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ABSTRACT.—I trace the development of standard error equations for forest area,

beginning with the theory behind double sampling and the variance of a product. The

discussion shifts to the particular problem of forest area—at which time the theory

becomes relevant. There are subtle difficulties in figuring out which variance of a

product equation should be used. The equations developed may be extended to other

areas of forest inventory.

What follows is a development of standard error equations. Key

topics include double sampling and the variance of a product.

Applications to calculation of the variance of forest area follow.

Although the following equations seem very abstract at first

glance, they are highly relevant to the development of standard

error equations in computation of forest area.

Goodman (1960) pointed out that if Z = XY, then

(1)

for X and Y independent, where

denotes the variance for the subscripted variable A,

denotes the true mean for the subscripted variable A,

and

A denotes X, Y, or Z, as appropriate.

Goodman (1962) showed that if the means and variances are

not known, then an unbiased estimator is

(2)

for X and Y independent, where

denotes the sample mean for variable A (also

represented by m
A
),

denotes the sample variance for variable A,

n
A

denotes the number of observations for variable A,

and

A denotes  X, Y, or Z, as appropriate.

If we let X =      and Y =     then,

     (3)

If n
X
 = n

Y
 = n, then

(4)

Let us see how these equations work with real data. Suppose

you have independent Bernoulli variables that take on the

value 1 with probability 0.5 and zero otherwise. You have

decided to take two samples of each variable. The experiment

may give results in 16 possible ways, shown in table 1.

On the other hand, suppose that you were not interested in Z =

XY, but rather in                 .

If                     then n
X 
 =  n

Y
  = 1, and

(5)

where

denotes the standard error of the mean for variable A

(also represented by               ).

n
A

denotes the number of observations used to form the

sample of W (which is one observation), and

k
A

denotes the number of observations used to form the

sample of variable A.

The k
A
 does not appear in the equation directly.

Again, the experiment may give results in 16 possible ways,

shown in table 2.

In table 2, k
X
 = 2 and k

Y
 = 2. However, k

W 
 = n = 1. At first, it

seems strange that an experiment with one observation could

have a variance at all. However, suppose we think of the 16

possible results of the experiment as 16 possible worlds.

Equation (5) gives the variance of                     among those 16

possible worlds.
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Table 1.—Bernoulli variables demonstrating Goodman’s 1962 equations

X1 X2 Y1 Y2 Z1 Z2 s2(Z) s2(mz)                Eq. (2)             Eq. (3)

1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0 0
4 0 0 1 1 0 0 0 0 0 0
5 0 1 0 0 0 0 0 0 0 0
6 0 1 0 1 0 1 0.5 0.25 0.25 0.125
7 0 1 1 0 0 0 0 0 0.25 0.125
8 0 1 1 1 0 1 0.5 0.25 0.5 0.25
9 1 0 0 0 0 0 0 0 0 0

10 1 0 0 1 0 0 0 0 0.25 0.125
11 1 0 1 0 1 0 0.5 0.25 0.25 0.125
12 1 0 1 1 1 0 0.5 0.25 0.5 0.25
13 1 1 0 0 0 0 0 0 0 0
14 1 1 0 1 0 1 0.5 0.25 0.5 0.25
15 1 1 1 0 1 0 0.5 0.25 0.5 0.25
16 1 1 1 1 1 1 0 0 0 0

Mean 0.5 0.5 0.5 0.5 0.25 0.25 0.1875 0.09375 0.1875 0.09375

X1 X2 Y1 Y2 mX mY s2(mX s2(mY) Eq. (5) Z=mXmY

1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 0 0.5 0 0.5 0 0
3 0 0 1 0 0 0.5 0 0.5 0 0
4 0 0 1 1 0 1 0 0 0 0
5 0 1 0 0 0.5 0 0.5 0 0 0
6 0 1 0 1 0.5 0.5 0.5 0.5 0.0625 0.25
7 0 1 1 0 0.5 0.5 0.5 0.5 0.0625 0.25
8 0 1 1 1 0.5 1 0.5 0 0.25 0.5
9 1 0 0 0 0.5 0 0.5 0 0 0

10 1 0 0 1 0.5 0.5 0.5 0.5 0.0625 0.25
11 1 0 1 0 0.5 0.5 0.5 0.5 0.0625 0.25
12 1 0 1 1 0.5 1 0.5 0 0.25 0.5
13 1 1 0 0 1 0 0 0 0 0
14 1 1 0 1 1 0.5 0 0.5 0.25 0.5
15 1 1 1 0 1 0.5 0 0.5 0.25 0.5
16 1 1 1 1 1 1 0 0 0 1

Mean 0.5 0.5 0.5 0.5 0.5 0.5 0.25 0.25 0.078125 0.25
Var 0.25 0.25 0.25 0.25 0.125 0.125 0.078125

Table 2.—Bernoulli variables demonstrating Goodman’s 1960 equations
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In that same table, we see that the variance of

is on average equal to Goodman’s

estimator of 1960. Goodman showed this result in 1960; he

pointed out the irony of subtracting the third term for the

estimator but adding it in the theoretical case. Also, in this

table, I would like to point out that if instead of 0,1 variables

there were –1,+1 variables, Goodman’s estimator of 1960

would produce a negative estimate of the variance—an

impossibility—in 4 out of 16 cases. Nonetheless, the

estimator is still unbiased. This result may make Goodman’s

estimator unusable to some analysts. There are at least

several alternatives; one is to set the estimate equal to zero if

it is negative; however, the estimator would no longer be

unbiased. Another possibility would be to take a sample size

so large that the size of the third term would be insignificant.

One last option would be to realize that the variable of

interest has a high coefficient of variation.

At this point, the reader might wonder when Goodman’s

equations can be put to practical use. Two examples follow.

The first example illustrates the use of Goodman’s equation

of 1962.  It involves the combination of two data sets that

have been partially matched; Goodman’s equation of 1962

requires paired data. It involves the calculation of an

observation times an observation. The larger data set is

collected by photo-interpreters. The smaller data set is a

subset of the larger one, which is collected by field crew. The

assumption is that the photointerpreters’ accuracy rate for

the points that the field crew does not check is the same as

their accuracy rate for the points that the field crew does

check.

The second example is an illustration of Goodman’s equation

of 1960. It involves the calculation of the variance of an

unknown proportion—it is an average times an average. The

mean and variance of each component is known, and thus a

variance of the product may be computed.

APPLICATION TO FOREST AREA

Goodman’s equations may be used to derive the traditional

standard error equations of forest area.

A forest inventory begins with a photointerpretation phase,

known as phase 1. Aerial photographs are scored with dots,

and the photointerpreters call each dot either “forest” or

“nonforest.” A phase 1 estimate is the proportion of dots

believed to be forested. The photointerpreter is to consider

only the immediate neighborhood of the dot, not the entire

area nearest a dot.

Among the dots on the aerial photographs are 1) regular plots,

which field crews visit, measure the conditions and trees on

the plots and 2) intensification plots, which field crews visit,

call either “forest” or “nonforest,” but make no other

measurements.

The phase 2 estimate is the Bayesian expectation of forested

land based on the photointerpreter calls and the field crew

calls. This result typically has a much lower variance than the

phase 1 estimate. Suppose there are n
ij
 plots called class i in

phase 1 and class j in phase 2. If there are two classes, there

would be n
·1
 = n

11
 + n

21
 forested plots and n

·2 
= n

12
 + n

22
 non-

forested plots.

Let

denotes the total number of dots,

denotes the phase 1 estimate for class i,

denotes the total number of plots in class j,

denotes the proportion of plots in class j of

phase 2 that were in class i of phase 1.

denotes the adjusted proportion of the

landscape believed to be in class i of phase 1

and class j of phase 2, and

denotes the phase 2 estimate for class j,

where

I is the number of classes.
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There is then a tabulation such as the following:

In this case, at the end of phase 1, the proportion of area

believed to be forested would be 48 percent. At the end of

phase 2, the proportion is adjusted to 45.8 percent.

What is a confidence interval on this estimate?

If the user is interested in a confidence interval on the

proportion of forested land of a randomly chosen acre of

ground, then what is desired is                 However, more

commonly, what is desired is a confidence interval on the mean

proportion across the landscape, or

(6)

The factors in each term are observations; therefore

Goodman’s equation of 1962, or equation (3) in this paper,

should be used.

(7)

Equation (7) says that the variance of a product of independent

variables is approximately equal to the square of the mean of

the first factor times the variance of the second factor plus the

square of the mean of the second factor times the variance of

the first factor. Kish (1965) offered this approximation.

(8)

Equation (8) is an implementation of equation (3).

(9)

The factors p
11

 and p
12

 are independent of the others; P
1
 and P

2

sum to 1.

By combining equations (5), (6) (first where k = 1 and then

where k = 2), and (8),

(10)

According to Dr. James Rosson (USDA Forest Service, personal

communication), DeLury developed this equation (circa 1950).

Two additional terms from equation (8) may be added for an

exact answer, which is

(11)

In the example, the standard error of the mean is equal to 2.63

percent if both phase 1 and phase 2 are considered; it is nearly

4.75 percent if only the phase 2 plot coordinates are

considered.

This method works for a sample. Card (1982) offered an

alternate method for a full census (such as what might be

involved in remote sensing). Remote sensing is the analysis of

digital satellite images. Every point on the landscape cannot be

photointerpreted; rather, a finite sample must be taken.

However, a digital image may be analyzed wall-to-wall. The

caveat is that it may be analyzed at the resolution of the data.

There may be surface water, nonforested land, and forested

land in one pixel; the satellite sensor will record an average of

sorts for that pixel.

VARIANCE ESTIMATES OF A KNOWN

PROPORTION

The amount of area in a particular State (A
t
) is a legally defined

amount. The proportion of forested land is not known; let it be

represented by ϕ. If one desires to estimate the number of acres

of forested land (A
ft
), then

E(A
ft
) = A

t
ϕ (12)

d1 = 1200 d 2 = 1300

P1 = 0.48 P2 = 0.52

n11 = 45 n 12 = 3

n21 = 5 n 22 = 57

n�1 = 50 n �2 = 60

p11 = 0.90 p 12 = 0.05

p21 = 0.10 p 22 = 0.95

P11 = 0.4320 P21 = 0.0480

P21 = 0.0260 P22 = 0.4940

P�1 = 0.4580 P�2 = 0.5420
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The variance on this estimate is

(13)

The standard deviation is

(14)

To get the answer in terms of a proportion, divide both sides by

A
t

(15)

One might call this quantity the coefficient of variation on the

proportion of forest for the total.

Suppose one is interested in only a portion of a State (A
s
).

Suppose p = A
s
/A

t
. If the State’s land is relatively homogeneous,

then

  E(A
fs
) = A

s
ϕ (16)

The variance on this estimate is

(17)

The standard deviation is

(18)

Divide both sides by A
s
 to get the coefficient of variation

(19)

If we divide equation (19) by equation (15), we get

(20)

which is what FIA reports have published for many years.

VARIANCE ESTIMATES OF AN UNKNOWN

PROPORTION

There are other aspects of forest inventory where the

proportion under consideration is unknown. Although it is a

variable no longer collected, wetland status was a subjective

call. Photointerpreters did not attempt to delineate wetland

timberland from other timberland. Quality assurance crews did

check a number of plots a second time, but cross-tabulation

data were not kept. If such data had been kept, the double-

sampling equations could be used.

The first temptation would be to use a single-sampling

equation. Suppose that one-half of the land is believed to be

forested in a particular county, with a standard error of 2

percent. Also suppose that 10 percent of the forested plots were

judged to be wetland by the field crews. There are 100 plots in

the county, and the average acreage expansion factor is 6,000.

Under a single-sampling model, ϕ = 0.05, the standard error of

which is 0.021794; thus one can say with 67 percent

confidence that between 16,923 and 43,076 acres are wetland

timberland.

However, if acreage expansion factor in thousands of acres (X)

and wetland status (Y) are independent, then equation (5) may

be used. It is generally impossible to assign an exact number of

acres to particular plots; instead averages are used. For

instance, if there are 300,000 plus or minus 6,000 forested

acres in the county, and there are 50 forested plots, then on

average there are 6,000 acres per plot. From equation (20), the

standard deviation on 6,000 acres and one plot is 848.5.

However, unless more information is known (such as the total

number of acres in particular ownership classes), then every

plot is assigned an acreage expansion factor of 6,000—some

don’t get 5,900 while others get 6,100.

In this case,     = 300,               ,      = 0.1,      = 0.09, and

    or 8,097. There are 50

observations, so the standard error of the mean is 12,725. One

can then say with 67 percent confidence that in this county,

there are between 17,275 and 42,725 acres of forested

wetland—in this case there is only a small improvement over

the single-sampling equation.

CONCLUSIONS

Although the long-term plan is to do phase 1 estimates by

remote sensing, it was a useful exercise to document equations

that could be used to estimate standard errors in forest area.

They may be adapted to other topics in forest inventory, such

as extent to which quality control should be done and the

development of standard error equations for the number of
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trees, volume, biomass, as well as growth, removals, and

mortality.
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