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ABSTRACT.—Three Landsat TM-based GIS layers were evaluated as alternatives to
conventional, photointerpretation-based stratification of FIA field plots. Estimates for
timberland area, timber volume, and volume of down wood were calculated for
California’s North Coast Survey Unit of 2.5 million hectares. The estimates were
compared on the basis of standard errors, conformance to FIA accuracy standards, and
gain in precision achieved by stratification relative to simple random sampling and to
conventional photointerpretation. Some satellite imagery-based approaches were found
to be far less costly than the conventional method, with very little sacrifice in precision.

National forest inventories in the United States, conducted by
the USDA Forest Service’s Forest Inventory and Analysis (FIA)
program, have traditionally relied on two-phase (or double)
sampling for stratification. This technique leverages
expensive-to-measure data collected from field plots with
cheap-to-measure attributes derived from remote sensing
imagery to achieve reductions in the variance of the inventory
estimates. Cochran (1977) described the underlying theory
and Poso and others (1990) applied this theory in a forest
inventory using remote sensing as the Phase 1 data source.
Chojnacky (1998) described the application of double
sampling to FIA inventories.

At the Pacific Northwest Research Station, the FIA unit with
responsibility for forest inventory in California, Oregon,
Washington, Hawaii, and the Pacific Islands, Phase 1 has long
consisted of a primary (0.85 mile) grid of points stratified
according to forest characteristics via ocular interpretation of
aerial photography. In Phase 2, crews visit a systematic 6-
percent sample of the Phase 1 points to install field plots and
collect a rich suite of plot and vegetation attributes.
Photointerpretation (PI), while less costly than field
installation of plots, is still very labor intensive and prone to
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producing interpreter-dependent results. Other problems with
Pl include inconsistent photo quality, cost of photography,
logistical challenges of handling and storing large numbers of
photographs, and difficulty in ensuring independence between
Pl and field plot measurement (because interpreters often
know which PI points are also field plots) (Hansen 2000).
These issues led the FIA program to seek an alternative
approach to stratification. Recently, remote sensing techniques
and digital data processing hardware and software have
developed rapidly. Semi-automated digital remote sensing
approaches offer many benefits compared to
photointerpretation, such as generating useful maps as
byproducts, allowing better understanding of spatial
relationships, and permitting capture of data not obtainable
via ocular PI; e.qg., infrared portions of the spectrum
(Congalton and Green 1999).

As with national-scale forest inventories elsewhere, FIA is
completing a transition from a primarily timber-focused
resource inventory to a multipurpose ecological inventory
designed to assess attributes considered essential to more
complete characterization of forest habitats and biodiversity.
For example, down wood (DW) volume can serve as a useful
indicator of biodiversity because it is a measurement with high
repeatability and it affects many resource qualities, including
species richness, species interactions, and temporal processes
(Carroll 1993). An important question then is: Whether, and
how much, any kind of stratification improves precision of
non-timber attributes? Given that both manual and semi-
automated types of approaches rely on classification of
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overstory, we had no basis for assuming that stratification
would improve precision for such estimates.

In this study, four stratification approaches were evaluated:
three semi-automated approaches based on vegetation
estimates derived primarily from Landsat Thematic Mapper
(TM) satellite imagery and aerial photointerpretation. The
principal hypothesis we sought to evaluate is that one or
more semi-automated remote sensing approaches to
stratification would yield accuracies comparable to that
achieved with a traditional PI, at a reduced cost. We
compared precision achieved for selected FIA estimators,
time requirements, and the economic considerations implied
by the cost of data acquisition, preparation, and analysis.
Attributes included timberland area?, timber volume on
timberland, and volume of down wood (diameter = 5
inches). Indications of precision were obtained by comparing
approaches for each attribute the population estimates,
standard errors, and the gain in statistical efficiency resulting
from stratification (as compared to random sampling). We
also compared the degree of conformance with FIA program
goals for sampling error for selected variables, where:

_ (Standard Error ) 1)
¢ Estimate
and
(E p )\/Speciﬁed volume or area
E, = @
\/(Eslimated total volume or area )
where

E, = observed sampling error
E, = allowable sampling error
E,, = specified sampling error in percentage at the specified
volume or area, which is:

10 percent per 1 billion cubic feet of growing stock

on timberland, or

3 percent per 1 million acres of timberland
(USDA Forest Service 1967). Observed sampling errors can
be converted to a specified area or volume (i.e., 1 million
acres or billion cubic feet) basis by using formula 3 (Hansen
2000):

2Timberland is forest land capable of growing continuous crops of
trees to industrial roundwood size, quality, and quantity, with a
mean annual increment of 1.4 m3/ha/year at culmination; forest land
is, or has been and is likely to be again, at least 10 percent stocked
by trees and is not converted to nonforest use (Phillips 1991).
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E, = sampling error for the specified area or volume

The most important accuracy requirement in FIA inventory
is 3 percent sampling error per 1 million acres of timberland
(USDA Forest Service 1967). For total volume on
timberland, the goal is 10 percent per 1 billion cubic feet,
but this is “error to be achieved as closely as practicable.”

STUDY AREA

We selected the field-sampled area of 2.5 million hectares
within California’s North Coast Survey Unit® (fig. 1) because
there was a recent (1994) FIA inventory data set available for
this area and because the vegetation ranges from dense forest
to oak woodland and shrub savannah, which makes for a
challenging test of the alternative approaches. Three satellite
imagery-based vegetation map products were available for
this area, which allowed a comprehensive comparison of
different approaches.

Dominant forest cover in the timberland portions of the
study area consists of redwood (Sequoia sempervirens),
Douglas-fir (Pseudotsuga menziesii), and tanoak (Lithocarpus
densiflorus) with white fir (Abies concolor), grand fir (Abies
grandis), ponderosa pine (Pinus ponderosa), sugar pine (Pinus
lambertiana), Pacific madrone (Arbutus menziesii) and
California black oak (Quercus kelloggii) accounting for most
of the rest of the trees (Waddell and Bassett 1996). Elevation
ranges from sea level to > 2,000 m, and precipitation ranges
from 0.6 to 3.2 m per year.

METHODS
Data Sources
Four different vegetation coverage datasets were used in the

study. In the first one, ocular Pl was applied. Classifications
of Landsat TM satellite imagery into vegetation cover types

3 Consists of 6.2 million acres of private and non-reserved public
lands outside of national forests and national parks in the counties
of Del Norte, Humboldt, Mendocino, and Sonoma (Waddell and
Bassett 1996) (fig. 1).
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were at the core of all three semi-automated stratification
approaches. In all three cases, 30-m Landsat TM images from
the early 1990s were used.

FIA Data

Ocular PI of 10,691 points on 1:32,000 scale, 1988 vintage
black and white photography was performed by four
interpreters for the study area in 1991. The information
interpreted for a 5-acre circle around each PI point included
forest land stratum (FLS) (with 16 possible classes based on
productivity and crown closure), crown cover (percent),
stage of stand development, and plant community (Phillips
1991).

Field plots, which were installed on a 3.4-mile square grid,
consisted of clusters of five variable-radius subplots,
inscribed within a 2.5 ha circle, on which trees > 5 inches
d.b.h. were assessed for a rich suite of attributes, including
size (d.b.h., h), species, and timber quality (crown ration
etc.). Understory vegetation, seedlings, and saplings were
assessed on smaller areas within subplots, and down wood
was sampled on three transects per subplot.

Classification and Assessment with Landsat of
Visible Ecological Groupings

The CALVEG (Classification and Assessment with Landsat of
Visible Ecological Groupings) GIS coverage* (figs. 2 and 3) is
essentially a modeled vegetation typing (5-ac minimum
mapping unit (MMU)) generated from Landsat imagery,
unsystematic, non-random field observations of vegetation,
DEM-estimated elevation, slope and aspect, and the expert
opinion of local forest managers. The modeling is highly
localized, with over 100 variants needed to cover the whole
state. Validation is based on FIA plot data and both error
matrix and fuzzy set approaches (FIA User's Guide 2001).

National Land Cover Dataset
The NLCD (National Land Cover Dataset) GIS layer ® (figs. 2

and 3) was modeled via unsupervised classification of
terrain-corrected, 1992 vintage Landsat 5 TM imagery from

4Provided gratis by the Remote Sensing Lab at the USDA Forest
Service, Pacific Southwest Region, in Sacramento, CA; available for
most of California.

5 Available for the lower 48 states from the Multi-Resolution Land
Characteristics Consortium (MRLC) at the USGS EROS Data
Center, Sioux Falls, SD.
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Figure 2.—Forest classification of the four stratification sources tested for the North Coast Survey Unit.
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Figure 3.—Fine-scale inspection of the four stratification sources tested reveals effects of differences in
class definitions among stratification sources.



at least two different seasons (e.qg., leaf-on and leaf-off),
census tracts, existing mid-scale cover layers, wetland
inventory, and maps of soil attributes (water capacity and
organic carbon) (Vogelmann and others 2001). Accuracy
assessment was based on interpretations of 1990 National
Aerial Photography Program photographs and probability
sampling (Vogelmann and others 2001).

Forest Inventory and Analysis Stratification with
Classification of Thematic Mapper

The FIASCO-TM (Forest Inventory and Analysis
Stratification with Classification of Thematic Mapper)
vegetation coverage was constructed via a combination of
supervised classification of Landsat TM imagery and a
reduced intensity sample of photointerpreted Phase 1 points.
The classification program® applied a supervised maximum
likelihood classification algorithm, described by Richards
(1994) and Campbell (1987), that used a subset of FIA Pl
points as a training sample. Regions of interest were created
around each PI point, and the spectral signatures of these
regions were used as seeds for the classes created. Error
statistics for the classification were calculated with FIA plot
data. The result of the FIASCO-TM classification was a
classified raster image (figs. 2 and 3) with error statistics
describing the accuracy of the classification. In this study, the
Landsat imagery was classified to FIA FLS classes; however,
the FIASCO-TM approach could just as easily use any other
classification system.

The input to FIASCO-TM consists of georeferenced Landsat
imagery, data for the training areas, and plot data for
accuracy assessment. Four Landsat scenes for July 1990
covering the North Coast study area were georeferenced,
normalized, and mosaicked’. Total root mean square error of
the georeferencing was close to one-half of the pixel size,
which is appropriate for this purpose (ERDAS 1997,
Vogelman and others 2001).

e Written in IDL macro language of the ENVI GIS software
environment by Dr. Michael Lefsky.

"Using ERDAS Imagine and IDL macro language programs.

8 Documentation by Larry Bednar (2001) on file at the USDA Forest
Service, Pacific Northwest Research Station, Portland OR.

Sampling Techniques

Alternative stratifications were applied using a SAS-based
‘Tabling’ application® to generate population estimates and
associated variances under three sampling scenarios: double
sampling for stratification, stratified random sampling, and
simple random sampling (Cochran 1977).

The theory of two-phase sampling is described by Cochran
(1977). The technique uses a relatively large sample of more
general and cheaper-to-obtain Phase 1 data to divide the
population of interest into subpopulations from which the
Phase 2 sample is drawn in order to reduce the variance of the
population estimates. Based on the values of some variable, the
population is stratified into a number of classes. The first
sample is a simple random sample; this sample corresponds
with PI points in FIA inventory parlance. The second sample
can be a subsample from the first sample (e.g., in FIA
inventories, field plots are a subsample of Pl points), or it can
be drawn independently. The cost per sample unit is usually
low in Sample 1 compared to Sample 2, and the Sample 2 data
are more detailed. When a double-sampling approach is used,
the key problem is to choose the size of the samples and the
number of sample units in each stratum so that the variance of
the estimate is minimized for any given cost.

In stratified sampling a population is divided into
subpopulations called strata. When the strata have been
determined, a sample is drawn from each. If the sample taken
from each stratum is a random sample, the whole procedure is
called stratified random sampling. The use of stratification can
improve the accuracy of estimates for the whole population. A
heterogeneous population can be divided into homogeneous
strata based on an attribute thought likely to be related to the
attributes for which population estimates are sought, and
precise estimates of stratum means can be achieved by drawing
a sample from within a stratum. These estimates can then be
combined to obtain estimates for the entire population.

Simple random sampling, where no Phase 1 exists and each
field plot represents the same proportion of the total
population, is considered in this study as the cheapest and
most straightforward way to implement a forest inventory.

Sarndal and others (1992) define a stratification design effect—
a measure of the gain in statistical efficiency achieved through
stratification—as the ratio of the variance with stratification
and the variance with simple random sampling. Here, five
different levels of design effect were considered, as shown in
table 1. 73



Table 1.—Levels of statistical efficiency used to evaluate the
gain of precision via stratification

Design effect Level of statistical

(percent) efficiency
80-100 No effect
67-80 Minimal
50-67 Moderate
25-50 Substantial
0-25 Excellent

The NLCD and FIASCO GIS layers were segmented and
sieved (ERDAS 1997) to achieve minimum mapping units
consistent with FIA field plot condition mapping rules. In
essence, this procedure replaces homogeneous areas smaller
than 4 pixels (about 1 acre) with the majority value from
surrounding cells.

Areas of forest transition (e.g., from forest to nonforest or
from well-stocked to non-productive) typically exhibit
greater heterogeneity than pure stands, and such transitions
are often so gradual as to make delineation of an exact
border challenging. Not surprisingly, such transition zones
are loci with a high probability of classification errors
resulting from class definitions and layer registration issues.
To address these issues, we created edge strata along the
edges of productive forest, other forest, and nonforest
following an approach pioneered by Hansen (2000). For
each Landsat-derived stratification layer, 2-pixel-wide edge
classes were created for each of three land classes. Standard
errors for timberland area estimates were always lower when
edge strata were used, and they were usually lower for
timber volume.

Differences in attribute detail and classification systems
among the GIS layers meant that each had to be simplified
and cross-walked separately, and iteratively, to produce
stratification systems capable of near optimal precision gain.
Stratification performance was evaluated iteratively, as strata
count, edge class configurations, and assorted crosswalk
criteria were adjusted by comparing calculated standard
errors, conformance to FIA accuracy standards, and design
effect for timberland area, timber volume, and DW volume
estimates among candidate stratification systems.
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Optimizing Precision for Each Stratification
System

Two Pl-based stratification systems were tested. The
“production PI” mimicked the 1994 FIA inventory of the
North Coast Survey Unit, for which Pl points were divided
into groups by FLS code and owner only, and this layer was
used to stratify the field plots. Because the available Pl data
include considerably more detailed information than FLS
code alone, and some of this information could considerably
improve stratification, a second “optimal PI” stratification
system was developed, making use of stage of stand
development, plant community, and density information in
addition to FLS class. From PI data, we separated all groups
that had different combinations of these attributes, and we
combined strata that had only a few field plots with the
closest remaining stratum. Optimal PI did not improve
precision as compared to production Pl for timberland area
estimates but did for timber volume.

Four stratification systems were tested using the CALVEG
GIS layer. One used only the size class information and the
second used only density class. Both of these resulted in
remarkably high standard errors for timberland area and
timber volume because the attributes that were used to
define the strata did not form homogeneous classes in terms
of these attributes. The third involved a cross-walk from
CALVEG to FIA FLS classes that combined vegetation cover
type, size, density, and species information in the GIS layer.
These strata were much more homogeneous within strata
with respect to, for example, plot volume. The fourth added
the edge classes (fig. 4) to CALVEG-FLS classification,
further reducing the standard error of timberland area but
increasing standard error on timber volume estimates.

Following Hansen (2000), segmentation and sieving were
applied to transform the NLCD to achieve a MMU of 1 acre,
cross-walked to forest and nonforest classes and added forest
and nonforest edge classes (designated “fnf”) (fig. 4). This
reduced standard errors for timberland area estimates
compared to stratifications based on the stock NLCD GIS
layer. Recoding the NLCD GIS layer to three classes: forest,
other forest,® and nonforest, and building edge classes for
each (“fofnf”), improved precision for timber volume
estimates.

9Below a productivity threshold implied by the cover type
designation.
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Figure 4.—Sample from FIASCO-TM GIS layer after 2-pixel-wide edge classes around forest, other forest, and nonforest classes are

generated.

We tested a FIASCO-TM classification using a 20-percent
sample of the PI points clustered by photo so that all points
on a photo are used but only 20 percent of photos. This
clustered approach is essential to reducing the photo and
labor costs associated with the PI component of the FIASCO-
TM approach. A post-processed version that was filtered and
augmented with edge strata for forest, other forest, and
nonforest (fiasco_fofnf) improved precision for estimates of
timberland area and down wood.

Operational Considerations

Cost and operational issues also figure prominently in
choosing a stratification system. Depending on the system,
several expenses must be accounted for such as photo
acquisition, photo setup and interpretation, Landsat image or
GIS product acquisition and processing, and geoprocessing.
Time requirements and costs were estimated based on recent
PI projects and expenses incurred for this analysis, converted
to a per million acres basis, and expanded to generate
estimates for states in the PNW region for which a decision
on Phase 1 is imminent.

RESULTS

Timberland Area

Only the Pl-based stratifications were successful in achieving
an error per million acres rate below the 3-percent goal
specified in the Forest Service Handbook (USDA Forest
Service 1967) as the most important benchmark (table 2).
The best precision obtained from a semi-automated
stratification system for timberland area was CALVEG with
edge classes. Two of the three semi-automated stratification
systems achieved substantial to excellent design effects, and
one was just below substantial.

Total Volume on Timberland

The remarkable reduction in sampling error achieved for
volume by substituting “optimal PI” for “production P1”
suggests that considerable volume variation cannot be
explained by broad forest type alone. There is very little
difference in precision between the production PI and the
semi-automated stratification systems, and the statistical
efficiency of stratification for volume estimation is moderate

at best (table 3).
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Table 2.—Timberland area in the North Coast Survey Unit based on the best stratification from each data set

Timberland area Sampling error per million acres

Method Standard error
Acres Acres

Production PI 49,852 2,924,100
Optimal PI 50,573 2,911,300
CALVEG Edge 58,599 2,854,800
NLCD fnf 63,002 2,911,700
FIASCO fofnf 69,696 2,809,200
Random Sample 69,696 2,847,300

Percent Percent
2.92 30
2.96 31
3.47 41
3.69 48
4.16 58
5.42 100

Table 3.—Total volume on timberland in the North Coast Survey Unit based on the best stratification from each data set

Method Standard error Timber volume Sampling error per billion cu ft Design effect
Thousand cu ft Thousand cu ft Percent Percent
Optimal PI 417,300 10,490,000 12.88 58
Production PI 464,730 10,618,000 14.26 72
CALVEG FLS 470,970 10,297,000 14.68 73
NLCD fofnf 474,250 10,410,000 14.70 74
FIASCO fofnf 465,940 10,050,000 14.70 72
Random Sample 550,100 10,245,000 17.19 100

Total Volume of Down Wood

Down wood, down logs, and branches with diameter = 5
inches are important habitat components for a number of
wildlife species and may be good indicators of biodiversity,
but there is no precision standard for this attribute in the FS
inventory system. None of the stratification systems improve
the estimates of DW very much; the design effect is minimal
at best (table 4). However, sampling error per billion cubic
feet of DW is not much higher than it is for standing volume,
so even without stratification, precision would likely be
acceptable for most applications.

Operational Considerations
Costs per million acres range from $854 for NLCD to
$82,218 for CALVEG in areas (i.e., outside of California)

where that classification layer does not yet exist (table 5).
Except for CALVEG outside California, all of the methods
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tested would be far less expensive than Pl. For methods
implemented across all of California, Oregon, and
Washington, the cost of stratification ranges from $113,000
(for NLCD) to nearly $6 million for CALVEG (table 6).

DISCUSSION

No semi-automated approach tested resulted in more precise
estimates of timberland area or timber volume than can be
achieved by using PI. The tradeoff curve between precision
and cost (fig. 5) suggests that substantial cost savings can be
achieved by transitioning to a semi-automated approach,
with only modest reductions in precision. It was also shown
that volume precision targets cannot be achieved using any
stratification approach tested. One potential ancillary benefit
not included in this analysis is the value of the forest land
strata maps derived from a stratification approach like
FIASCO-TM. Such GIS layers could prove useful as a spatial
component in other forest research projects, particularly
those involving interpolation of FIA plot attributes to the
larger landscape.

Design effect



Table 4.—Total volume of down wood in the North Coast Survey Unit based on the best stratification from each data set

Method Standard error

Timber volume

Sampling error per billion cu ft Design effect

Thousand cu ft  Thousand cu ft Percent Percent
Production PI 347,630 5,692,500 14.57 78
FIASCO fofnf 367,330 5,386,000 15.83 87
CALVEG density 369,410 5,392,200 15.91 88
NLCD fnf 376,670 5,525,300 16.02 92
Random Sample 393,510 5,393,400 16.94 100
Table 5.—Estimated costs for each stratification approach on a per million acre basis
mponen Traditional Pl EFIA -TM ___NLCD ALVE A ALVE i A
- - - - - - - - - - Cost($) per milionacres - - - - - - - - - -

Photo acquisition 1,945 778
Photo setup 14,140 5,998
Photo interpretation 2,203 441
Landsat scenes 36 0 0 0
GIS layer preparation 251 251 251 251
Filter and edge 503 503 1,715 1,715
Administration etc. 251 101 251 251
CALVEG creation 80,000

Total 18,288 8,259 854 2,218 82,218
Table 6.—Estimated costs for each stratification approach, by State

State Traditional PI FIASCO-TM NLCD CALVEG
- - - Cost (thousands of $) for entire states - - -

California 1,116 504 52 135
Oregon 720 325 34 3,236
Washington 582 263 27 2,618

Total 2,418 1,092 113 5,989

If money is the principal concern, NLCD is very attractive for
the precision achievable relative to acquisition and
processing cost. However, NLCD is a pre-classified product,
so FIA staff cannot fine-tune the class definitions or the
number of classes that are used to describe forested areas, for
example. In this regard, FIASCO-TM offers more flexibility
and opportunities to tune the training information and class

definitions to match any particular or current needs. By
selecting the FIASCO-TM method, the FIA program would
escape dependence on update cycles and priorities of the
other agencies and would be able to directly design the
information included in the resulting vegetation map.
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Figure 5.—Precision and estimated cost for random sample, convetional PI, and three semi-automated approaches to stratification.

Forest types vary widely in California’s North Coast Survey
Unit, ranging from low elevation redwood forests to alpine
forest types and chaparral. However, the survey unit contains
almost no sparse or transitional forest such as can be found
in abundance on the east side of the Cascade Mountains.
Such areas have extensive intermixing of types, potentially
generating considerable confusion in stratification. Further
research is needed to assess the performance of these
alternatives on sparse forests. It is conceivable that different
stratification systems may be needed in different parts of the
PNW region. One possibility, not directly tested in this study,
is to use digital elevation data to separate vegetation zones on
the mountain slopes and combine this information with
NLCD data. While CALVEG inherently contained some
elements of this approach, there may well be opportunities to
optimize for this application.

The general conclusion of this work is that Phase 1
stratifications based on digital remote sensing data can lead
to precision nearly comparable to that achieved via
conventional PI, and at a cost, in most cases, that is
significantly lower. For non-timber attributes, stratification
may provide additional precision in some cases, and the
precision obtained from remote sensing stratifications for
down wood abundance was essentially the same as from PI.
Ultimately, the ways in which this kind of large-scale forest
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inventory data are used will determine the importance of
attaining accuracy standards that were set for timber
attributes 35 years ago.
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