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The Fracta] Forest: Fractal

Geometry and Applications
in Forest Science

Nancy D. Lorimer, Robert G. Haight, and Ro|fe A. Leafy

1. INTRODUCTION transform, and the Gaussian curve. But most

of what we measure in the forest---crowns,

Fractal geometry is a new branch of mathemat- roots, soils, stands, plant-animal interactions,

ics with roots in set theory, topology, and the landscapes--is discontinuous, jagged, and
theory of measures. As a young science (Bunge fragmented; and our tools, designed for smooth-
1968), the theory of fractals is more like a ness, have trouble measuring them. Fractal
collection of examples, linked by a common geometry is a tool for discontinuity, a tool for the
point of view, than an organized theory. But the fractal forest.
mathematical underpinnings are developing;
and researchers in other fields are applying the We are interested in mechanism as well as
concepts and techniques, thereby extending measurements. When we ask: What is the

fractal geometry beyond its mathematical mechanism?, we traditionally mean: what is
beginnings (Mandelbrot 1983). the linear interaction of two or more elements

that cause something to happen? The mecha-

Despite its newness, fractal geometry expands nisms in fractal systems, however, are probably
and sparks investigation in physics, chemistry, not linear cause-and-effect; they are complex
and biology because it offers something very scaling interactions (West 1987).
important--tools for describing and analyzing

irregularity. Kinds of irregularity can be classi- Like relativity and quantum theory, fractal
fled as new regularities, seemingly random but geometry brings the observer into the story.

with precise internal organization. With fractals Consider the dimension of a ball of string. From
we see new patterns in the world (Stewart far away, the ball looks like a dot (dimension =
1988b). 0). Closer, it is a solid (= 3). Very close it is a

twisted thread (= 1). Then closer yet it is a
The fractal world view is different from the world column (= 3). Closer still it is FLuetwisted hairs

view exemplified by calculus, by Leibniz' "prin- (= 1). Dimension in this example is a function of

ciple of continuity" (Mandelbrot 1983). Out the observer's location (Briggs and Peat 1989).
tools for a forest that is smooth, continuous, In sections 2 and 3, we will show how dimen-
linearly ordered, and at equilibrium have been sion is a function of the observer's choice of

Euclidean geometry, calculus, the Fourier measuring unit.

Euclidean geometry is one of the conventions in
Nancy D. Lorimer is a Staff Entomologist with mathematics and science that is chosen for its
the Forest Pest Management Staff, State and utility {Giedymin 1991). But that utility is
Private Forestry, Washington, DC. limited, when Euclidean geometry is faced with

the complexity generated by nonlinear dynami-
Robert G. Haight is a Research Forester and cal systems (Bohr and Cvitanovic 1987}. Fractal
Rolfe A. Leary is a Principal Mensurationist geometry is an alternative, a complementary,
with the Mathematical Models of Forest Dynam- geometry. But as a new geometry is proclaimed,
ics of the North Central Region research work we need not feel uneasy aboutventuring beyond
unit, North Central Forest Experiment Station, Euclid. Mathematician (and geometer) Poincar6
St. Paul, Minnesota. (1952) observed, "One geometry cannot be more



true than another; it can only be more conve- In section 8, we offer thoughts on the research
nient." Different geometries serve different potential for fractals in forest resource manage-
purposes, ment. Where needed in our review, more

detailed information is presented inside a box

This review is a collection of fractal thought and near the general discussion. These boxes can
its reference to many natural disciplines. We be skipped in an overview reading.
have used illustrations from work in forestry
whenever possible, but ideas about fractals Although the danger exists that exciting new
come from many disciplines (e.g., physiology, fields may raise false hopes (Mayer-Kress 1986),

chemistry, physics). So, while a leaf can fllus- the evidence for the potential of fractals is
trate fractal dimension, a ferromagnet is a good overwhelming (Zeide 1990). Fractals may be the
example of self-similarity. The purpose of our most promising direction for forest research in

interdisciplinary approach is to make this wide- its task of representing the forest (Zeide 1990).
ranging material accessible to researchers in
forestry. This is not a fractal cookbook, al- 2. DESCRIPTION OF FRACTAI_
though references to specific techniques are
provided. Because of the fast-breaking nature Fractal Objects
of this new field, we focus on helping readers

quickly understand concepts they can apply to Self-similar objects that cannot be described in
their own research. As a result, we have left out common Euclidean fashion, that are non-

the full theoretical discussion these concepts uniform in space, are fractals. Self-similarity
deserve, means that as magnification (the scale) changes,

the shape (the geometry) of the fractal does not
We followed the semantic convention that ff an change (Gefen 1987). Besides self-similarity,

object or process has fractal properties, it is fractals have infinite detail, infinite length,
called a fractal. Properties (Bunge 1979) can be fractional dimension, and they are generated by
component properties ("a tree has fractal iteration (Briggs and Peat 1989).
shape") or relational properties ("stand bound-
aries have fractal shape"). Although there is fair Mandelbrot (1967), who called fractals to the
agreement in the literature that the fractal world's attention, had difficulty in defining
properties are fractional dimension, scale them. In 1983 he approached the definition
independence, self-similarity, and complexity, with the aid of measure theory, using the
the necessary and sufficient conditions for an Hausdorff-Besicovich measure of dimension.
object or a process to have fractal properties Rigorous definitions of topological and
have yet to be determined. Hausdorff dimensions, with which fractals are

usually described, are very difficult to under-

Our paper begins with a general description of stand (Cipra 1989); there are mathematical
fractals in section 2, followed by more detailed complications. The simplest way to def'me
exposition of four fractal properties in sections fractals is via the self-similarity assumption.
3-6: fractal dimension (with a section on how to Despite many attempts, the definition of

compute the fractal dimension), scale, self- "fractal" is still not definitive.
similarity, and complexity.

The continuing development of fractal definition

Section 7 describes specific applications to within measure theory does not hamper the
forest systems. In assembling this section, we utility of the concept. The usefulness of the
used a wide definition of forestry research, fractal concept stems from its ability
Applications for fractals in forestry include to describe apparently random structures within
forest ecology, mensuration, wildlife habitat, a precise geometry (Orbach 1987). Mandelbrot
microclimatology, vegetation mapping, soil (1983) offers a way to characterize fractals by
science, and geology. For example, a tree can be the fractal dimension, D. Fractal objects carmot
modeled as a fractal, predicting total wood be adequately described by two dimensions or
volume, stem surface area, and number of three dimensions or n dimensions of whole

branch tips. Damage patterns in forests and numbers because fractal dimensions are frac-
arrangements of tree crowns are fractals (Loehle tions.
1983).
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Mandelbrot's famous example of a fractal is a Because of fractal dimensionality, the length of
coastline's rich twists and turns; a coastline is a Koch curve and other fractal curves like the

not a simple one-dimensional line, nor is it two coastline varies by the unit of measurement
dimensional like a plane. A coast_line, (Richardson 1960). As the unit of measurement
Mandelbrot suggested, has fractional dimension, decreases, the length of the line goes to infinity
also called fractal dimension, meaning that it (Mandelbrot 1983).
has a dimension somewhere between a line's one

dimension and a plane's two dimensions. The To use an example from the forest, the perim-

computed fkactal dimension of coastlines ranges eter of a maple leaf is not smooth; it is jagged.
from 1.15 to 1.25. With a video imaging system, Vlcek and Cheung

{1986) generated a one-pLxel-thick computer
The mathematical concept of fractal dimension image of a leaf. They measured the leaf outline
follows; fractional dimension is more thoroughly with different measurement lengths; the mea-
described in section 3. A Koch curve is the surement lengths each had different numbers of
simplest way to show how the fractal dimension pixels. The values for the leaf's perimeter
is derived (diagram 1). Start with a straight line differed depending on which measurement
divided into three equal segments. Replace the length did the measuring.
center segment with two segments that are each
the same length as the original center segment. Just as the length of a coastline depends on the
Now repeat the process with each of the four resolution of scale, on the size of the measuring
new lines. That is, divide each line into three unit, so does the perimeter of a leaf depend on
segments and replace the middle segment with the size of the measuring unit--in the above
two segments. Continue for an infmite number case, on the number of pixels that mark off the
of times. The Koch curve is self-similar: any perimeter of the leaf.
portion magnified by a factor of three looks like
the previous iteration. At each step the length Fractal geometry can also be applied to planes
scale changes by a factor of b = 3, called the and even to amorphous solids. An amorphous
scaling factor. In the diagram below, the num- solid has less than three dimensions because of
ber of lines changes from 1 to 4 to 16 to 64. The the openness of the structure. There are "holes"
number of basic units, then, changes by a factor in the solid. These kinds of structures are often
of N = 4. The fractal dimensionality is: heterogeneous, or irregular, as well (Orbach

1987).
N= b D , or D= ln N/ ln b.

Measuring a fractal object (e.g., the perimeter of
For the Koch curve, the fractal dimensionality is: a leaf) depends on the scale of the measuring

unit. As the scale becomes infinitely fine, the
D = In 4/ln 3 1.26 value of the attribute diverges toward infinity.

Because measurement of fractal objects de-
[Gefen 1987). pends on scale, the usual statistical concepts

(e.g., sample mean) need to be re-thought when

n = 1 n = 2 applied to the measurement of fractal objects

Fractal Processes

(Loehle 1983).

Fractals are geometrical objects or constructs,

n = 3 n = 4 but they may also have dynamical properties.
/k _ .v%. That is, processes may have fractal properties.

Diffusion processes (Orbach 1987), like diffu-
sion-controlled reactions with geometrical
constraints (Kopelman 1988}, and vibration

Diagram 1.raThe generation of a Koch curve, distributions (Orbach 1987) have fractal dimen-

Divide each line segment into three segments, sionality. In the frequency distribution of
and replace the center segment with two vibrations, for example, the fractal dimension
segments the same length as the segment describes the relationship between vibrational
being replaced. Repeat.
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frequency and the spatial extent of vibration. A much detail) yet simple (they can be simply
structure can have Euclidean mass properties generated) (Briggs and Peat 1989).
and yet have fractal dynamic properties. This
happens ff the structure is "f'flled in" with atoms, Initiator-Generator
but not all the atoms are participating in the
vibrational activity (Orbach 1987). A fractal may be generated by performing a

repeated operation on a beginning structure.

A fractal process is one that cannot be charac- The beginning structure is called the initiator.
terized by a single time scale, just like a fractal The repeated change is called the generator.
structure does not have a single scale length.
Fractal processes have many component fre- Demonstrating the concepts, diagram 2 shows
quencies, producing a broad spectrum of fre- some formal examples of initiators---the begin-
quencies. So a fractal time series can be inves- ning shapes--in the first column. The genera-
tigated with spectral analysis, a technique that tors are the changes made to each line segment
unravels the complexity of frequencies. These in the initiator; the generators are sketched
techniques are applied to many physiological above the arrows {Arlinghaus 1985).
processes (West and Goldberger 1987).

On the first row of the diagram, the application

Heterogeneity, self-similai_ty, and absence of a of the generator to the initiator gives three
characteristic length of scale are therefore three copies of the initiator at reduced scale, in the

properties applicable to dynamics as well as to second column. When the generator is applied
structures. And besides geometric fractals and a second time, the next figure (third column)
temporal fractals, there is the category of statis- has three images of the previous figure. Con-
tical fractals. For the latter, the statistical tinuing on, the (n + 1)st figure contains three

properties of the whole are the same as that of copies of the nth figure. The fractal dimension
its parts (West 1987). measures shape with shifting scale; it measures

self-similarity (Arlinghaus 1985).
Iteration

Classical Fraetals

Iteration, repeating a process over and over, is a
key idea in the whole field of dynamic systems There are other types of "classical" fractals, such
and fractals (Devaney 1988). The Koch curve as the Koch curve and Julia sets (see box on
above was generated by the repetition of a single page 6) that are heavily used in mathematical
step, replacing the center segment with two studies and in the development of theory about
segments, fractals. They are useful for illustrating fractal

characteristics before moving on to more com-

Tree branching is an example of iteration in plicated forms. In forestry we usually wish to
forestry. The growth of a modular organism like untangle fractals, not generate them. That is,
a tree is determined by rules of iteration and the we want to find the initiator and the generator.
reaction of each growing point to the local The question becomes: What is the algorithm
conditions around it (Franco 1986). that produces this pattern? By first learning

how fractals are generated, we may better

A modular organism has repeated units of understand how to untangle them.
structure at varying levels of organization (Halle
et at 1978, Harper et al. 1986). Fractals are A Cantor set is constructed by removing the
also self-similar sets composed of modules or middle third of a line segment, then removing
pieces similar to the entire set on lesser scales the middle third of those segments, and con-
(Harrison 1989). tinuing to remove middle thirds (Stewart

1989b). Cantor dust, formed by the remaining

Computers iterate easily and are thereby useful points, has a fractal dimension between the zero
in the generation and study of fractals (Harrison dimension of a point and the one dimension of a
1989). Because of iteration, complicated forms line (Mandelbrot 1983).
do not have to be generated by complicated
processes. Fractals are complex (they contain A Peano curve (diagram 3) is a line that fills up a

plane (Kramer 1970), and has dimension 2.
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initiator, is replaced by a new
h form, the generator. In the

second step, the line segments
in the new structure are re-

placed in the same way, and a

third structure emerges. (Re-
_v _v, _ printed with permission frorru"

" ......._ "_ Lach, S. 1985. Fractals take a
" _ central place. Geografiska

Annaler. 67B: 83-88.)

ii iii

n = 1 n = 2

"J Sierpinski carpets are generated by a recursion
............... in which successively smaller holes are cut from

------ _ the plane to give a self-similar pattem at levels
smaller than the initial plane (diagram 4). Tyler
and Wheatcraft (1990a) modeled soft types with
Sierpinski carpets. The dark holes are the pore

n = 3 n = 4 spaces among soft grains. The fractal dimen-

[-'] ['-] sions of these carpets can be used to estimate

the area of pores greater than a given size. The
holes in the face of a Sierpinski carpet reduce its

_ dimensionality to less than a plane, between

dimensions 1 and 2.

Diagram 3.wGeneration of a Peano curve.

rule, "move the line to the center of each of four
squares," is foUowed as each square is succes-

sively divided into four squares. Eventually the
line fiUs the whole plane, and thereby has
dimension two.
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Julia and Mandelbrot Sets; the Complex Plane

The examples of fractai generation in section
2 were generated by iteration of lines or figures.
Equations can also be iterated to generate

I fractals, and Julia sets and the Mandelbrot set
_: are classic examples of the results of iterating
!! equations.

Strang (1986) explains how Julia and Step 0 Step 1

i! Mandelbrot sets are generated. Start with a
relation

|.||l||w|fi f(z) = z2+ c,where both z and c are complex numbers.

Iterate, starting from Zo = Xo+ i yo, and compute _R[]___

_i Zl=Z02+C, Z2=Z12+c, etc. The sequence, zo, ___I" I_I!

zl, z2, etc. has, according to Strang, three _l

_ possibilities:
ii Zncan approach a limit; it can approach R

infinity; or it can do neither. Different Julia sets lira U@ Iia IR ma @_ @

i MlllillllmIDU """"'"'""'"are generated by changing the value of z0 when _,-,®ua,,m,M,_
i'i iterating the above relation. A Julia set is the set Step 2 Step 3

ii of points in the z0 plane for which znstays Diagram 4.uGeneration ofa Sierpinski carpet.
!i bounded as n approaches infinity (Strang 1986).
i Remove the center square and then remove the
il The Mandelbrot set is related to the Julia set in center square from the remaining squares.

Repeat. The dimension of these figures faUs

i the following way. The relation between one for a line and two for aplane.f(z)=z2+c,
i is iterated as described above, but, c is varied
! rather than z0. Each value of c leads to a Julia Natural Fractals

set in the Zoplane, but the new set M is in the c-

plane and is an "index" to all Julia sets. Strang Nature adds the random element to fractals.
observes that the Mandelbrot set ..."may be the Deterministic fractals are the mathematical
most complicated figure ever to be studied, and fractals discussed above. Mathematical fractals
partly understood, by humans." However, its

can be generated with a computer, with a
definition, he says, remains remarkably simple: mapping or a rule repeated over and over."M contains all numbers c for which the sequence

z0 = 0, zl = c, Zn+_= Zn+ C.... stays bounded" Natural fractals normally have some element of

(Strang 1986). randomness. Fractals generated with a com-
! The rich variation and form in the Mandelbrot puter program that includes random elements
! simulate natural phenomena more closely than
i set and Julia sets come about through

fractals generated by deterministic methods
nonlinearity within rigorous organization (Douady (Saupe 1988).

i 1986). They are excellent illustrations of a
common theme in the study of fractais: very

! simple, nonlinear processes generate very Fractals not exactly self-similar, not exactly the
, same at all scales, are called multifractals

complex structures (diagram 5). (Stewart 1989b). The dimensional description of

Programs are available for generating multifractals requires two or more dimensionalMandelbrot sets, Julia sets, and other fractals on
personal computers (Strang 1986, Peitgen and exponents. Examples of multifractals are

complex surfaces and interfaces, and fluid flow
Saupe 1988}. in porous media (Stanley and Meakin 1988).

Forest fractals, fractals in nature, are most

likely multifractals, not strictly self-similar at
every scale.



The Fractal Dimension

The difficulties of defming dimension in general
carry over to definitions of fractional dimension
[Cipra 1991), as mentioned in the previous

•. section. However, despite the ambiguity about
the underlying philosophy and mathematics,
fractal dimensions are numbers that precisely

specify deviation from the expected scaling rule
{Pagels 1985). They are measures of the relative
degree of complexity (Briggs and Peat 1989).

It is helpful to compare Euclidean dimensions
and fractal dimensions (also see box on page 9).
When the number of measurement units is

graphed against the size of measurement unit,
the dimension is read from the slope. Typical

Euclidean objects have slopes of 1 (length), 2
(area), and 3 (volume) (diagram 6). Natural

objects fall between these slopes; their dimen-
sions are fractions (Zeide 1990).

4o,ooo- X Natura I

surf_ces

Diagram 5.--The MandeIbrot set (upper figure)
and a Julia set (lower figure). The figures are , Natural

m C_ractaI) \_
generated by the iteration of simple, nonlinear

I i nes
equations. '7- 400,

D
1<o<2

In the next four sections, we describe four _"

0 200 '_0_important properties of fractals---fractional L
dimension, scale independence, self-similarity, a_ i
and complexity.

i
3. FRACTIONAL DIMENSION 2o i "dusts" _r_._

Dimension in General i o _o < _ _ i

Geometry makes explicit our intuitions about i i
space. Classical Euclidean geometry is a first 2 .................. -...........................i i

approximation of the structure of physical Jl _ t. L
objects. Fractal geometry extends classical o. 1 1.0 10.0
geometry with a new language (Barnsley 1989). S i ze of Measurement Un i t
Dimension is a strong center in the language of
all geometries, yet dimension is elusive and very Diagram 6.--Dimension is the relationship
complex (Mandelbrot 1967). The loose notion of between the size of measurement unit and
dimension turns out to have many mathemati- number of measurement units. Euclidean
cal ramifications (Mandelbrot 1983) and deFmi- dimensions are whole numbers. Fractal dimen-

tions {Mendes-France 1990). Irregularity and sions are fractions (Zeide, Boris. 1990. Fractal

fragmentation cannot properly be understood by geometry and forest measurements. Geru Tectz
defining dimension simply as a number of Rep. PNW-GTR-263. Portland, OR: U.S. Depart-
coordinates, ment of Agriculture, Forest Service, Pacific

Northwest Research Station: 260-266.)

7



_i (a) or= 1, DE= 1, 0= 1
ii! In another comparison, Tsonis and Tsonis

ii (1987) looked at three kinds of dimensionality: Y
!ii Euclidean, topological, and fractal (diagram 7). (b) .-_ Y3 _ o r = 1, o E= 2, 1-<D-<2
ii Topology is a branch of mathematics that treats

form as flexible and compressible. In topology, _ x
_ a wiggly line is identical to a circle; both have

i! dimension 1 By defmition, topology cannot_! . z
_i discriminate between crooked lines and straight
_i lines (Mandelbrot 1983). For the four objects in

the diagram, a straight line, a crooked line in a (c) /.__. DT =1, 0 _ = 3, 1-<0 _-3

i plane, a crooked line in a volume, and a crooked
_ plane in a volume, dimensions in the three .... x

_ different geometries are identical for only one
:i object: the straight line. Y

!i
_:i The non-integral dimension may be a relative

i notion. A tangled worm in a stagnant pond has (d)
a trajectory with a dimension near 2. The same
worm in a current would have a stretched

trajectory, and its dimension would approach 1.Dimension can depend on the object's state of
! motion, on the frame of the observer's reference,

ii and on the observer's yardstick (Cherbit 1990).

The observer chooses the unit of measurement,

and the length of the object will depend on the // o.._ =2, DE =3, 2-_1_-_3
unit chosen. But this does not mean that /measurement is arbitrary. Correspondence

1 between unit and length is maintained. Length y
becomes a process rather than an event, a ""_- x
process controlled by a constant parameter

Diagranl 7._Euclidean (D_), topological (D_), and
unique for each object measured. This param- fractat (D) dimensions of lines and surfaces.eter is called fractal dimension (Zeide 1990).

The dimension of aa object can vary depending
on the geometrical system in which it is mea-
sured. (Reprinted with permission frorrc
Tsonis, A.; Tsonis, PoA. 1987. Fractals: a new

look at biological shape and patterning. Per-
spectives in Biology and Medicine. 30: 355-
36I.)



The Hausciorff and Other Dimensions Computing the Fractal D_zlension

Loehle (1990) warned that Funding naturalBy Mandelbrot's definition, a fractai set is a
set with its topological dimension less than its fractal dimensions can be difficult and
Hausdorff dimension. The Hausdorff dimension, computationally intensive. Very complicated
in the realm of geometric measure theory, can be fractals are difficult to measure, but computing
compared to Euclidean dimensions, except that the fractal dimension of a crooked line, for
the Hausdorff dimension has been defined with example, is relatively simple.
more mathematical rigor (Harrison 1989).

D, the fractal dimension or the Hausdorff- In fractal theory, length measurements for a
Besicovitch dimension, is crooked line vary with the size of the measure-

D = log N/log r ment unit. Therefore, the line must be mea-
where N is the number of measurement steps sured with different sizes of measurement units.
and r is the scale ratio (or self-similarity ratio). A Over a range of scales, the length of the line will
curve of D = 1 approaches D = 2 when it be- differ, depending on the unit of measurement.
comes so complex that it effectively takes up the The relationship between the length of the line
whole plane (PhiJiips 1985). and the unit of measurement is predictable.

Several kinds of fractal dimensions have That relationship is the fractal dimension.

been identified by mathematicians. So far, this
In more formal terms, begin an estimate of thekind of rigor in definition has not been necessary

in fractai applications to biological problems, length of a crooked line by stepping dividers
with step size st along the line. Count theSometimes scaling properties emerge only

asymptotically, that is, at the extremes, at the number nl of steps required to traverse the line,
microscopic level or at the upper limit. The giving a length estimate of nls_. Repeat the
dimensions calculated for these asymptotic process with a smaller step size, s2, for another
regions have been called the inner (microscopic) length estimate, r_s2, which may be greater
and outer (upper limit) dimensions, or the local than or equal to the previous one. The more
and global dimensions. The Hausdorff dimen- jiggles in the line, the greater the increase in
sion and the capacity dimension are inner fractal length between the two estimates. Then:
dimensions (Naudts 1988).

D = log(_/nl) / log(sl/s2).The capacity dimension is defined by box-
counting. As the size of the box decreases, the

If the line is smooth, then halving the step sizenumber of boxes increases by the fractal expo-
nent. The capacity measure depends on metric or sampling interval will require precisely twice
properties of the space, because the length as many steps, and D will equal 1 (the Euclid-
measure is crucial. This dimension is often ean dimension of a line); but if the line is
called the Hausdorff, but there is a technical crooked, then D will be greater than 1 by some
difference (Rasband 1990). fraction (Goodchild and Mark 1987). The more

The information dimension depends on the crooked the line, the higher the fractal dimen-
natural probability measure of the set. For sion. As mentioned in the previous section, the
unequal probabilities, the information dimension very complex Peano curve completely fKls the

will be less than or equal to the capacity dimen- plane and has dimension 2.
sion (Rasband 1990).

For the correlation dimension, the number of When the unit of measurement is plotted
pairwise correlations between points in a set against length for several scales on log-log
scales as the size of the set is raised to some paper, the slope is the key. If the slope is a

power. As set size decreases, the number of straight line, the fractal dimension is the same
correlations will decrease too. This dimension over a wide range of sampling intervals

takes the density into account. The correlation (Goodchild and Mark 1987).
dimension is less than or equal to the information
dimension, which is less than or equal to the Perimeters and outlines are simply closed
capacity dimension. For many fractals, the three crooked lines, and there are many examples of
exponents will be equal (Rasband 1990). interest in the forest (e.g., Loehle 1983). Calcu-

lating the fractal dimension becomes automated
when the object is photographed by a video
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camera and the perimeter length is counted by A r... '-__r...... _
computer program (Goodchild and Mark 1987). _\_ ,--:-_ IV/._t
Vlcek and Cheung (1986) calculated the fractal
dimension of six leaves from eight trees repre-

senting seven species. The slope of the plotted

data gives the fractal dimension (diagram 8). __<-_L

D='!-(- 0.21)= 1.21

r=0.98

7.0 100,000- 8

z,. 10,000.
m "O

°6.5

= 1,000-
e /(high

/ magnificat

ion):3
6.0 _ 100,

2 3 4 _ •
O

Log X (5 /'. D=1.55 ....
Diagram 8.--Ca/cu/ating thefractal dimension z 10- / (lowrr{agnification)

(D=-1.21) of a silver maple leaf from the slope of /
the log pixel length versus the log number of
lengths. (Reprinted with permission fTom: 1 . ,_...........__
Vlcek, J.; Cheung, E. 1986. Fractal analysis of 1 10 100 1,oo0
leaf shapes. Canadian Journal of Forest No. of squares on oneside of grid
Researctz 16: 124-12 7.)

Diagram 9.--Usbzg a grid to compute the fractal

For more complicated objects like whole plants, dimension of a plant. With three or more grid
using a grid system may be more efficient than sizes, count the number of squares that cover
moving different-sized measurement units the object (A). Plot grid size against number of
around the outline. A photograph of the object squares entered. Read the slope (13). (Re-
can be placed under grids of three sizes (dia- printed with permissionfrorrc May, R. 1988.
gram 9). The logarithm of the number of How many species are there on Earth? Science.
squares touched by the figure is plotted against 241:1441-1449.)
the logarithm of the number of squares on one

side of the grid. The slope of the line is the using line segments. Azlother approach is to
fractal dimension (May 1988). Morse et al. make sections parallel to the surface and
{1985) explain this technique in more detail, measure the length of perimeters of "island" and

"lakes" (Cahn 1989).
Fractal dimensions of areas and surfaces can be

obtained using pixels or line segments. Square Box counting is a method used to describe
pixels of different sizes will measure the area of dispersed objects. In two dimensions, a grid is
an irregular patch. A rough surface will have a placed on the map of dispersed objects, and the
fractal dimension greater than 2 (Goodchfld and number of penetrated boxes is counted. The
Mark 1987). Surfaces may be complicated, but box counting is repeated for different scales,
rough surfaces can be secUoned before the thereby providing data for computing the fractal
fractal dimension is computed. To obtain the dimension (Schroeder 1991). Frontier {1987)

fractal dimension of a rough surface, make describes a method of using circles to compute
serial sections perpendicular to the surface and the fractal dimension of dispersed objects

measure the length of the secUon boundary (diagram 10).
10



Diagram l O.--Measuring the fractal dimension of the patchy distribution of biomass through space with
spheres of varying radii, r. If d is the fractal dimension, the number of points intercepted by the
spheres is n a r. The density of points inside the spheres is n/V a rd3. The slope is read from the log-
log plot. (Reprinted with permission frorm Frontier, S. 1987. Applications of fractal theory to ecology.
In: Legendre, P.; Legendre, L., eds. Developments in numerical ecology. New York, NY: Springer-
Vertag: 335-378.)

Loehle (1990) uses a box-counting technique to The Fourier transform has been used for situa-
describe anknal home range. For each point tions of irregularity and fragmentation; but it is
where an animal is observed, a circle centered scale dependent, and no criteria have been
on this point is drawn to represent the area in established for choosing scale (Loehle 1990).
which the animal searches for prey during a Wavelet analysis is a mathematical technique
short time interval. Next, a grid is laid over the used for interpreting seismic and accoustic

map; the height of each grid square equals the data. In contrast to the Fourier transform,
number of circles that overlap the square, wavelet analysis separates position and scale as
Algorithms are provided for computing the independent variables and allows identification
fractal dimension of the resulting 3-dimensional of self-similar properties of fractal objects
surface. (Argoul et aL 1989).

Wavelet analysis is a new technique replacing Some measures for computing fractal dimension
Fourier analysis for complex time series data. are summarized in table 1.
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Table 1.mMeasurements for computing the fractai dimension

Object/Process Example Measurements Citation

Crooked line Coastline Unit lengths Mandelbrot 1967
Outline Leaf Automated unit length Vlcek and Cheung 1986

(pixel lengths)
Outline Plant Grid sizes Morse et aL 1985
Surface Landscape Pixel areas Goodchild and Mark 1987
Dispersed material . Algae Circles Frontier 1987
Movement Home range Box Loehle 199,0
Solids Crystals Box Fowler et aL 1989
Time series Population size Wavelet Argoui et aL 1989

4. FR/kCTALS AND SCP,I,I_ Before the fractal approach, many scales were a
barrier for physicists who wished to understand

Fractal geometry is the first mathematical and describe turbulence. Now turbulence is
theory that explicitly uses the concept of obser- modeled as a multifractal, reflecting a complex
vation scale. Observation scale is the gap in the cascading structure. Statistical models were
dividers by which we measure distance and/or insufficient because they did not give topological
time, like pixel length in measuring leaf perim- information about tile location of the intermit-
eters, and sphere size in measuring dispersed tent structures in space (Argoul et aI. 1989).
biomass. The gap is normally the prerogative of
the investigator. In building a fractal object, a For mathematicians and physicists, scaling is a
process is repeated from scale to scale, following primary focus. Ecologists, who deal with intu-
a "cascade." However, the reality of the scale is itively familiar phenomena, are likely to choose
hidden by the process itself because without a scales appropriate to person-centered percep-
reference the scale is unknown. In a fractal, all tion (Wiens 1989, Hoekstra eta/. 1991).

scales are equivalent and undiscernible from the
form itself (Frontier 1987). Temporal and spatial scales are sometimes

vague when ecologists and foresters discuss
Sealing in Natuxe patterns of vegetational change. For example,

how large an area and how long a time are
The structure of the world has scales of many needed for succession? karge- and small-scale
different sizes. Although some events differing areas may or may not be affected by large- and
greatly in size do not influence each other, some small-scale disturbances [Nakamura 1989).
phenomena do depend on events at many scales
(Wilson 1979). Once spatial and temporal scales have been

identified, what is the relation between the two?

An example from the forest illustrates how scale Both are required in models designed for pre-
separates research efforts. Plant physiologists dictability. Where are the standard functions
work with individual leaves; ecologists work with that define the appropriate units for such space-
individual plants; foresters and meteorologists time comparisons in ecology? Continuous
look at vast areas of vegetation. Because of linear scales may not be appropriate for discon-
scale differences, these scientists may disagree tinuous processes _Viens 1989).
about mechanisms of function, like transpira-
tion for example. Conflict of interpretation Combining time and space scales is a challenge
arises from conflict of scale. Results of one for many scientists. For example, soft-litter

group do not apply to the problems studied by dynamics change in space and time. Over
another group. The information is not inter- centuries, there is slow accumulation with

changeable (Jarvis and McNaughton 1986). change due to succession. Over years, there are
Even on one small site, herbs and trees can seasonal processes. Over days, there are rapid
hardly be studied together because of differ- fluctuations due to winds and arthropods
ences in scale (Hoekstra et al. 1991). (Nakamura 1989).
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Growth rates may increase and decrease over The Fibonacciseries has been used for scaling
time. When an organism develops in stages, in the lung, but these kinds of classical similitude
there may be scale changes at specific points scaling techniques assume an underlying uniformity
(Zhirmunsky and Kuzmin 1988). of the processor structure, a uniformity that is

usually missing(West and Goldberger 1987). Nor
Scales may contract or expand from one hierar- can similitudeanalysis be used for systems in
ct_cal level to another (Zhinnunsky and Kuzmin which some of the variables are unknown (Snyder
1988). Although some correlation exists be- 1990).
tween scale and level of organization {May In dimensionalanalysis, interconversionof units
1989), there are no apriori meanmgful levels of is the goal. That is, ratios between parameters are
scale (Cherbit 1990). substituted for actual values (including the units) of

those parameters (Gunther and Morgado 1987).
Hierarchy theory emphasizes linkages among Allvariables and parameters are written down and
scales. We need standardized ways to define then separated into dimensionless groups. Dimen-
and detect scales. Scaling issues may be sional analysisis different from similitude analysis
particularly important in the study of interac- because it directly reduces the appropriate differen-
t.ions among species. Arbitrary scales (e.g., tial equations themselves, along with the attached
quadrat size) may limit the detection of interac- boundaryconditions of a problem. An infinity of
tion (Wiens 1989). possible physicalsystems is "collapsed" into one

reduced solution that describes them all (Miller
Predictions of spatially broad-scale systems 1980).
cannot be made with temporally small-scale Power lawsand aliometryare techniques for
samples because the time-scale grain is too Free describing the relationshipbetween variables as the
to catch the major movements in the dynamics scale changes. Allometry is a power law specifi-
of the system. This is a severe problem in cally relatedto biologicalgrowth. Power laws are
resource management, where large-scale poli- self-similar.
ties flow from short-term studies (Wiens 1989). f(x)= cx a

where c and a are constants. Ifx is re-scaled

Scaling is a common problem in science. Sev- (multiplied by a constant), f(x) is still proportional to
eral scaling techniques have been developed xa. Power laws lack natural scale. They are called
that should be compared and contrasted with "scale free" or "trueon all scales,"or "happening on
fractal methods (see box). all scales" (Schroeder 1991).

In Huxley's original equation

Other Scaling Techniques and Their Relation to Y = a VIP
Fractais Y is any biological function, a is an empirical

parameter, W is body weight, and b is an expo-

Similitude, dimensional analysis, allometry, and nent (Gunther and Morgado 1987).
renormalization are scientifictechniques developed AIIometricdevelopment is a relationship
to deal with scale. They resemble fractal analysis between any two properties of a process in which
in some ways and differ from it in others, the relationshipis defined by a power function. In

The technique of similitudeanalysis aims for allometric relationshipsthere is usually a problem
equations with the least number of variablesby deciding which of two variables is the dependent
combining variables and making them dimension- and which is the independent variable (Zhirmunsky
less (Hillel and Elrick 1990). After a solution is and Kuzmin 1988).
found to a reduced formula, the solution can be Fractal analysis may resemble allometry
applied to many other systems that may be physi- because both approaches use power functions, but
cally different, but are "scale models" of each other the two are different. AIIometry'spower function
(Miller 1980). For example, in soils, similitude relates linear rates of growth between body parts.
defines scale-invariant relationshipsfor water in Butfor fractals the variables are size and number of
porous media. A characteristic length scale units of measurement (Zeide and Pfeifer 1991).
emerges that reflects the sizes of solid particles and Some allometric relationshipslink organism
the sizes of pores in a particular geometric arrange- size with other parameters, like metabolic rates
ment. Similitude uses this length scale to produce (Sernetz et al. 1985). Physiologists have long
scaled transport coefficients and water potentials in expressed metabolic rate as a function of body size
porous media (Spositoand Jury 1990). with the allometricpower law
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P = aM b Scale-free Fractals
with P the rate of energy transformation, M the
body mass, and b = 3/4. But there is disagree- In a fractal situation, "part of a large scale
ment about the value of b (Calder 1987). element is equal to the whole of the small scale

To use a growth model from forestry, accord- element" (Nakamura 1989); and this feature of
ing to the self-thinning"rule," growth and mortality fractals makes them useful in dealing with
over time in a crowded, even-aged stand will have problems of scale in research.
a slope of -3/2 on a double-logarithmicgraph.
Attempts to modelthe -3/2 rulegeometrically have Domains of scale may be regions of scale change
had to assume that plants maintain the same over which the pattern for the phenomenon of
average shape, that is, grow isometrically. But interest does not change. Outside the domain,
average plant shape is not independentof mass the pattern changes or at least changes linearly
across the plant kingdom. Comparisonsacross with change in scale. Domains are separated by
the plant kingdom (shrubs vs. herbs, for example) sharp transitions, similar to phase transitions in
are hampered by scale problems (Weller 1989). physical systems. Variability increases with the

Renormalization is a technique for preserving approach of transition as has been shown for
information while changing scale, if something is increasing quadrat size, continuous linear
renormalizable, it is self-similar. Renormalization transects, and point samples (Wiens 1989).
recognizes self-similarityat scalechanges and
thereby ties directly into fractal theory. RenormaF Fractal geometry may be useful for identifying
izability may be a fundamental property of nature, domains of scale. For fractals, pattern may
like the principle of special relativity is a fundamen- differ in detail at different scales, but the pattern
tal property of nature (Pagels 1985). remains self-similar. The fractal dimension, D,

ifa process or object is self-similar, then a part "indexes the scale-dependency of the pattern."
will look like the whole. Scale disappears. Magnifi- The fractal dimension is constant ff the pro-
cations of smaller and smaller parts will stabilize, cesses at fine scale are responsible for the
that is, they will look almost identical. Renormal- processes at larger scale. A change in fractal
ization functions like a microscopethat zooms in dimension signals a change in process. There-
on self-similarstructure (Stewart 1989b). fore, regions of fractal self-similarity may repre-

Renormalization divides a problem with sent scaling domains. The goal is to define the
multiple scales into smaller problems,each on a algorithms that will translate across scales
single length ofscale. Three steps are repeated (Frontier 1987, Wiens 1989).
many times. First,the system is divided into many
equal sections. Then the variable is averaged for Fractal dimensions of the physical environment
each section, and that one average replaces all the may also change by scale. For example, turbu-
other variables in the section. After this, the lence is bounded between the scale of the planet
spacing in the new system is larger than the old and the scale of the molecule. But in between
system--the variables are farther apart. For the are viscosity, lapping, waves, local currents, and
third step, the original spacing is restored by large-scale currents. Organisms adapt to these
reducing back to the dimensions of the original different scales, resulting in different forms,
system (Wilson 1979). behaviors, or fractal dimensions (Frontier 1987).

Renormalizationblurs out the smaller features
of the system but preserves the larger ones. At the How fractals bridge (quantify) the scale differ-
same time, it provides information about the ences between small scale and large scale can
behavior of distinct but related systems in which be seen in the following example of small insects
the fundamental scale of length gets larger with on large vegetation. Fractal dimensions have
each iteration. After the first transformation, the been calculated for various vegetational habi-
fluctuations at the smallest scale have been tats, and they range from 1.3 to 1.8, with an
eliminated, but those slightly larger,with a scale of average of about 1.5. For insects that eat the
roughlythree times the original spacing, can be edges of leaves (a one-dimensional approach to
seen more clearly. The resultingsystem reflects the vegetation), a tenfold decrease in the size of
only the long-rangeproperties of the original the insect is like a threefold increase in the
system, with all finer scale fluctuations eliminated apparently available vegetation. (If the fractal
(Wilson 1979). dimension is 1.5, a tenfold reduction in the

measurement scale increases the perceived
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length by 10 °.s = 3). If insects eat surfaces it. Fractals in nature are not self-identical, but
instead of edges (a two-dimensional approach), they are self-similar: the parts resemble the
the effect is squared: a tenfold decrease in the whole.
insect's size is like a tenfold increase in appar-

ent habitat (May 1988). Although self-similarity is an old idea dating
from Leibniz' study of the line in the early

Fractals allow us to quantify process change 1700's, and winding from Richardson's study of
over scales (De Cola 1991). The multiplicity of turbulence through Kolmogorov's study of
scales can sometimes be decoded by time series mechanics, self-similarity has come into its own
analyses, such as in electrocardiograms. The with the investigation of fractals.
richness of structure shows the "underlying

fractal networks" in physiology {West and It is lack of scale that leads to self-similarity
Shlesinger 1990). (Schroeder 1991). Self-similarity means that a

part of a line, for example, can represent,
The various time scales or frequencies of a statistically speaking, the whole line. It also
process can be arrayed in a spectrum. For means that two lines with the same fractal
comparison, a simple harmonic oscillator has a dimension will be like each other and perhaps

spectrum of one frequency, and a random time have the same generating mechanism (Vlcek
series has a broad spectrum. But a fractal and Cheung 1986). Self-alTme means self-

process or fractal time series is very different, similar, but with more than one scaling factor
having no characteristic scale. Its frequencies (Schroeder 1991).
make up an inverse power law spectrum, 1/f,
where fis a frequency {West and Shlesinger Stewart (1989a) described self-similarity more
1990). formally in the language of set theory. "A set is

self-similar if there exists some finite system of
Frequencies in space correspond to numbers of transformations such that the images of the set
cycles per meter, rather than cycles per second, under these transformations, when combined,
For both space and time frequencies, the inverse yield the original set. In other words, the set
power law spectrum shows the fractal or scale- can be split into a finite number of pieces, each
invariant nature of the underlying process, of which has the same structure as the whole,
Many natural phenomena exhibit this spectrum but on a smaller scale."
and thereby this scale invariance. They are
called 1/fphenomena {West and Shlesinger The work of D'Arcy Thompson was based on the
1990). scaling concept of similitude, on the idea that an

underlying process is continuous. But the
In population biology, the average of population concept of self-similarity does not require
sizes over a few years (an "equilibrium") may underlying continuity (West 1987).
really be a stage of cycling over a long time
period. That cycle may be moving on an even A real biological object is not infinitely self-
larger, less frequent cycle (Pimm and Redfearn similar, but is only self-similar over some range
1988). Controversies about whether ecological of scale. The lung branches 24 times, and gill
systems are equilibrium or non-equilibrium branches 4 times. A real tree branches for eight
systems probably can be resolved by the appro- binary steps. Beyond that, the twigs bear leaves
priate choice of time scale and the application of with another fractal structure. And at the other
fractal techniques (Wiens 1989). end of the scale, an individual tree belongs to a

forest, another fractal (Frontier 1987).
5. FRAC'I'AI_ AND SNI,le-S_TY

A tree is self-similar, with limits. It cannot grow

The Parts and the Whole indefinitely or sap could not be supplied to all
the leaves. It cannot branch indefinitely be-

The mathematical fractals introduced in section cause air circulation is required. Foliage tissue
2 are self-identicalwthe figures remain the same is organized as a sponge, a fractal, for most
as the scale changes. The whole of the figure efficient air and sap contact. The number of
can be reproduced by magnifying some part of branching steps optimizes the transfer of matter

and energy (Frontier 1987).
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Biological fractals are also truncated because states, all involve formation or destruction of
morphogenesis is expensive in energy and long-range order (Peitgen and Richter 1986).
information. If the structure's function (for

example, a sufficient contact surface) is Complex fractals produced by the repetition of a
achieved after a few generative steps, then self- simple geometric transformation can turn out
similarity is curtailed; trees and lungs have completely different by some slight change in
structure with limited steps (Frontier 1987). the formula (Briggs and Peat 1989). Diffusion

through a solid is an example of local changes
Another example of the physical limitations of making global results. When Rosso et aL (1990)
self-similarity is a particle moving through soil, simulated the diffusion of a substance through
tracing a fractal line. The length of the actual a solid, the "diffusion front" had a fractal dimen-
path depends on the unit of measurement. By sion of 1.75. When studied in detail, the dy-
zooming in on the path, a f'mite length becomes namics of the diffusion front revealed macro-
visible. This f'mite length has to exist or the scopic results (undiffused areas become dif-
particle would travel an infinite length, a physi- fused) from microscopic changes (single particle
cal impossibility (Tyler and Wheatcraft 1990b). movements) over very short time periods. Long

time periods of little activity were suddenly
Fluctuating phenomena in nature are often punctuated by remarkable events. The accu-
statistically self-similar structures. With statis- mulation of numbers of points at the diffusion
tical self-similarity, there is equal probability of front obeyed a power law characteristic of
two events happening. Strike out every other fractional Brownian motion (Rosso et aL 1990).
event, and the statistics of the first set will look

like the statistics of the second set. If the The number of points was sampled at various
probabilities are not equal, then adjacent times. When the sampling time was greater
samples are correlated and self-similarity is than a2/4D (a is the inter-site distance and D is

missing. Where adjacent events are correlated, the coefficient of diffusion), mean fluctuations of
the smaller sample will have a smaller correla- numbers of points stabilized at the frequency
tion (Schroeder 1991). characteristic for fractal phenomena, 1/f (Rosso

et aL 1990).

Renormalization theory in physics is closely
related to self-similarity. The physics of phase 6. FRACTAI_ AND COMPLEXITY
transitions is like the mathematics of Julia sets.

This may reflect a basic principle of phase Jaggedness and Boundary
transitions, which are or may be fractal struc-
tures (Peitgen and Richter 1986). Many distribution patterns in time and space

are not Gaussian, with well-dei'med means and

Local vs. Global variances. Rather, they are likely to be "jagged
on every scale" (May 1989). Discontinuity,

Because a fractal structure exhibits some degree heterogeneity, and complexity characterize
of self-shnilaritymthe structure is the same at many biological systems, and fractal geometry is
several or many scales--fractal structure has a way to approach complex systems 6Vest and
bearing on the relationship between the local Goldberger 1987). The major problem of irregu-
scale and the global scale, larity in spatial data, relating what is happening

here to what is happening there, may be ad-

Fractals provide a measure of short-range vs. dressed using notions of fractal structure (De
long-range variation. Low D means "domination Cola 1991). Dimension is a measure of corn-
by long-range controls." Landforms have a plexity (Mendes-France 1990), but there is no
range of D = I. I to 1.3, indicating the influence value of D that marks the point on the con-
of large-scale factors like climate and geology, tinuum between complex and simple systems
High D values indicate short-range factors like (Phillips 1985).
soil chemistry (Phillips 1985).

Biological systems may require the complex

Systems undergoing phase transition are highly boundaries provided by fractals. Contact zones
self-similar. Phase transitions, whether from between interacting parts of an ecosystem may

solid to liquid or from magnetic to non-magnetic be enhanced by fractal geometry. Energy,
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matter, and information may flow more easily field like the one discussed in section 5. Pat-

from one segment to another (Frontier 1987). terns group into typical morphologies, regard-
less of the system or scale (Ben-Jacob and Garlic

Webs of organisms connect through exchange of 1990).
matter and energy. Energy flow couples with

transport mechanisms between points of differ- Biomass is often distributed in hierarchical
ent energy levels. A fractal wall configuration patches, and patterns like these can be studied
and transport system accelerates the energy using the fractal approach. Frontier (1987)
flow and the cycling of matter through the suggests sampling plankton along a ship trajec-
system. For trees, for example, the fractal tory. The fractal object, the plankton in three
canopy forms the contact between the atmo- dimensions {the swarm), Intersects with the
sphere and the chlorophyll web; the fractal root linear sample. Because the intersection of two
system forms the contact between the tree and fractal objects is a fractal, the dimension of the
nutrients in the soft. The lungs and g_s may be intersection is equal to the sum of the dimen-
other examples of fractal structures that ex- sions of the two original fractals, minus the
change energy and matter between the organ- dimension of the space in which the two fractals
ism and its environment {Frontier 1987). interact. The same rule applies to the intersec-

tion of a fractal with a non-fractal object. If D
The littoral zone is an important example of a and d are the fractal dimensions of, respec-
fractal, complex ecosystem boundary. Pond tively, the swarm and the'linear sample, d = D +
shape and lake shape are related to biological 1 - 3 = D - 2, then D = d + 2. The geometry of
properties like productivity. Lake shape has plankton patches is a function of water turbu-
been described in terms of a ratio between lence (Frontier 1987).

shoreline length and water volume, but it is
actually shoreline fractal dimension that should For large-scale spatial heterogeneity, the land-
be correlated with other properties. The littoral scape is the appropriate spatial unit. Here is
zone brings together the primary producers and where the physical and biological Interact,
the decomposers, accelerating the cycIing of where population Interacts with population and
matter. This contact zone between two ecosys- with the abiotic to form pattern. For landscape

tems increases as the fractal dimension of the ecology, spatial pattern is the driving force
shoreline increases (Frontier 1987). determining system function. Pattern is studied

at large scale to relate it to ecological processes
Life may be det'med by interaction and the flow studied at smaller scale. Parameters have to be
of matter, energy, and information through developed that defme spatial pattern in a way
interfaces, interfaces that are dimensionally that hooks up with the underlying biophysical
constrained, Interfaces that are fractals. Fractal process (Krummel 1986).
organization is especially visible in ecology, the
science of interaction between populations and Noise
environment (Frontier 1987).

Randonmess, noise, is a component of fractal
Complex Pattern and Self-org_!zatlon formation In nature. Noise contributes to the

complexity of fractals. Mandelbrot (1983)
How does pattern form from a disordered highlighted this in his coastline example. The
environment? Is pattern formation In nature events leading to the formation of a coastline are
the result of unique causes and effects govern- impossible to reconstruct. Geomorphological
ing each phenomenon, or do unifying principles processes happen "through many ill-explored
underly the formation of pattern (Ben-dacob and Intermediates." Chance enters, not only on the
Garik 1990)? microscopic level, like in the Brownian molecu-

lar motion of molecules, but also on the macro-

Pattern may form from the Interaction of scopic level (Mandelbrot 1983).
microdynamics with macrodynamics. Some
unifying principles are emerging from growth Noise is the uncertainty In complex systems.
patterns. An example of the self-organization of The probability distribution function describes
complex patterns are systems with a diffusion complexity, Independently of the underlying
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mechanisms. As normally distributed or lognor- physical variables are "1 �f-like," with the form
really distributed systems increase in complex- f4 (0.5 < 1 < 1.5) over many degrees of fre-
ity, they come to resemble 1/f systems (dia- quency. These include loudness fluctuations in

gram 11). The area under the curve of lognor- music and speech, and melody in music (Voss
mal distributions increases as complexity and Clarke 1975).
increases, until it reaches a 1/f distribution, a

straight line with negative slope. The 1/f and The power spectrum is related to the

the lognormal distributions will overlap more autocorrelation function. The 1/fpower spec-
and more as complexity increases. When many trum cannot be characterized by a single corre-
mechanisms are working at many scales and lation time. There is a sloped relationship over
the main process is accomplished by many sub- time scales (Voss and Clarke 1975).
processes, the overlap of the lognormal and 1/f

distributions will be large and the distributions The spectrum of noise distributed as 1/fis
will be indistinguishable. This is why the called fractal noise because it is scale-free.
inverse power law can be so universal (West and

Shlesinger 1990). 7. APPLICATIONS TO FORF_T SYSTEMS

The behavior of 1/f phenomena is due to As with most young fields, the applications of
complexity rather than content (West and fractal geometry to the biological sciences have
Shlesinger 1989). The power spectra of many been primarily descriptive. Given fractal

geometry's predilection for re-analysis of shape
and size, it is not surprising that initial appLica-
tions to problems in forestry should emphasize
shape and size.

Several researchers in forestry-related disci-
plines have used the concept of fractional
dimension (table 2). Fractal dimensions have

been computed for a diverse array of things,
® from tree rings to taxonomic lists, and will be
_ discussed in the sections that follow.
-e"

>

Besides the fractal dimension, there has beene-

"6 some use of fractals and scale, and of fractals
C

o and self-similarity. However, many of the
"5 studies do not deal strictly with forestry. Theyr_
.:-

belong more formally to the realms of ecology
c_ (e.g., species distribution) or general biology

{e.g., taxonomy). Nevertheless, the techniques
and approaches may be useful to the forest
scientist, whose aim is to describe and under-

stand the forest's complexity.

Leaf Shape

Generalvariable(logscale)
Leaf shapes traditionally have been described by

Diagram 11 .uVariabiIity of lognorrreal and I/f linear and/or areal measures, but these mea-
systems. As simple systems with little variabil- sures do not represent natural shapes very well.
ity become more complex, the area under the Vlcek and Cheung (1986) calculated the fractal
curve increases until the distribution is de- dimensions of the perimeters of leaves (diagram

scribed by a straight line with negative slope: 12). The nine species they measured were
a i/fsystem. (Reprinted with permissionfrorru" significantly different. More complex leaves had
West, B.; Shlesinger, M. 1990. Noise in natural higher D and greater standard deviation among
phenomena. American Scientist. 78: 40-45.) leaves.
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Table 2.--Fractal dimensions from the forest

Feature measured Dimension Reference

Tree ring indices 1.22-1.45 Burrough 1985
Tree ring widths 1.77 Taylor 1988
Oak branching 0.07-1.44 Crawford and Young 1990
Red oak leaf 1.19 Vlcek and Cheung 1986
White oak leaf 1.22 Vlcek and Cheung 1986

Sugar maple leaf 1.18 Vlcek and Cheung 1986
Silver maple leaf 1.21 Vlcek and Cheung 1986
Gingko leaf 1.11, 1.05 Vlcek and Cheung 1986
English elm leaf 1.05 Vlcek and Cheung 1986
American elm leaf 1.04 Vlcek and Cheung 1986
American basswood leaf 1.02 Vlcek and Cheung 1986
White oak leaf 1.18, 1.19, 1.28 VIcek and Cheung 1986
Ponderosa pine crowns 2.27 Zeide 1990
Hemlock crowns 2.81 Zeide 1990

Cypress patch (Florida) 1.6 Mandelbrot 1983
8roadleaf patch (Florida) 1.0 Mandelbrot 1983
Deciduous patch, below 60 ha 1.15 Krummel 1986
Deciduous patch, above 60 ha 1.4 Krumme11986
Vegetational habitats 1.3-1.8 Morse et aL 1985, May 1988
Fire scars, Minnesota 1.47-1.64 Lorimer, unpublished
Fire scars, Wyoming 1.46-1.55 Lorimer, unpublished
Soil properties 1.5-2.0 Burrough 1985
Landforms, section 1.1-1.3 Phillips 1985
Landforms 2.1-2.75 Burrough 1985
River flows 1.02-1.52 Burrough 1985
Annual precipitation 1.13-1.36 Burrough 1985
Taxonomy 1.1-2.1 Burlando 1990

Two ginkgo trees, one with notched leaves and between order number and average length,
the other without notches, had different fractal diameter and number of segments within the

dimensions for their leaf perimeters. So, the order (Crawford and Young 1990).
same tree species can have leaves with variable
fractal dimensions. The opposite is also pos- Data from two species of oak were analyzed with
sible. As in the case of the oaks shown in the two different models: a Markov model where

diagram, two different species that differ in the branch length depends on the length in the
size and number of lobes of their leaves can previous order, and a fractal model. In the

have identical fractal dimensions. Although fractal model, the function giving the relative
fractal geometry can be used to study leaf shape frequency of each scale in the structure is a
within species, it may not be useful for differen- fractal. _The fractal dimension of the distribu-

tiatlng species (Vlcek and Cheung 1986). tion of scales will have a bearing on the overall
appearance of the tree (Crawford and Young

Tree Branching 1990).

Crawford and Young (1990) studied tree Power law and exponential distributions were
branching by characterizing and then classify- indistinguishable for small values of the expo-
lng the kinds of branching in actual trees, nent. But at higher values, the branching
Segments between nodes, the points where followed the fractal model. Because branching
branches emerge, were grouped in a hierarchy in the two species of oaks was different, but
of orders, and each was assigned an integer branching measured in the lower and upper
label. The authors then noted relationships crowns of one species was the same, Crawford
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b_ _A difference of two or three orders of magnitude(Loehle 1983).

Before fractal geometry, foresters did not have
the tools to measure complex objects like tree
surfaces. Yet without adequate measures of

d_ e_ _ tree surface area, it Is difficult to adequately

estimate tree respiration per unit area, produc-
tivity, and other properties. Like all fractal
structures, tree surface measurement depends
on the unit of measurement (Zeide 1990).

 o eecroo O volum   fa
merge. There are practical problems in calculat-
ing the fractal dimension of tree crowns, how-
ever. The usual method of box-counting is
difficult to apply because three-dimensional

1_ _ i_ spatial data on tree crowns are difficult to

obtain. Zeide (1990) developed the two-surface
method. The relationship between leaf area of a
tree, A, and surface area of a convex hull that

encloses the crown, E, has a parameter identi-
fied as a fractal d_nension of crown surface, D.

This relationship is
Diagram 12.mFractal dimensions of several tree

leaves. The leaves with the most complex
A = aE D/2 (a is a constant) (Zeide 1990).

shapes have the largest fractat dimensions.
(Reprinted with permissionfrorrr" Vlcek, J.;
Cheung, E. 1986. Fractal analysis of leaf The regression of the logarithm of leaf mass
shapes. Canadian Journal of Forest Research. (assumed to be proportional to leaf area) plotted

on the logarithm of the cubic root of crown
16: 124-12 7.) volume (representing the linear size of the

crown) for 10 conifer species in the Rocky
Mountains indicates self-similarity for crown

and Young conclude that branching pattern is surface. The slope ranged from 2.27 for intoler-
genetically rather than environmentally deter- ant ponderosa pines to 2.81 for very tolerant
mined, hemlocks. A value of three indicates uniform

needle distribution, with mass proportional to
The fractal model reproduced the power law volume (meaning needles tolerant to low light).
behavior of mean branch length as a function of A dimension of two indicates trees very intoler-

order; the branching structure showed large ant of shading, all the needles appearing on the
intraorder variability because of contributions at crown surface (Zeide 1990).
many scales (Crawford and Young 1990).

In a study of loblolly pine, Zeide (199 l a) corn-

Tree Crowns puted fractal dimensions of crowns on three
different plantations. The fractal dimensions,

Another forest characteristic, arrangement of 2.45, 2.63, and 2.74, increased with site quality.
tree crowns, can be modeled as a fractal pack- The fractal dimension may be sensitive to

ing problem. Fill a volume of space with as thinning (Zeide 199 la).
many large irregular objects as possible, then fill
in the remaining spaces with the next size and Tree Models
so forth. In the forest, packing of smaller and
smaller sizes stops at the scale of the crown size Mandelbrot (1983) modeled "trees" of different
of the smallest plant existing at a given height fractional dimensions and noted the effect on
above the ground. Between the volumes of the form (diagram 13). The internal branching
largest and smallest crowns, there will be a angle (identical for all angles within a tree)

2O
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emerged from the restriction that no branches When tree branches are allowed to overlap, the
overlap. D increases from slightly above 1 (top set of tips is no longer a dust of Euclidean
left) to 2 (bottom left). The tree on the lower dimension 0, but a curve of dimension 1 (with

right, with a branching angle greater than 180 no change in the fractal dimension). Mandelbrot
degrees, has a D less than 2 (Mandelbrot 1983). (1983) calls these curves extended fractal cano-

pies.

Trees are both branch tips and branches, whose
dimensions "clash." Varying the branch angle
over a wide range while keeping branch length
and D the same results in quite a variety of tree
shapes (Mandelbrot 1983).

Without thin trunks, the trees in the diagram
are not strictly self-similar. What of thick-stem-
med tree forms In nature? Real trees illustrate

the idea of a shape having many linear scales.
Besides the D of the branch tips, trees have
another parameter, the diameter exponent, A. A
self-similar tree with a trunk will have D = A.

__ Otherwise A is less than D (Mandelbrot 1983).

Da Vinci claimed that "All the branches of a tree

at every stage of its height when put together are
equal in thickness to the trunk (below them)."
To put this formally, a tree's branch diameters
before and after bifurcations d, dl, and d2,

___ satisfy the relation

dA = dl a + d2A

with the exponent being A = 2 (Mandelbrot
1983).

For botanical trees, D = 3 and A = 2, but the

Diagram 13.reModels of trees with non-overlap- exceptions to this may be more Interesting than
ping branches. The internal branching angle the rule. When D and A are not Integers, the
changes as thefractal dimension changes, fractal nature is more apparent. D equal to 3
(Reprinted with permissionfrorru MandeIbrot, would give the most surface to the sun, but
B. 1983. The fractal geometry of nature. New there may be architectural and physiological
York, NY: W.H. Freeman and Co.) constraints. The data for the measurement of A

are sparse (Mandelbrot 1983).

From a topological (that is, Euclidean) point of A corollary to D = 3 and A = 2 is that the
view, the branch tips would be dimension 0 branch's leaf area is proportional both to the

(points) and the branches would be dimension 1 volume of the branch's outline and to the cross-
(lines). The branches dominate. From a fractal sectional area of the branch. A second corollaryis that the ratio
poInt of view, the dimension of the tips is D, a
fractional dimension. Each branch is still
dimension 1, but the whole tree dimension is D. (tree height) 3

That is, even though the branches seem to (trunk diameter) 2
dominate In an intuitive and topological sense,

they are fractally negligible. With D greater than is constant for each species, and that it is equal
the Euclidean dimension, D measures the to the ratio

abundance of branching (Mandelbrot 1983).
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(linear scale of a branch's drainage volume) 3 formula in the computer program is like a

(branch's diameter) 2 metaphor for increased genetic information over
evolutionary time (LaBrecque 1987).

This ratio may not vary among species Vegei_on Patches(Mandelbrot 1983).

Palmer (1988) suggests that vegetation Is a
There are engineering limitations to a tree's
height: a fixed percent of the critical buckling prime example of a fractal, having detail at

many spatial scales. From the small scale of
height of a uniform cylinder of the same base individual plants, to the larger scale of a
diameter loaded under its own weight. This

landscape's vegetation patches, to the yet larger
requirement yields the same results as fractals scale of vegetation patterns influenced by
with D = 3 and A = 2 (Mandelbrot 1983). geomorphological features, vegetation is a

candidate for fractal analysis (Palmer 1988).Tree crown models can be constructed with

simple algorithms by adding increments to a From the air, natural forests have boundaries
cylinder and creating forks at each increment.
Plotting log frequency of branches of a given similar to islands (Mandelbrot 1983). Highelevation boundaries between forest and

radius vs. log of that radius gives the straight meadow are fractal (Loehle 1983). In the forest,

line with negative slope that is characteristic of large vegetation patches are joined by satellite
fractals. Conserving the cross-sectional area patches of different sizes; species patches are
after each forking episode gives a slope of-2: irregular. Mandelbrot (1983) cites an unpub-
the figure will till space. If the cross-sectional lished report on patch irregularity in the
area is not conserved, the slope is between - 1 Okefenokee Swamp. The perimeters of cypress
and -2: the figure will have a finite volume. The patches (D = 1.6) were more irregular than the
corresponding fractal dimension will thus range perimeters of broadleaf and mixed broadleaf tree
from 2 to 3. However, trunks and large
branches on hardwoods do not fit the log-log patches (D = I).

relationship. Branch shedding gives long Size as well as species can influence the fractal
sections of clear bole (Loehle 1983). dimension of a patch perimeter. When the

fractal dimension of deciduous forest patches in
For real trees, the length of branches in a radius Mississippi was computed from digitized aerial
class has to be measured. Loehle (1983) derived photographs, small patches had lower fractal
a formula for stem and root surface areas, dimension than large patches. Below 60 ha,
volumes, and numbers of tips. Once basic forest patches had regular shapes: the smaller
values have been obtained, including the fractal patches were generated by survey and township
dimension, more attributes can be estimated divisions. Above 60 ha, the "natural" patterns
after measuring diameter at the base of the

were more irregular (Krummel 1986).
crown and top of the root system, plus the
trunk and large branches. Forest biomass Before the fractal concept, quantification of

estimates can then be made with few measure- vegetative pattems had not been possible
ments and without destructive sampling. With despite its usefulness for habitat typing,
bark thickness as a function, of branch radius, LANDSAT analysis, analysis of root disease
the amount of bark on a tree can be known, centers, and other applications. Patchiness, an
which is important for whole tree utilization intuitively important but quantitatively vague
(Loehle 1983). concept, can now be quantified (Loehle 1983).

A very realistic tree can be generated with a Size and Density of Organisms
recursive algorithm in which the main tree Related to Habitat
trunk extends to smaller and smaller branches.
Parameters for curves and twists of branches Sizes and densities of individuals are related to
and the ratio of the size of the trunk to the the fractal dimensions of their habitats, whether
branches are added. This tree looks !ike it has the habitat is soil (Frontier 1987) or foliage
evolved a long way from Mandelbrot's trees. The (Morse et al. 1985, Shorrocks et al. 1991).
extra information added to the simple recursive
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Morse et ak (1985) computed fractal dimensions

for plant surfaces ranging from 1.28 to 1.79, 10,000- _
with a mean of 1.44. If a fractal surface has a _

linear transect with dimension 1.5, for every °

order of magnitude increase in measurement XCX_ l

length, the distance from point to point in- _ ,
creases by a factor of 10 = 3.16. There are '_ " _ " *

implications for the animals that live on these 100. " / I *
plants (Morse et aL 1985, Wiens and Mikne X _ X .
1989). _ X _ I

Arthropods living on the surfaces of plants are _ _ • _ I •

like rulers, measurement sticks. Larger insects _- : .*"0 _ _l /
represent larger units of measurement, and \,

o

• _ _

smaller insects represent smaller units of _. . _ ......... _ _ =
measurement. On vegetation with a fractal ..... _--_---_ 10
dimension of 1.5, the area perceived by a 3-ram

animal will be an order of magnitude larger than Diagram 14._The negative log-log relationship
between numbers of arthropods and bodythe same area perceived by an animal 30 mm

long, increasing the available space for small length collected by sweep nets from understory
animals (Morse et at 1985). foliage in a primary forest in Costa Rica (left)

and by pyrethrum knockdown from a forest

This can be carried one step further. If recta- canopy (Betula pubescens) in Eng/and (r/ght).
bolic rate scales as 0.75 of body weight, and if Reprinted with permission frorm Morris, D.R.,

et al. 1985. Fractal dimension of arthropodpopulation density is proportional to the recipro-
cal of metabolic rate (this being related to body lengths. Nature. 314: 731-733.
resource utilization), then population density
scales as (L3)-°-75 (L is body length). A 10-fold
decrease in body length results in a (103) °-Ts = Vegetation surfaces can change over time as
178-fold increase in the density of individuals, well as from place to place. The fractal dimen-
So the relative numbers of animals of different sion of a tree, for example, can change by

body lengths living on vegetation surfaces can season (Wflliamson and Lawton 1991).
be predicted. Order of magnitude decreases in
body length predict increases of between 178 x More data are needed on fractal dimensions of
3.16 - 560-fold and 178 x 10 = 1,780-fold in habitats and the body sizes of animals that live

animal number (Morse et al. 1985). In those habitats. Lawton (1986) also suggested
the formulation of a general theory of plant

Sweep net data for numbers of insects agree architecture that relates the size, variety, and
fractal nature of plant structures.with the predictions (diagram 14). We may

reverse the calculations to obtain fractal dimen-

sions of vegetation, given the numbers and body Species Diversity
lengths of collected Insects (Morse et aL 1985).
The fractal dimension of vegetation surfaces, Possible applications of fractals in community
which may differ in different locations, may be ecology Include analyses of geographical distri-
an important "ecological indicator" (Wflliamson butions of species and resource partitioning
and Lawton 1991). among species. Wflliamson and Lawton (1991)

note that when a species distribution is mapped

Shorrocks eta/. (1991) obtained similar data for at different scales, pairs of maps appear self-
insects on lichen. The fractal dimensions similar. If so, a pattern at one scale can be used

measured for lichen transects ranged from 1.37 to predict patterns at larger or finer scales. The
to 1.78, with 1.58 the average. The body size vs. authors further speculate that species-area
insect frequency graphs for collembola and distributions and the allocation of environmen-
mites collected from the lichen matched the tal resources between species are fractal pro-

predictions from the fractal dimension of the cesses.
vegetation.
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Lawton (1986) addresses the question of why Fractal taxonomy gives us more information
there are so many more little species than big about the organization of species diversity.
species in animal communities. For plant- Many taxa have only one or two subtaxa; few
feeding insects, the explanation may depend in taxa have many subtaxa, a pattern shown by
part on the observation that plant surfaces are plants and animals at several taxonomic levels.
fractals. Because plant surface is a fractal, Log-log plots of frequencies of genera against
more absolute habitat surface area is available numbers of species fit straight lines with nega-
to small insects than to large insects. Further, rive slope, a relationship common to fractals
small insects require fewer resources to survive (Burlando 1990, Minelli et at 1991) (diagram
than large insects. The greater habitat area and 15).
smaller resource requirement combine to create

a larger habitat carrying capacity for small The equation for these plots is
insects. Observations of insect communities

support this prediction: the number of small N = KS -D
insects increases exponentially with decreasing

body size. Although this argument may explain where N is the frequency of the genera, S the
the large number of small individuals, the number of species per genus, K a constant, and
argument accounts for less than half of the -D the exponent corresponding to the log-log
observed increase in the number of small regression line slope b. The absolute value of D
relative to large species. The unascribed in- is the fract_ dimension (Burlando 1990).
crease can be due to increasing resource variety

at smaller habitat scales. Fractal dimensions computed from 44 taxo-
nomic checklists and catalogs ranged from 1.1

Another way to show distribution of individuals to 2.14. Some examples: 70,029 species of
among species is a rarlk-frequency distribution. South American Coleoptera in 6,439 genera had
Species are ranked by frequency, then each fractal dimension of 1.46; 4,258 species of world
species is given a point on the graph, with rank mammals in 1,013 genera had fractal dimen-
on the abscissa and frequency on the ordinate, sion of 1.66. Similar values occur for the same
after log transformation. The shape--convex, groups from different geographical areas,
concave, or stepped--gives information about collected by different taxonomists. Arthropods
species distribution, and higher plants show D estimates near 1.5.

Vertebrates had the highest values, except for
Rank-frequency distributions may have a fractal amphibians and reptiles, which had the lowest.
origin (Frontier 1987). Such distributions can The value for families within orders was similar
be described with a curve predicting the prob- to the value for species within genera. For
ability of species occurrence Pr(Sr) as a function example, 777 families of world plants in 145
of its rank r, orders had a fractal dimension of 1.21

(Burlando 1990).
Pr(Sr) = Po(r + b)s,

Why should taxonomic diversity be fractal? In
where Po, b, and g are parameters to be esti- an analogy similar to the concept of fractal
mated. The parameters define the shape of the tiling, taxa with different numbers of subtaxa
curve: g is a negatively sloped asymptote, and b are like different-sized grains of sand. Large
is the direction of approach. Frontier (1987) grains packed together leave empty spaces
proposes ecological interpretations of the pa- among themselves where smaller grains can fit.
rameters: b is linked to the diversity of the The smaller grains leave spaces taken by even
environment (i.e., the number of conditions smaller grains, and so on, until the smallest
required for species occurrence), and 1/g is grains (monotypic taxa) fill the smallest spaces
linked to the predictability of the community (Burlando 1990).
(i.e., the probability of species occurrence when
the conditions that it requires are present). Animal Movement

Finally, Frontier (1987) states, without proof,
that 1/g is the fractal dimension of the distribu- In a fractal framework, surface distances
tion of individuals among species, depend on the unit of measurement, so a fractal

approach may be useful in the study of animal
mobility (Weiss and Murphy 1988).
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Diagram 15.--Fracta/taxonomy: log-log plots of frequencies of genera with numi_rs of species. The
graph on the lower right shows the frequencies of orders with numbers of families. A straight line
with a negative slope is common in fractal relationships. (Reprinted with permission frorrL" Burlando,
B. 1990. The fractal dimensions of taxonomic systems. Journal of Theoretical Biology. 146:99-114.)

Caterpillar dispersal is a critical mechanism in caterpillar as the step-length. Completely
the population dynamics of many Lepidoptera. smooth surfaces would have D = 1. Diagram 16
Large larvae can move farther; first-instar larvae shows actual distances traveled by caterpillars
have to be close to food. The sooner caterpillars of different sizes over fractal paths of 1.1 to 1.5,
fred food, the less the mortality and the faster to cover a linear meter. Even at D = 1.1, repre-

the development time (Weiss and Murphy 1988}. senting only slight roughness, 1-mm caterpillars
travel 2 m to cover a linear meter. Caterpillars 3

Caterpillar paths can be computed for given cm long travel 1.42 m. As D increases, distance
fractal dimensions, with the length of the traveled increases (Weiss and Murphy 1988}.
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When predators encounter prey, broad hunting
' ' ' behavior is replaced by local hunting behavior--

32 - D=1.s straight scanning movements become Brown-
Jan-type movements. These search patterns are

probably fractal, correlated with the fractal
pattern of the prey.

24 Forest Disturbance

Applying fractal concepts to spatial patterns

enables not only more precise descriptions, but
_- 16 J, 1.4 also hypotheses about causes of pattern. An

example is forest disturbance by wind. Wind
turbulence is self-similar; small eddies whirl

within larger eddies. Hence, wind may cause

damage at various spatial scales: it can break

8 1.3 twigs or down a whole forest. Loehle (1983)
postulated that wind damage may be seK-
similar.

12 _.....__
:l,t __:: :::_:_$ The effect of wind turbulence on breakage in the1.0 ¢

0 _ I I t l
.ool .oos .ol .o3 forest can be studied by quantifying canopy

log CATERPILLARLENGTH(m,t,rs} roughness. Patterns of wind damage in different
forests can be explained in terms of interaction

Diagram 16.--Over rough surfaces, caterpillars between a fractal, self-similar process (wind
of different lengths travel different distances, turbulence) and a fractal surface (the forest
(Reprinted with permission from: Weiss, S.B.; canopy) (Loehle 1983).
Murphy, D.D. 1988. Fractal geometry and
caterpillar dispersal Functional Ecology. 2: Besides wind, agents such as insects, disease,
116-118.) and fire create openings in the forest. The

fractal nature of these openings, the irregularity
of the boundary between damaged and undam-

Dispersal distances can be expressed in terms aged areas, may contribute to vegetational
of body length. A caterpillar 1 cm long must patchiness. However, not much data are avail-
travel 251 body lengths to move 1 m along a able on the fractal nature of these kinds of
surface with a fractal dimension of 1.2. The forest disturbance. Lorimer (unpublished)

same insect would have to crawl 1,000 body computed the fractal dimension of the perim-

lengths to move 1 m along a surface with a eters of spatial fire patterns in Minnesota
fractal dimension of 1.5. Therefore, the distance (Heinselman 1973) and Wyoming (Romme

an animal travels depends both upon its size 1982). D ranged from 1.46 to 1.64.
and the texture of the substrate (Weiss and

Murphy 1988). MacKay and Jan (1984) modeled forest fire
dynamics with the techniques of percolation

For larger animals, home ranges are usually theory. In their protocol, a burning tree in a
represented by bell curves or polygons, but they densely packed lattice was able to ignite its
are actually more fragmented and irregular. Nor nearest neighbors according to an assigned
is home range merely a bounded space within probability. The fire clusters of burned vs. non-
which an animal may be found. Some areas are burned trees resulting from model parameters
used extensively, some areas are never used. had fractal dimensionality of 1.75. At the
Animal ranges have fractal characteristics critical point, called the percolation threshold,
(Loehle 1990). meaning the point of fire propagation, there was

statistical self-similarity. A collection of trees

A third example of fractal ramifications of can therefore be modeled like a ferromagnet.
animal movement is Frontier's (1987) discussion Instead of up-spin and down-spin, trees are

of complex and hierarchical predator behavior, either burned or not burned (Schroeder 1991).
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Modeling Soils with Siext)ixxski Carpets {diagram 18). The fractal dimensions of 1.46,
1.89, 1.96, and 1.99 measure the ratio between

Before the fractal concept was developed, it was characteristic pore size and pore area. The
difficult to relate particle-size distribution in fractal dimensions are measures of soil texture.
soils to water retention data. Much information The nearer the value is to 1, the more the soft is

is available on particle size distribution, but dominated by large pores: the carpet will be
measures of water retention are difficult to sparse at large scales of measurement. The

obtain. Tyler and Wheatcraft (1990a) model the diagram shows how the fractal dimension
relationship with a classic fractal form, the affects the shape of the curve for water reten-
Sierpinstd carpet, tion. Near a D of 1.5, the water retention curve

is like the curve for a coarse sand. Near a

Using different Sierpinski carpets as models of fractal dimension of 2, the curve is like the
different soils (diagram 17), the authors calcu- curve for a clay soil (T_$1erand Wheatcraft
late water retention data from the models 1990a).
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Diagram 17.--Sferpinski carpets modeling soils of different fractional dimensions. The dimension of
carpet (a) is 1.46, (b) is 1.89, (c) is 1.96, and (d) is 1.99. (Reprinted with permission frorrr" Tyler, S.W.;
ltrheatcraft, S. W. 1990o. laractal processes in soil water retention. Water Resources Research. 26:
1047-1054.) 27
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---- so.. ^. D-148 cultivation. Fractals may make it possible to
.... SOIL B, Dml.89

lo"- ".... so_Lc. o-1.98" i quantify soil heterogeneity and to relate struc-
.... so,L o. o=199 : i ture to specific soil processes (Young and

, " i Crawford 1991).

o, , l Spatial Heterogeneity and Sarnpllngv I "¢

uJ _ • I

= " " ' In this section, we will investigate the applicabil-
Ill

= _ ', '. "l ity of fractal techniques to issues regarding theO_ • 0 0

\ , .. t sampling of heterogeneity. Most of the examples

_- , • I are from soil science and geological research._- _ • • .
< • ,I

o ",, 1 What is homogeneity? It can mean lacking
",, variation, well mixed, continuous, or consistent.

It can also mean "remaining similar upon
subdivision." Consider two forests of 20 ha

each, each with 20 species of trees. In the first
10" l -1 i i

0,2 0,4 016 1.0o8 forest, the species have the same mix in each
•R_ALSATURm,ON hectare. The forest is homogeneous. In the

second forest, each species occurs only within

Diagram 18.mRelationship between water its own 1-ha unit. The second forest is hetero-
retention andfractal dimension in soils. Soils geneous. But this concept of homogeneity is
with lowerfractal dimensions are dominated linked to scale. In the first forest, heterogeneity

by large pores. Soil A returns water like coarse emerges on a scale slightly larger than indi-
sand. Soil B returns water like clay. (Re- vidual trees; individual trees of one species will

printed with permissionfrorru Tyler, S.W.; be neighbors of other species. In the second
Wheatcraft, S.W. 1990o. Fractal processes in forest, at the scale of several individual trees,
soil water retnetioru Water Resources Re- only one species is likely; at that scale the
search. 26: 1047-I054.) second forest is homogeneous (Palmer 1988).

The fractal geometry of soil structure can be The systems we study can "look" homogeneous
carried further. It can be compared with other or heterogeneous, depending on the "averaging

soil properties like surface charge and aggregate window" or plot size (diagram 19). Fractal
stability to examine processes of soft creation geometry gives us a new way to view heteroge-
and destruction (Bartoli et al. 1991). The neity. In a fractal case, heterogeneity looks the

spatial organization of soft can change over very same over a range of scales (Tyler and
short time scales because of weathering, root Wheatcraft 1990b) (diagram 20). Traditional

growth, and soil management practices like scaling techniques cannot be applied to this
kind of heterogeneity.

S A_r_#_tg Wbsdow I

Diagram 19.mHeterogeneity can depend on scale. At high magnification (laboratory scale), the sample on
the left is homogeneous. At low magnification (field scale), the sample on the right is heterogeneous.
(Reprinted with permission frorrc Tyler, S.W.; Wheatcrafl, S.W. 1990b. The consequences of fractal
scaling in heterogeneous soils and porous media. In." Hillel, D.; Elrick, D., eels. Scaling in soil physics:
p_les and applications, proceedings of a symposium," 1989 October 18; Las Vegas, NV. Spec. PubL
25. Madison, WI: Soil Science Society of America: 109-122.)
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iii:_: For soils, representative area volume (REV) is a

sample size below which a sample will show
wide variation as a function of its location.

i Above the critical size, the variable of interest

will be constant. The REV approach sees softs
as building blocks of homogeneous material

_iiiiiii_ above some critical scale (Tyler and Wheatcraft

1990a).
A good soft survey recognizes scale of change,

....... abruptness of change, and degree of correlation
among soil properties and properties of the

Diagram 20.--Se/f-s/m//ar heterogeneity. The landscape. Previously, surveyors brought

heterogene_ will look the same regardless of intuition to this job, rather than quantitative
the sampling scale. (Reprinted with permission tools (Webster 1985).

from: "IiAler,S.W.; Wheatcraft, S.W. 1990b. The

consequences offractal scaling in heteroge- At the landscape level, D values can also range
neous soils and porous media. In." HilIel, D.; widely. The fractal dimension is a useful indica-

Elrick, D., eds. Scaling in soil physics: prin- tor of autocorrelation over many scales. Some
ciples and applications, proceedings of a natural phenomena do display statistical self-
symposium," 1989 October 18; Las Vegas, NV. similarity over many spatial scales; but other
Spec. Fktbl. 25. Madison, WI: Soil Science natural phenomena are structured, that is, they
Society of America: 109-122.) have levels of variability clustered at particular

scales. However, they are not excluded from the
All vegetation surveys are subject to spatial fractal concept because of this. Zones of dis-
dependence. Two nearby quadrats will have tinct dimensions could be connected by transi-
more similarity than two separated quadrats, tion zones. So, D values can be used to sort out

This presents a problem for statistical analysis scales of variation linked to particular natural
because an important underlying assumption, processes. Identifying these scales would have
that replicates are independent, is violated, great practical value. Sampling could then be
Fractal geometry may suggest alternative tailored to a particular scale range, improving
sampling schemes (Palmer 1988). efficiency, saving money, and improving interpo-

lation (Burrough 1981).
Fractals and geostatistics combine to describe

the complexity of the spatial variation of soft. For sampling, the fractal dimension D is useful
Soft-forming factors (interaction of parent for showing how a given sampling design could
materials, climate, hydrology, relief, biological resolve the variations present with the appropri-
acitivity) operate over different spatial scales, ate scales. Small D means that the samples
and within each factor may be many scales of found the change in the variable to be smooth,
interaction (Burrough 1983a). not abrupt. Large D means the variation is

irregular and uncorrelated. A large D after the
When/Ts of soft (greater than 1.5) are compared resolution of the survey has been adjusted,
to/Ys of other environmental variables (less means important, short-range sources of varia-
than 1.5), softs appear to be "noisier." This tion. A changing D over closely related scales
implies that, for other environmental variables, would require sample spacing with the smallest
increments along the sample series tend to be value of D. That kind of sample spacing would

positively correlated, and that, for soils, incre- resolve long-range variations without the confu-
ments along the sampled series are negatively sion of unresolved short-range effects (Burrough
correlated (Burrough 1983a). 1983a).

Large D values in softs may be due to small- As applied to softs, for example, interpolation to
scale variations caused by rock weathering, non-sampled sites may be risky because D
biological action, erosion, and other factors, values are usually large (Burrough 1983a).
When large-scale effects dominate, D values are Burrough (1983a) suggested finding the major
smaller; variation is less erratic (BulTough scales of variation present in a landscape before

1983a). begirming studies at any scale.
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Fracta] techniques can be combined with D and Shoreline Erosion
geostatistics to fine-tune sampling in heteroge-

neous environments. Commercial geologists An examplefrom geomorphology illustrates
developed geostatistics to predict the amount of how the semivariogram and fractal dimension
metal ore in unsampled locations (Palmer 1988). together can give informationabout natural
Geostattstical methods use spatial autocorre- phenomena. Controlsover relationshipsin
lation, the theory of regionalized variables geomorphologyvary with spatial scale. To
(Meentemeyer and Box 1987). determinethe structureof a process, geomor-

phologistsfind the scales of variation and then
The semivariogram summarizes the variance in identifycontrols operatingat those scales
a dependent variable as a function of scale. If (Phillips1986).
the variable changes as a linear function of Shorelineerosion isan example of a complex
distance, the semivariogram will be a parabola, processoperatingat many scales. One study
The slope of the double logarithmic plot of a (Phillips1986) identified29 variables involved in
parabola is 2, corresponding to a fractal dimen- shore erosion of the Delaware Bay. The vari-
sion of 1. If the values for the variable in two ables representedseveral scales: kilometers,
near samples are as different as they are in two meters,and phi units (to measure sand grains).
distant samples, the slope of the semivariogram Some of these variables were tidal range,
will be zero, corresponding to a fractal dimen- maximum elevation above mean low water,
sion of 2. So the fractal dimension indexes the shorelinewidth, and mean sand grain size.
variable's spatial dependence (Palmer 1988), Wave attack was a predominant variable

actingover many scales, as shown by the
Block techniques for ecological pattem analysis semivariogram(diagram 21). In a semi-
are related to the semivariogram. In block variogram, variance isplotted against scale. The
analysis, variance is plotted as a function of fractal dimension can be computedfrom this
doubling quadrat or block area. Fractal dimen- double-log plot and in this case is 1.91. A fractal
sions can be calculated from these diagrams, dimension of nearly2 means that the pattern of
Block analysis has few replicates at large sizes, erosion is verycomplex and irregular. It is a
and only few scales are considered. Semi- statistically random pattern indicatingnegative
variograms are better because they plot variance correlationbetweenadjacent sites,a pattern
as a continuous function of scale. Calculation resulting from short-range, or local controls. Any
is computer intensive because each quadrat is long-range trends that may exist are obscured by
compared to each other quadrat (Palmer 1988). local effects (Phillips1986).

The semivariogram and fractal dimension
Many semivariograms are available in the showthat the distributionof erosionrates is
literature, so D's can be calculated relative to highly complex and variable; that wide variation
the sampling interval (Burrough 1981). Shore- occurs over short distances;and that if any long-
line erosion is an example of small-scale influ- range trends exist, they have little influence. For
ences vs. large-scale influences in a natural shoreline erosion,the importantscale of variation
system. The shoreline erosion can be studied is the local scale (100 m) (Phillips 1986).
with the fractal dimension and the variogram
used together (see box).
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.._ semivariance function helps in this context by
1-2 _

o >, _, giving the sampling density needed to representthe environmental variable (McBratney and

,, o Webster 1983). Highly complex enviromnental
0., gradients may be common in nature. Geo-

! statistics and fractal dimensions are the quanti-

! tative tools for finding and analyzing these

! 0.0 gradients (Phillips 1985).

The techniques of fractal analysis can be applied
to environmental data to quantify the scales

°.3 ....... over which one can extrapolate from the sam-
0 1 2 S 4

LoaO,ST^,CE piing site to the larger area (Krummel 1986).

Data Storage and CompressionDiagram 21.--Semivariogram of wave attack as
an erosion variable acting over many scales. In
a semivari_ram, variance is plotted against For large data sets, like geographic information
scale. Thefractal dimension (1.91) indicates a systems, a fractal approach can make data

complexpattem of erosion. (Reprinted with storage more efficient (Goodchild and Mark
permission frorru" Phillips, J.D. 1986. Spatial 1987).
analysis of shoreline erosion, Delaware Bay,
New Jersey. Annals of the Association of An iterated function system is a data-compres-
American Geographers. 76: 50-62. sion method (Bamsley 1989, Peitgen et al.

1992). Iterated function systems consist of
several sets of equations that rotate, translate,

and scale the data according to specified prob-
In the forest context, gradient analysis is part of ability rules (Stevens 1989). These systems are
a method that includes ordination and classifi- also called contraction mappings--mappings

cation of vegetation. An implicit assumption is that bring points closer together. A single
continuous spatial variation. However, there contraction mapping iterated on a bounded set
may be significant deviation from the trend at will bring the set to a single point. But two or
one sampling site; or a sample from a site may more contraction mappings will become very
not represent the site's heterogeneity. A mea- complex. The attractor is usually a fractal, and
sure of the spatial heterogeneity of a variable data from the contraction process help to

would be useful {Phillips 1985). determine the fractal dimension (Cipra 1989).

The fractal dimension expresses the complexity Iterated function systems have been applied to
of the data, and can be used for checking data compression of digitized pictures. Fractals
variability along a gradient. Is variability regular from contraction mappings can be described by
enough so that spatial position can be substi- the small set of numbers that make up the

tuted for position along an environmental matrices of the mappings and the time that
gradient? Does the measured gradient show each mapping is applied, so any fractal can be
deviations from the regular trend that might reduced to small data sets. Data-compression

affect ecological interpretation (Phillips 1985)? ratios range from 10:1 to 10,000:1. The repre-
sentation can be exact or approximate (Cipra

A linear series approaching D = 2 is too complex 1989).
for most gradient analysis (Phillips 1985). The
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8. FRACTAL APPLICATIONS IN MANAGING of natural heterogeneity, and they are one of the
FOREST LANDSCAPES best tools for conducting analyses at multiple

scales (Milne 1992).
In the previous section, we described current

applications of fractal geometry in many areas of Old-growth forests have been described as

forestry research. To close this review, we focus mosaics of groups of trees of various age classes
on the potential of fractal geometry in resource and species (Bonnicksen and Stone 1982), and
management, fractal geometry has been used to quantify the

size-shape relationship of vegetation patches
Maintenance of biological diversity has emerged (Krummel et al. 1987, O'Neill et al. 1988) and the
as a significant issue in the management of shapes of boundaries between patches (Loehle
federal lands. These lands encompass one-third 1983). Consequently, fractal descriptions of the
of the Nation; and they have the potential to juxtaposition of vegetation patches may be used
support the nationwide diversity of species and as a basis for reconstructing old-growth forests.
ecosystems while providing forest-based tom- For example, with measures of fractal dimension

modities and services. Fractal geometry may as a basis, locating and designing timber har-
improve the management of old-growth areas vests in multiple-use areas can lessen the
and increase the understanding of species- ecological impact in relation to old-growth areas
habitat interactions. (e.g., Franklin and Forman 1987). Fractal

geometry may help explain the effect of land-
The maintenance of old-growth forests is one scape pattern on the spread of disturbances
goal of ecosystem management (Crow 1990). such as fire or insect damage (see, for example,
Old-growth forests have unique structural and Turner et al. (1989)). Results can be used as a

compositional features that provide critical basis for mimicking natural disturbance.
habitat for associated plant and animal species,

and they are rare. Because of their longevity, In addition to old-growth management, a second
old-growth forests may hold the key to develop- area of concern is the maintenance of species

ing practices for sustainable forestry in man- diversity. Research focuses on the relationship
aged portions of the landscape, between population persistence and the amount,

quality, and juxtaposition of habitat. Studies of
Although old-growth, presettlement ecosystems the demography of an animal species often focus

are often the model for landscape management on the effects of the spatial pattern of vegetation
(Noss 1983, Noss and Harris 1986), large areas on distribution, movement, and persistence.
of presettlement vegetation do not exist in most There is a great deal of literature on population
landscapes. An alternative involves construct- response to patchy environments (see Wiens
ing a network of old-growth patches connected (1976) and Turner (1989) for reviews). Habitat

with corridors. Each old-growth patch is sur- suitability models relate vegetation attributes to
rounded by a buffer zone in which human- the presence of the animal of interest (Verner et
related activities are restricted. The best man- aL 1986). Studies of species-habitat interactions
agement for old-growth patches and buffer usually measure vegetation at one scale. Be-
zones, conserving the full complement of com- cause the scale at which organisms interact with
positional, structural, and functional features, their environment is not known, a focus on one

may involve a fractal description of heteroge- scale may yield equivocal results.
neous organization.

Fractal geometry may improve the prediction of
Among the many methods of describing land- species-habitat interactions because of its ability
scape structure (see Turner (1989) for review), to unify patterns of habitat heterogeneity at a
fractal geometry provides several techniques for variety of scales. For example, Wiens and Mflne
measuring the heterogeneity of vegetation. All (1989) found that beetle movement through a
the methods represent exponential changes in grassland is related to the fractal dimension of
measured quantities (e.g., perimeter length, grass cover. "Fne inference (although not explic 2
area, population density) with changes in scale, ifly shown) is that beetle movement is not related
Fractals capture much of the intuitive character to cover at any one level of resolution. Move-

ment could be predicted only by integrating
cover across scale using the fractal dimension.
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The fractal dimensions of vegetation may be such as habitat area, mass effect, ecological
used as explanatory variables for a wide range equivalency, and global biological constraints.
of questions about individual behavior within a

species (Wiens and Mflne 1989). Does the Mflne {1992) provides an innovative description
degree of fragmentation at a large scale affect of resource availability for multiple species at
orgartism movement on a smaller scale? Do different scales using fractal geometry. For each
movements change depending on the objective cell in a landscape, he quantifies resource
(e.g., search for cover, food, or mate)? Do availability in surrounding ceils for a given size
population density and stability depend on the of home range. The fractal dinlension of the
fractal dimension of the vegetation? landscape is estimated as a function of the

location and density of resource availability.
There are also interesting questions about The fractal dimension describes the spatial
comparative behavior across species (Wiens variability of the resource. Next, Mflne repeats
1989). Do organisms that operate at different the measurement for different sizes of home
scales within the same vegetation type (e.g. range. Finally, he computes elevational maps of
beetles, jack rabbits, antelope) respond in the the resource densities for different home range
same way to changes in vegetation structure sizes. These provide multi-scale views of areas
through habitat fragmentation? Can differences of interior habitat, gaps, and corridors, views
be explained by life history strategies, body crucial to resource managers interested in the
sizes, physiology, or social organization? Gener- effects of alternative management policies on a
alities about the relationship between species range of species.
persistence and vegetation can be used as a
basis for better management plans. Suppose that species persistence is enhanced

when vegetation has a certain fractal dimension.
While Wiens and Milne (1989) observe and How is a desired vegetation structure created
relate a beetle's movement to the fractal dimen- from a given starting point? Although no one
sion of its habitat, the causal mechanisms has looked at this problem directly, elements
underlying the relationship are not known. It have been addressed. Palmer (1992) simulates
will take great effort to conduct similar studies fractal landscapes using the midpoint displace-

with larger organisms or multiple species, ment method with successive random additions
Instead, simulation studies can generate hy- (Feder 1988, Saupe 1988). The method was

potheses about the effects of spatial patterns of originally developed to generate landscapes with
resources on the demography of multiple, elevation varying as a function of location.

interacting species. Simulation studies can also Instead of elevation, a general environmental
evaluate alternative vegetation patterns, with variable is defined for the habitat value of a
coexistence of multiple species as the criterion, microsite (Palmer 1992). The variable depends
Palmer {1992) simulates the effects of a range of on its two-dimensional location so that the

spatial patterns on the persistence of species fractal dimension of the landscape has a par-
with different fitness functions. He assumes ticular value. This is a landscape target for

that species fitness (i.e., competitive ability and vegetation management. Methods are needed
fecundity) is related to an aggregate environ- for other quantities (e.g., perimeter length or
mental variable in a deterministic way, and that area) used to estimate fractal dimensions. An
the landscape is subdivided into patches each even more difficult problem is to determine
with a particular value of the aggregate variable, actions that maintain a desired fractal dimen-
The variable values are spatially arranged so sion over time, given growth and disturbance
that the landscape has a certain fractal dimen- functions.
sion, which represents the degree of spatial
correlation. The advantage of using fractal To summarize this chapter, fractal geometry has

landscapes is that the environmental variable is been successfully applied to the description of
continuously distributed in a statistically self- heterogeneous landscapes. Along with other
similar way rather than being either homoge- measures of landscape structure, fractal geom-
neous or random. The fractal distributions of etry will help in reconstructing old-growth
the resource look much more like real land- ecosystems and in understanding and predict-
scapes. Palmer suggests that the persistence ing species behavior and persistence. Work to
patterns result from basic ecological principles date has shown that fractal geometry is useful

33



for describing the spatial pattern of resources Basingthwaighte, James B.; Beyer, Richard P.
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BIBLIOGRAPHY growth. Nature. 343: 523-530.

Aharony, A. 1984. Percolation, fractals and Berger, David S. 1991. Modification of a
anomalous diffusion. Journal of Statistical simple fractal tree grow_ scheme: Impli-

Physics. 34: 931-939. cations on growth, variation, and evolu-
tion. Journal of Theoretical Biology. 152: 513-

Alligood, K.T.; Yorke, J.A. 1989. Fractal basin 529.
boundaries and chaotic attractors. In:

Devaney, R.L.; Keen, L., eds. Chaos and Berry, M. 1986. Order in chaos. In: Campbell,
fractals: mathematics behind the computer. David; Rose, Harvey, ed., rev. Foundations of
Providence, RI: American Mathematical Physics. 16: 1225-1226.

Society: 41-55.
Besicovitch, A.S.; Ursell, H.D. 1937. Sets of

Argoul, F.; Ameodo, A.; Grasseau, G.; Gagne, Y.; fractional dimensions V.: On dimensional

Hopfmger, E.J.; Frisch, U. 1989. Wavelet numbers of some continuous curves. Lon-
analysis of turbulence reveals the don Mathematical Society Journal. 12: 18-25.
multifractal nature of the Richardson
cascade. Nature. 338: 51-53. Blunt, Martin. 1989. Geometry of multlfractal

systems. Physical Review A. 39: 2780-2782.

Arlinghaus, Sandra Lach. 1985. Fractals take
a central place. Geografiska Annaler. 67B: Bohr, T.; Cvitanovic, P. 1987. Chaos is good
83-88. news for physics. Nature. 329:391-392.

Banavar, Jayanath; Maritan, Amos; Stella, Bonnicksen, T.M.; Stone, E.C. 1982. Reeon-
Attilio. 1991. Geometry, topology, and stnlction of a presettiement giant sequoia
universality of random surfaces. Science. mixed conifer community using the aggre-
252: 825-827. gation approach. Ecology. 63: 1134-I 148.

Barnsley, Michael F. 1989. Iterated function Branner, Bodil. 1989. Mandelbrot sets. In:
systems. In: Devaney, R.L.; Keen, L., eds. Devaney, R.L.; Keen, L., eds. Chaos and
Chaos and fractals: mathematics behind the fractals: mathematics behind the computer.

computer. Providence, RI: American Math- Providence, RI: American Mathematical Soci-
ematical Society: 127-144. ety. 75-105.

Bartoli, F.; Philippy, R.; Doirisse, M.; Niquet, S.; Briggs, John; Peat, F. David. 1989. Turbulent
Bubuit, M. 1991. Structure and self-similar- mirror. New York, IVY: Harper and Row. 222 p.

ity in silty and sandy soils: the fractal
approach. Journal of Soil Science. 42: 167- Brown, James H.; Maurer, Brian A. 1986. Body
185. size, ecological dominance and Cope's rule.

Nature. 324: 248-250.

Basar, E.; Basar-Eroglu, C.; Roschke, J. 1988.
Do coherent patterns of the strange Bunde, Armin; Havlin, Shlomo, eds. 199 I.
attractor EEG reflect deterministic sen- Fractals and disordered systems. New York,

sory-cognltive states of the brain? In: NY: Springer-Verlag. 350 p.
Markus, M.; Muller, C.; Nicolis, G., eds. From

chemical to biological organization. New York,
NY: Springer-Verlag: 297-306.

34



Bunge, Mario. 1968. The maturation of set- Cipra, Barry A. 1991. A fractal focus on the
ence. In: Lakatos, I.; Musgrove, A., eds. Mandelbrot set. SIAM News. 24: 22.
Problems in the philosophy of science.

Amsterdam: North-Holland: 120-147. Crawford, John W.; Young, lain M. 1990. A
multiple scaled fractal tree. Journal of

Bunge, Mario. 1979. Treatise on basic phi- Theoretical Biology. 145: 199-206.
Iosophy. vol. 4: A world of Systems. Boston,

MA: Reidel. 300 p. Crow, T.R. 1990. Old growth and biological
diversity: a basis for sustainable forestry.

Burlando, Bruno. 1990. The fractal dimen- In: Old growth forests: what are they? How do
sion of taxonomic systems. Journal of they work? Toronto, Canada: Canadian

Theoretical Biology. 146:99-114. Scholars' Press. 197 p.

Burrough, P.A. 1981. Fractal dimensions of Dale, M.B. 1987. Chaotic dynamics and
landscapes and other environmental data. fractals. Vegetatio. 72: 61-62.
Nature. 294: 240-242.

De Cola, L. 1991. Fractal analysis of
Burrough, P.A. 1983a. Multiscale sources of multiscale spatial autocorrelation among

spatial variation in soil. I. The application point data. Environment and Planning A. 23:
of fractal concepts to nested levels of soil 545-556.
variation. Journal of Soft Science. 34:571-

597. Dekking, F.M. 1990. Construction of fractals
and dimension problems. In: Cherbit, G., ed.

Burrough, P.A. 1983b. Multiscale sources of Fractals: non-integral dimensions and appli-
spatial variation in soil. H. A non-Brown- cations. New York, NY: John Wiley and Sons:
tan fractal model and its application in 83-97.
soil survey. Journal of Soft Science. 34: 599-

620. Derome, J.R. 1978. On the relationship
between metabolism and body mass.

Burrough, P.A. 1985. Fakes, facsimiles and Joumal of Theoretical Biology. 72: 757-759.
facts: faractal models of geophysical phe-

nomena. In: Nash, S., ed. Science and uncer- Devaney, Robert L. 1988. Fractal patterns
tainty. Middlesex, England: Science Reviews: arising in chaotic dynamlcal systems. In:
150-169. Peitgen, H.O.; Saupe, D., eds. The science of

fractal images. New York, NY: Springer-Verlag:
Calm, Robert. 1989. Fractal dimension and 137-168.

fracture. Nature. 338: 201-202.

Devaney, Robert L. 1990. Chaos, fractals and

Calder, William/L 1987. Metabolic allometry: dynamics: computer experiments in math-
basic correlations are independent of ematics. Menlo Park, CA: Addison-Wesley.
units when properly converted. Joumal of 178 p.
Theoretical Biology, 128: 523-524.

Dewdney, A.K. 1985. Computer recreations.
Campbell, David. 1989. An introduction to Scientific American. 253: 16-24.

non-linear dynamics. In: Stein, D.L., eds.

Lectures in the sciences of complexity. Menlo Dickie, L.M.; Kerr, S.R.; Boudreau, P.R. 1987.

Park, CA: Addison-Wesley: 3-106. Size-dependent processes underlying
regularities in ecosystem structure. Eco-

Cherbit, Guy. 1990. Local dimension, momen- logical Monographs. 57: 233-250.
turn and trajectories. In: Cherbit, G., ed.

Fractals: non-integral dimensions and appli- Donhoffer, S. 1986. Body size and metabolic
cations. New York, NY: John Wiley and Sons: rate: exponent and coefficient of the
231-238. allometric equation: the role of units.

Journal of Theoretical Biology. 119: 125-137.
Cipra, Barry A. 1989. Some llke it hot: explor-

ing chaos and fractals. SIAM News. 22: 8.
35



Douady, Adrien. 1986. Julia sets and the Franklin, J.F.; Forman, R.T.T. 1987. Creating
Mandelbrot set. In: Peitgen, H.O.; Richter, landscape patterns by forest cuttfuag:
P.H., eds. The beauty of fractals. New York, ecological consequences and principles.
NY: Springer-Verlag: 161-174. Landscape Ecology. 1: 5-18.

Dressier, Alan. 1991. The great attractor: do Freiberger, W.F., ed. 1960. The international
gala_!es trace the large-scale mass distri- dictionary of applied mathematics.

bution? Nature. 350: 391-397. Princeton, NJ: Van Nostrand. I, 173 p.

Ebenman, B. 1987. Niche differences between Frontier, Serge. 1987. Applicatlons of fractal

age classes and interspeciflc competition theory to ecology. In: Legendre, P.; Legendre,
in age-structured populations. Journal of L., eds. Developments in numerical ecology.
Theoretical Biology. 124: 25-33. New York, NY: Springer-Verlag: 335-378.

Ehleringer, J.R.; Field, C.B., eds. 1993. Scaling Galton, F. 1879. Proceedings of the Royal
physiological processes: leaf to globe. San Society of London. 29: 365.
Diego, CA: Academic Press. 388 p.

Gefen, Yuvel. 1987. Fractals. McGraw-Hill

Evanisko, Fran. 1991. Dimensions of scale tn Encyclopedia of Science and Technology. 7:
landscape analysis. In: Buford, M.A., ed. 391-392.
Systems analysis in forest resources. Gen.
Tech. Rep. SE-74. Asheville, NC: U.S. Depart- Gershenfeld, Neff A. 1992. Dimension measure-

ment of Agriculture, Forest Service, South- ment on high-dimensional systems. Physica
eastem Forest Experiment Station: 81-88. D. 55: 135-154.

Feder, J. 1988. Fractals. New York, IVY: Pie- Giedymin, Jerzy. 1991. Geometrical and
num Press. 283 p. physical conventionalism of Henri

Poincare' in epistemological formulation.
Ferson, S. 1983. A review of: The fractal Studies in History and Philosophy of Science.

geometry of nature. Quarterly Review of 22: 1-22.
Biology. 58: 412-413.

Girault, Paul. 1990. Attractors and dimen-
Fischer, P.; Smith, W.R. 1985. Preface. In: sions. In: Cherbit, G., ed. Fractals: non-

Fischer, P.; Smith, W.R., eds. Chaos, fractals, integral dimensions and applications. New
and dynamics. New York, NY: Marcel Dekker: York, NY: John Wiley and Sons: 60-82.
ill-iv.

Goodchild, Michael F.; Mark, David M. 1987.

Fowler, Anthony D.; Stanley, H. Eugene; The fractal nature of geographic phenom-
Daccord, Gerard. 1989. Disequilibrium ena. Association of American Geographers
silicate mineral textures: fractal and non- Annals. 77: 265-278.
fractal features. Nature. 341: 134-138.

Grassberger, Peter; Procaccia, Itamar. 1983.
Franco, M. 1986. The influence of neighbors Characterization of strange attractors.

on the growth of modular organisms with Physiological Reviews Letters. 50: 346-349.
an example from trees. Philosophical Trans-
lations of the Royal Society of London Series Green, P.M. 1991. Chaos, fractals, and non-
B. 313: 209-225. linear dynamics In evolution and phylog-

eny. Trends In Ecology and Evolution. 6: 333-
Franco, Miquel; Harper, John L. 1988. CompetI- 337.

tlon and the formation of spatial pattern
in spacing gradients: an example using Greene, Erick. 1987. Sizing up size ratios.
Koch/a scopar/a. Journal of Ecology. 76: 959- Trends in Ecology and Evolution. 2: 79-81.
974.

Gunther, B.; Morgado, E. 1987. Body size and
metabolic rates: the role of units. Joumal

of Theoretical Biology. 128: 397-398.

36

.........ii ........................... HIllII II



Halle', F. 1986. Modular growth in seed Jarvis, P.G.; McNaughton, K.G. 1986. Stomata3
plants. Philosophical Translations of the control of transpiration: scaling from leaf
Royal Society of London B. 313: 77-87. to region. Advances in Ecological Research.

15: 1-49.

HaLle', F., Oldeman, R.A.A.; Tomlinson, P.B.

1978. Tropical trees and forests. New York, Jonot, J.-L. 1990. Some remarks on the

NY: Springer-Verlag. 441 p. Hausdortt dimension. In: Cherbit, G., ed.
Fractals: non-integral dimensions and appli-

Hardwick, Richard C. 1990. Ecological power cations. New York, NY: John Wiley and Sons:
laws. Nature. 343: 420. 103-119.

Harper, J.L.; Rosen, B.R.; White, J. 1986. Kashlinsky, A.; Jones, B.J.T. 1991. Large-scale
Preface: the growth and form of modular structure of the U_lverse. Nature. 349: 753-
organisms. Philosophical Translations of the 760.
Royal Society of London B. 313: 3-5.

Keddarn, Michel. 1990. Problems concerning

Har_:son, Jermy. 1989. An int.roduction to the concept of fractal ha electrochemistry.
fracta3s. In: Devaney, R.L.; Keen, L., eds. In: Cherbit, G., ed. Fractals: non-integral
Chaos and fractals: mathematics behind the dimensions and applicationS. New York, NY:

computer. Providence, RI: American Math- John Wiley and Sons: 135-141.
ematical Society: 107-126.

Khilmi, G.F. 1962. Theoretical forest

Hastings,/klan; Powell, Thomas. 1991. Chaos in biogeophysics. Jerusalem, Israel: Israel
a three-species food chain. Ecology. 72: Program for Scientific Translations. 155 p.
896-903.

Kopelman, Raoul. 1988. Fractal reaction
Hausdorff, F. 1919. Dimension und ausseres kinetics. Science. 241: 1620-1626.

Mass. Mathematische Annalen. 79:157-179.

Kramer, E.E. 1970. The nature and growth of

Heinselman, Miron L. 1973. Fire in the virgin modern mathematics. New York, NY: Haw-
forests of the Boundary Waters Canoe thorn. 758 p.
Area, Minnesota. Journal of Quarterly
Research. 3: 329-382. Krantz, Steven G. 1989. Fractal geometry. The

Mathematical InteUigencer. 11: 12-16.
Hillel, Daniel; E/rick, David E. 1990. Preface.

In: Hillel, D.; Elrick, D., eds. Scaling in soft Krummel, J.R. 1986. Landscape ecology:
physics: principles and applications, proceed- spatial data and analytical approaches.
ings of a symposium; 1989 October 18; Las In: Dyer, M.I.; Crossley, D.A., eds. Coupling of

Vegas, NV. Spec. Publ. 25. Madison, WI: Soft ecological studies with remote sensing: poten-
Science Society of America: ix. tials at four biosphere reserves in the United

States. U. S. Man and the Biosphere Prog.
Hoekstra, T.W.; Allen, T.F.H.; Fuller, C.H. 1991. Publ. 9504. Washington, DC: Department of

Implicit scaling in ecological research. State.
BioScience. 41: 148.

Krummel, J.R.; Gardner, R.H.; Sugihara, G.;

Horgan, John. 1990. Mandelbrot set-to, did O'Neill, R.V.; Coleman, P.IL 1987. Landscape
the father of fractals "discover" his name- patterns in a disturbed environment.
sake set? Scientific American. 262: 30-34. Oikos. 48:321-324.

Ito, K., ed. 1987. Encyclopedic dictionary of LaBarbera, Michael. 1989. Analyzing body
mathematics. 4 vol. 2d ed. Cambridge, MA: size as a factor in ecology and evolution.

Mathematical Society of Japan. MIT Press. Annual Review of Ecology and Systematics.
2,148 p. 20:97-117.

LaBrecque, Mort. 1987. Fractals. The World
and I. February 1987: 162-175.

37



Lapedes, Daniel N., ed. 1978. McGraw-Hill Mandelbrot, B.B. 1967. How long is the coast
dictionary of scientific and technical of Britain? Statistical seLf-similarity and
terms. 2d ed. New York, NY: McGraw-Hill. fractional dimension. Science. 156: 636-

1,771 p. 638.

Lawton, J.H. 1986. Surface availability and Mandelbrot, B.B. 1983. The fract,d geometry
insect community structure: the effects of of nature. 2d ed. New York, NY: W.H. Free-

architecture and fractal dimension of man. 468 p.
plants. In: Juniper, B.; Southwood, R., eds.

Insects and plant surface. Baltimore, MD: Mandelbrot, B.B. 1984. Fractals in physics:
Edward Arnold: 317-331. squtg clusters, diffusions, fraetM inca-

stares and the unicity of fract_d dimension-
Lewis, Mitchell; Rees, D.C. 1985. Fractal altty, doumal of Statistical Physics. 34: 895-.

surfaces arid proteins. Science. 230:1163- 930.
1165.

Mandelbrot, B.B. 1986. Fractals and the

Liebovitch, Larry S.; Fischbarg, dorge; Koniarek, rebirth of iteration theory. In: Peitgen, H.O.;
dan P. 1987. Ion channel kinetics: a model Richter, P.H., eds. The beauty of fractals. New
based on fractal scaling rather than York, NY: Springer-Verlag: 151-160.
multistate Markov processes. Mathematical

Biosciences. 84: 37-68. May, Robert. 1988. How many species are
there on earth? Science. 24 I" 144 i- 1449.

Loehle, C. 1982. Growth and maintenance
respiration: a reconciliation of Thornley's May, Robert. 1989. Levels of organization in
model and the traditional view. Annals of ecology. British Ecological Society Sympo-
Botany. 51: 741-747. slum. 29: 339-363.

Loehle, C. 1983. The fractal dimension and Mayer-Kress, G. 1986. Introductory remarks.
ecology. Speculations in Science and Tech- In: Mayer-Kress, G., ed. Dimensions and
nology. 6: 131-142. entropies in chaotic systems: quantification of

complex behavior. New York, NY: Springer-
Loehle, Craig. 1990. Home range: a fractal Verlag. 257 p.

approach. Landscape Ecology. 5: 39-52.
McBratney, A.B.; Webster, R. 1983. How many

Lopez-Quintela, M. Arturo; Casado, Julio. 1989. observations are needed for regional
Revision of methodology in enzyme kinet- estimation of soil properties? Soil Science.
its: a fractal approach. Joumal of Theoreti- 135: 177-183.
cal Biology. 139: 129-139.

McNaughton, S.J.; Oesterheld, M." Frank, D.A.;
Lovejoy, S." Schertzer, D.; Ladoy, P. 1986. Williams, K.J. 1989. Ecosystem-level pat-

Fractal characterization of terns of primary productivity and her-
inhomogeneous geophysical measuring bivory in terrestrial habitats. Nature. 341"
networks. Nature. 319: 43-44. 142-144.

Ma, Shang-Keng. 1976. Modern theory of Meakin, Paul. 1983. Diffuslon-controlled
critical phenomena. Reading, MA: W.A. cluster formation in 2-6-dimenslonal
Benjamin. 561 p. space. Physical ReviewA. 27: 1495-1507.

MacKay, Gary; Jan, Naeem. 1984. Forest fires Meakin, Paul. 1986. A new model for biologi-
as critical phenomena. Journal of Physics A: cal pattern formation. Journal of Theoreti-
Mathematical, Nuclear and General. 17: L757- cal Biology. 118:101-113.
L760.

MeakJn, Paul. 1991. Models for material
failure and deformation. Science. 252: 226-
234.

38

_' 11111I fill I I I



Meentemeyer, Vernon; Box, Elgene O. 1987. of arthropod body lengths. Nature. 314:
Scale effects in landscape studies. In: 731-733.
Turner, M.G., ed. I_ndscape heterogeneity
and disturbance. Ecol. Studies 64. New York, Mt_ller-Herald, U. 1983. What is hypercycle?

NY: Springer-Verlag: 15-34. Journal of Theoretical Biology. 102: 569-584.

Mehaute, Alain Le. 1990. Fractals, materials Nakamura, Futoshi. 1989. Scale problems in

and energy. In: Cherbit, G., ed. Fractals: non- field science. Forest Research Bulletin. 46:
integral dimensions and applications. New 287-313.
York, NY: John Wiley and Sons: 120-134.

Naudts, J. 1988. Dimension of discrete

Mehaute, Alain Le. 1991. Fractal geometries, fractal spaces. Joumal of Physics A: Math-

theory and applications. Boca Raton, FL: ematical, Nuclear and General. 21: 447-452.
CRC Press. 181 p.

Noss, R.F. 1983. A regional landscape ap-
Mendes-France, M. 1990. Dimension and proach to maintain diversity. BioScience.

entropy of regular curves. In: Cherbit, G., 33: 700-706.
ed. Fractals: non-integral dimensions and
applications. New York, NY: John Wiley and Noss, R.F.; Harris, L.D. 1986. Nodes, net-
Sons: 222-230. works, and MUMs: preserving diversity at

all scales. Environmental Management. I0:

Miller, E.E. 1980. Similitude and scaling of 299-309.

soil-water phenomena. In: Hillel, Daniel, ed.
Applications of soil physics. San Diego, CA: Oldeman, Roelof. 1990. Forests: elements of
Academic Press: 300-318. silvology. New York, NY: Sprtnger-Verlag.

624 p.

Miller, E.E.; Miller, R.D. 1956. Physical theory

for capillary flow phenomena. Journal of O'Neill, R.V.; Krummel, J.R.; Gardner, R.H.; et
Applied Physiology. 4: 324-332. oJ. 1988. Indices of landscape pattern.

Landscape Ecology. 3: 153-162.

Miller, R.D. 1990. Scaling of freezing phenom-
ena in soils. In: Hillel, D.; Elrick, D., eds. Orbach, Raymond. 1987. Fractals. In: Year-

Sealing in soft physics: principles and applica- book of Science and Technology. 1988: 157-
tions, proceedings of a symposium; 1989 159.
October 18; Las Vegas, NV. Spec. Publ. 25.
Madison, W'I: Soil Science Society of America: Pagels, Heinz R. 1985. Perfect symmetry: the
I- I I. search for the beginning of time. New York,

NY: Simon and Schuster. 412 p.

Mflne, B.T. 1991. Lessons from applying
fractal models to landscape patterns. In: Palmer, M.W. 1988. Fractal geometry, a tool
Turner, M.G.; Gardner, R.H., eds. Quantitative for describing spatial patterns of plant

methods in landscape ecology: the analysis COlXlmtmities. Vegetatio. 75: 91-102.
and interpretation of landscape heterogeneity.
New York, NY: Springer-Verlag. 536 p. Palmer, M.W. 1992. The coexistence of spe-

cies in fractal landscapes. American Natu-

Milne, B.T. 1992. Spatial aggregation and ralist. 139: 375-397.
neutral models in fractal landscapes.
American Naturalist. 139: 32-57. Peitgen, H.O.; Jurgens, H.; Saupe, D. 1992.

Fractals for the classroom. New York, IVY:

MineUi, A.; Fusco, G.; Sartori, S. 1991. Self- Springer-Verlag. 500 p.

similarity in biological classifications.
BioSystems. 26: 89-97. Peitgen, H.O.; Richter, P.H., eds. 1986. The

beauty of fractals. New York, NY: Springer-

Morse, D.R.; Lawton, J.H.; Dodson, M.M.; Verlag. 199 p.
Wflliamson, M.H. 1985. Fractai dimension

39

I I I IIII IIIIIII I I I IIIIPlIIIIIIIIMIIII'IlI[['V][[II-.........................



Peitgen, H.O.; Saupe, D., eds. 1988. The science Rigaut, Jean-Paul. 1990. Fractais, semi-

of fractal images. New York, NY: Springer- fractais and biometry. In: Cherbit, G., ed.
Verlag. 312 p. Fractals: non-integral dimensions and appli-

cations. New York, NY: John Wiley and Sons:
Perfect, E.; Kay, B.D. 1991. Fractai theory ap- 151-187.

plied to soil aggregation. Soft Science Society
of America Journal. 55: 1552-1558. Robert, Andre; Roy, Andre. 1990. On the

fractal interpretation of the mainstream

Phillips, Jonathan D. 1985. Measuring complex- length-drainage area relationship. Water
ity of environmental gradients. Vegetatio. 64: Resources Research. 26: 839-842.
95-102.

Rockett, Frank H. 1987. Similitude. McGraw-

Phillips, Jonathan D. 1986. Spatial analysis of Hill Encyclopedia of Science and Technology.
shoreline erosion, Delaware Bay, New Jersey. 16: 428.
Annals of the Association of American Geogra-
phers. 76: 50-62. Romme, William H. 1982. Fire and landscape

diversity in subalpine forests of
Pimm, Stuart; Redfeam, Andrew. 1988. The Yellowstone National Park. Ecological

variability of population densities. Nature. Monographs. 52:199-22 i.
334: 613-614.

Rosso, M.; Sapoval, B.; Gouyet, J.-F.; Colonna,

Poincare, H. 1952. Science and hypothesis. New J.D. 1990. Creation of fractal objects by
York, NY: Dover Publications. 244 p. diffusion. In: Cherbit, G., ed. Fractals: non-

integral dimensions and applications. New

Raats, P.A.C. 1990. Characteristic lengths and York, NY: John Wiley and Sons: 203-21 i.
times associated with processes in the root
zone. In: Hfllel, D.; Elrick, D., eds. Scaling in soil Saupe, Dietmar. 1988. Algorithms for random
physics: principles and applications, proceedings fractals. In: Peitgen, H.O.; Saupe, D., eds.
of a symposium; 1989 October 18; Las Vegas, The science of fractal images. New York, NY:
NV. Spec. Publ. 25. Madison, WI: Soft Science Springer-Verlag: 71-113.
Society of America: 59-72.

Schaefer, Dale W. 1989. Polymers, fractals,

Rajasekar, S.; Lakshmanan, M. 1988. Period and ceramic materials. Science. 243: 1023-
doubling route to chaos for a BVP oscillator 1027.
with periodic external force. Journal of Theo-

retical Biology. 133: 473-477. Schaffer, W.M.; Kot, M. 1986. Chaos in ecologi-
cal systems: the coals that Newcastle

Rarity, John. 1989. Colloids stick to fractal forgot. Trends in Ecological Evolution. I: 58-
rules. Nature. 339:340-341. 63.

Rasband, S. Nell. 1990. Chaotic dynamics of Schroeder, M. 1991. Fractals, chaos, power
nonlinear systems. New York, N-Y: John Wiley laws. New York, NY: W.H. Freeman. 429 p.
and Sons. 230 p.

Semetz, M.; Gelleri, B.; Hofmann, J. 1985. The

Reiss, Michael J. 1986. Body size and metabolic organism as bioreactor: interpretation of

rate: calculated exponents are independent the reduction law of metabolism in terms
of the units used. Journal of Theoretical Biol- of heterogeneous catalysis and fractal

ogy. 123: 125-126. structure. Joumal of Theoretical Biology.
117: 209-230.

Richardson, L.F. 1960. The problem of continu-
ity: an appendix to statistics of deadly Shorrocks, B.; Marstens, J.; Ward, I.; Evennett,
quarrels. Pittsburgh, PA: Boxwood Press. 373 p. P.J. 1991. The fractal dimension of lichens

and the distribution of arthropod body
lengths. Functional Ecology. 5: 457-460.

4O



Snyder, Victor A. 1990. Scaling of mecha_tcal Taylor, Rak.J. 1988. A fractal approach to
forces and stresses in unsaturated granu- analysis of tree ring increments. Gen. Tech.
lar sotlg. In: Hfllel, D.; Elrick, D., eds. Scaling Rep. SO-69. New Orleans, LA: U.S. Depart-
in soft physics: principles and applications, ment of Agriculture, Forest Service, Southern
proceedings of a symposium; 1989 October Forest Experiment Station: 40-56.
18; Las Vegas, NV. Spec. l_dbI. 25. Madison,
WI: Soft Science Society of America: 73-I08. Toxvaerd, Soren. 1986. Fractal dlm_ension of

classical mechanical trajectories. Physics
Sposito, Garrison; Jury, William A. 1990. Miller Letters. 114A: 159-160.

similitude and generalized scaling analy-

sis. In: Hillel, D.; Elrick, D., eds. Scaling in Troughton, A. 1974. The growth and function
soft physics: principles and applications, of the root in relation to the shoot. In:
proceedings of a symposium; 1989 October Kolek, J., ed. Structure and function of pri-
18; Las Vegas, NV. Spec. Publ. 25. Madison, mary root tissues. Verda, Bratislava, Czecho-
WI: Soil Science Society of America: I3-22. slovakia: 153-163.

Stanley, H. Eugene; Meakin, Paul. 1988. Tsonis, Anastasios; Tsonis, Panagiotis A. 1987.
MultifractaI phenomena in physics and Fractals: a new look at biological shape
chemistry. Nature. 335: 405-409. and patterning. Perspectives in Biological

Medicine. 30:355-36 I.

Stauffer, Dietrich; Stanley, H. Eugene. 1989.
From Newton to Mandelbrot: a primer in Tumer, M.G. 1989. Landscape ecology: the
theoretical physics. New York, NY: Springer- effect of pattern on process. Annual Review

Verlag. 191 p. of Ecology and Systematics. 20: 171-197.

Steacy, Sandra J.; Samrrds, Charles G. 1991. Turner, M.G.; Gardner, R.H.; Dale, V.H.; O'Neill,
An automaton for fractal patterns of R.V. 1989. Predicting the spread of distur-

fragmentation. Nature. 353: 250-252. bance across heterogeneous landscapes.
Oikos. 55: 121-129.

Stevens, Roger T. 1989. Fractal programming
in C. Redwood City, CA: M & T Books. 583 p. Tyler, Scott W.; Wheatcraft, Stephen W. 1989.

Application of fractal mathematics to soil
Stevens, S.S. 1946. On the theory of scales of water retention estimation. Soil Science

measurement. Science. 103: 677-680. Society of America Joumal. 53: 987-996.

Stewau_t, lan. 1988a. The beat of a fractal Tyler, Scott W.; Wheatcraft, Stephen W. 1990a.
drum. Nature. 333: 206-207. Fractal processes in soil water retention.

Water Resources Research. 26:1047-1054.

Stewart, lan. 1988b. A review of: The science of

fractal images. Nature. 336: 289. Tyler, Scott W.; Wheatcraft, Stephen W. 1990b.
The consequences of fractal scaling in

Stewart, fan. 1989a. Big whorls do have little heterogeneous soils and porous media. In:
whorls. Nature. 338: 18-19. Hillel, D.; Elrick, D., eds. Scaling in soft

physics: principles and applications, proceed-
Stewart, lan. 1989b. Does God play dice? The ings of a symposium; 1989 October 18; Las

mathematics of chaos. New York, NY: Basil Vegas, NV. Spec. Publ. 25. Madison, WI: Soft

Blackwell. 348 p. Science Society of America: 109-122.

Stewart, lan. 1989c. A review of: Fractals Verner, J.; Morrison, M.L.; Ralph, C.J. 1986.

everywhere. Nature. 337: 610. Wildlife 2000: modeling habitat relation-
ships of terrestrial vertebrates. Madison,

Strang, Gilbert. 1986. Introduction to applied WI: University of Wisconsin Press. 470 p.
mathematics. Wellesley, MA: Wellesley-
Cambridge Press. 739 p.

41

[[ I fill I



Vlcek, J.; Cheung, E. 1986. Fractal analysis West, B.J.; Shlesinger, M. 1990. The noise in
of leaf shapes. Canadian Journal of Forest natural phenomena. American Scientist° 78:
Research. 16: 124-127. 40-45.

Voss, Richard F.; Clarke, John. 1975. I/f noise Wiens, J.A. 1976. Population responses to
in music and speech. Nature. 258: 317-318. patchy environments. Annual Review of

Ecology and Systematics. 7:8 I- 120.
Warrick, A.W. 1990. Application of scaling to

the characterization of spatial variability Wiens, J.A. 1989. Spatial scaling in ecology.
in soils. In: Hillel, D.; Elrick, D., eds. Scaling Functional Ecology. 3: 385-397.

in soft physics: principles and applications,
proceedings of a symposium; 1989 October Wiens, J.A.; Milne, B.T. 1989. Scaling of
18; Las Vegas, NV. Spec. Publ. 25. Madison, "landscapes" in landscape ecology, or,
WI: Soil ScienceSociety of America: 39-51. landscape ecology from a beetle's perspec-

tive. Landscape Ecology. 3: 87-96.
Webster, R. 1985. Quantitative spatial analy-

sis of soil in the field. Advances in Soft Wflczek, Frank. 1991. Ecology. Scientific
Science. 3: 1-70. American. 264: 58-65.

Weiner, Jacob; Solbrig, Otto T. 1984. The Williams, G.C. 1986. Retrospect on modular
meaning and measurement of size hierar- organisms. Philosophical Transactions of the
chics in plant populations. Oecologia. 61: Royal Society of London B. 313: 245-250.
334-336.

Wflliamson, M. H.; Lawton, J.H. 1991. Fractal

Weiss, S.B.; Murphy, D.D. 1988. Fractal geometry of ecological habitats. In: Bell,

geometry and caterpillar dispersal: or how Susan S.; McCoy, Earl D.; Mushinsky, Henry
many inches can inchworms inch? Func- R., eds. Habitat Structure. New York, NY:

tional Ecololgy. 2:116-118. Chapman and Hall: 69-86.

Weller, Donald E. 1989. The interspeciflc size- Wilson, Kenneth G. 1979. Problems in physics

density relationship among crowded plant with many scales of length. Scientific
stands and its implications for the -3/2 American. 241:158-179.

power rule of self-thinnlng. American
Naturalist. 133: 20-41. Young, I.M.; Crawford, J.W. 1991. The fractal

structure of soil aggregates: its measure-
Wessman, Carol; Aber, John D.; Peterson, David merit and interpretation. Joumal of Soil

L.; MeliUo, Jerry M. 1988. Remote sens!_ng of Science. 42: 187-192.
canopy chemistry and nitrogen cycling in
temperate forest ecosystems. Nature. 335: Youngs, E.G. 1990. Application of scaling to
154-156. soil-water movement considering hyster-

esis. In: Hfllel, D.; Elrick, D., eds. Scaling in
West, B.J. 1987. Fractals, intermittency and soil physics: principles and applications,

morphogenesis. In: Degn, H.; Holden, A.V.; proceedings of a symposium; 1989 October
Olsen, L.F,, eds. Chaos in biological systems. 18; Las Vegas, NV. Spec. Publ. 25. Madison,
New York, NY: Plenum Press: 305-314. WI: Soil Science Society of America: 23-37.

West, B.J.; Goldberger, Ary L. 1987. Physiology Zeide, Boris. 1990. Fractal geometry and
in fractal dimensions. American Scientist. forest measurements. Gen. Tech. Rep. PNW-

75(4): 354-365. GTR-263. Portland, OR: U.S. Department of
Agriculture, Forest Service. Pacific Northwest

West, B.J.; Shlesinger, M. 1989. On the ubiq- Research Station: 260-266.
uity of 1/f noise. International Journal of

Modem Physics B. 3: 795-819.

42



Zeide, Boris. 199 l a. Fraetal dimensions of

tree ezowaxs in three loblolly pine planta-
*ions of coastal South Carolina. Canadian
Journal of Forest Research. 21: 1208-1212.

Zeide, Boris. 1991b. Fractal geometry in
fores,ry applications. Forest Ecological
Management. 46: 179-188.

Zeide, Boris; Pfeffer, Peter. 1991. A method for
estimation of fractal dimension of tree
crowns. Forest Science. 37: 1253-1265.

Zhirmunsky, A.V.; Kuzmin, V.I. 1988. Critical
levels in the development of natural sys-
tems. New York, NY: Springer-Verlag. 170 p.

43



The United States Departmentof Agriculture (USDA) prohibits discrimination in its programson
the basis of race,co_or,national origin, sex, religion, age, disability, political beliefs and marital
or fami:lialstatus. (Not all prohibited bases apply to all programs.) Persons with disabilities
who require alternative means for communication of program information(braille, large print,
audiotape, etc.) should contact the USDA Office of Communication at (202) 720-5881 (voice)
or (202) 720-7808(TDD).

To file a complaint,write the Secretary of Agriculture,U.S. Departmentof Agriculture,
Washington, D.C. 20250,or call (202) 720-7327 (voice) or (202) 720-1127 (TDD). USDA isan
equal employment opportunity employer.

i_!iiiii
iii_i!!i

_'U.S. GOVERNMENT PRINTING OFFICE: 1994 - 558-768/00027

i,,,iillillliii ii iil



I._rtmer, Nancy D.; Haight, Robect G.; Leary, RoKe A.
1994. The fraetal forest: fxactal geometry and applications in forest

science. Gen. Tech. Rep. NC-170., St. Paul, MN: U.S. Department of Agri-
culture, Forest Service, North Central Forest Experiment Station. 43 p.

Fractal geometry is a tool lbr descI:tbtng and amalyzing h-regularity.
Because most of what we measure in the forest is discontinuous, jagged,
and tkagmented, ikactal geomettT has potentiN for improving the precision
of measurement and description. This study reviews the literature on
fractal geometry and its applications to forest measurements.
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