0.61    1.45   -0.61
    -0.61    1.45   -0.61
     0.30   -0.72    0.30
     0.30   -0.72    0.30

For testing the table:
Based on   1000 samples, P(X^2 >=    22.099) = 0.02100
                         P(G^2 >=    23.297) = 0.02400

Large sample test of theoretical distribution analysis

Observed matrix:
    45    60    70    54    80    64

 Expected matrix:
    62.2   62.2   62.2   62.2   62.2   62.2

 Chi residual matrix:
    -2.18   -0.27    0.99   -1.04    2.26    0.23

For testing the table:
Based on   1000 samples, P(X^2 >=    12.046) = 0.04100

                         P(G^2 >=    12.137) = 0.03700

Figure 10b.—Example

output file structure for

performing multiple

analyses in a single run;

output corresponds to

input file shown in figure

10a.

24



25

1. Open a command window via “Start →

Programs → MS-DOS Prompt” in

Windows 9x, “Start → Programs →

Command Prompt” in Windows NT, and

“Start → Programs → Accessories →

Command Prompt” in Windows 2000.

Alternatives include starting TableSim

from the “Run” item in the “Start” menu

or double-clicking on the program’s entry

in Windows Explorer.

2. Do not use spaces in file names when

working in Windows 9x or Windows NT.

However, in Windows 2000 and

Windows XP, spaces in file names are

allowed.

3. When you finish using TableSim, type

‘exit’ at the prompt to close the command

window.

User Notes



The program was written in the Compaq® Visual

Fortran environment, compiler version 6.1a (DEC

1997), running under Microsoft® Windows® 2000

Professional. The source code was compiled with

switches at default settings. The fixed format

coding style reflects the origin of these routines,

but all code is compliant with the Fortran 90

standard and has generally been updated to reflect

F90 rather than F77 programming practice. The

use of a command line interface simplifies

programming in Microsoft environments and

makes porting the software to other operating

systems much easier.

There are three main reasons to modify the source

code. The first is to alter the allowed line length of

files. This requires modifying the RECL specifier in

the three OPEN statements in subroutine FILENAM.

Source Code Issues

For example, OPEN(junit, FILE=fname, RECL=180)

would allow lines of up to 180 characters to be

read or written, depending on which of the OPEN

statements was altered. As this is standard Fortran,

this modification is relevant for all compilers.

The second reason is to run the program using an

executable created by a different compiler. The

uniform random number generator, RANU, uses the

Compaq library DFLIB. This library has a non-

standard subroutine GETTIM, which is called when

initializing the generator. Therefore, the random

number generator’s initialization routine would

need to be rewritten to get the program to compile

and execute correctly.

The third reason is simply to extend the program’s

capabilities – handling higher order tables, ordered

data, Bayesian analysis, and so on.

26



27

Literature Cited

Agresti, Alan. 1990.
Categorical data analysis. New York, NY: John Wiley & Sons.

558 p.

Agresti, Alan. 1996.
An introduction to categorical data analysis. New York, NY: John
Wiley & Sons. 290 p.

DEC. 1997.
DIGITAL Fortran language reference manual. Maynard, MA: Digital

Equipment Corporation.

Fienberg, Stephen E. 1980.
The analysis of cross-classified categorical data. 2d ed.

Cambridge, MA: The MIT Press. 198 p.

Fraser, William R.; Hofmann, E.E. In press.
Krill-sea ice interactions, part I: A predator’s perspective on causal
links between climate change, physical forcing and ecosystem
response. Marine Ecology Progress Series.

Garson, Glenn I.; Moser, E. Barry. 1995.
Aggregation and the Pearson chi-square statistic for homogeneous

proportions and distributions in ecology. Ecology. 76: 2258-2269.

Hofmann, E.E.; Fraser, William R. In press.
Krill-sea ice interactions, part II: A coupled ecological-
environmental model. Marine Ecology Progress Series.

Koehler, Kenneth J.; Wilson, Jeffrey R.
1986.
Chi-square tests for comparing vectors of proportions for several
cluster samples. Communications in Statistics: part A. Theory and
Methods. 15: 2977-2990.

Manly, Bryan F. J. 1997.
Randomization, bootstrap and monte carlo methods in biology. 2d
ed. London: Chapman & Hall. 399 p.

Mehta, Cyrus; Patel, Nitin. 1995.
StatXact 3 for Windows: Statistical Software for Exact
Nonparametric Inference. User Manual. Cambridge, MA: Cytel
Corporation. 788 p.



The U.S. Department of Agriculture (USDA) prohibits
discrimination in all its programs and activities on the basis of
race, color, national origin, sex, religion, age, disability, political
beliefs, sexual orientation, and marital or family status. (Not all
prohibited bases apply to all programs.) Persons with disabilities
who require alternative means for communication of program
information (Braille, large print, audiotape, etc.) should contact
USDA’s TARGET Center at (202) 720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director,
Office of Civil Rights, Room 326-W, Whitten Building,
1400 Independence Avenue, SW, Washington, DC 20250-9410
or call (202) 720-5964 (voice and TDD). USDA is an equal
opportunity provider and employer.



Rugg, David J.
2003. TableSim—A program for analysis of small-sample cat-

egorical data. Gen. Tech.  Rep. NC-232. St. Paul, MN: U.S.
Department of Agriculture, Forest Service, North Central Research
Station. 27 p.

Documents a computer program for calculating correct P-values of 1-

way and 2-way tables when sample sizes are small. The program is

written in Fortran 90; the executable code runs in 32-bit Microsoft®

command line environments.

KEY WORDS: Fortran, aggregated data, randomization, Dirichlet-

multinomial.

MISSION STATEMENT

We believe the good life has its roots in clean air, sparkling water, rich soil, healthy economies and
a diverse living landscape.  Maintaining the good life for generations to come begins with everyday
choices about natural resources.  The North Central Research Station provides the knowledge and
the tools to help people make informed choices.  That’s how the science we do enhances the
quality of people’s lives.

For further information contact:

Or visit our web site:
www.ncrs.fs.fed.us

North Central
Research Station
USDA Forest Service

1992 Folwell Ave., St. Paul, MN  55108




