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- HOW TO FORMULATE AND SOLVE “OPTIMAL STAND
DENSITY- OVER TIME” PROBLEMS FOR EVEN-AGED
'STANDS USING DYNAMIC PROGRAMMING'

Chung M. Chen, Forest Biometrician,
Minnesota Department of Natural Resources,
Dietmar W. Rose, Associate Professor,
College of Forestry, University of Minnesota,
and Rolfe A. Leary, Principal Mensurationist,
North Central Forest Experiment Station,
St. Paul, Minnesota

Any intermediate cutting in a forest stand has
implications for the growth and yield of the stand
followmg cutting. For example, a severe thinning

-in a young plantation may significantly reduce the
range of possible residual densities as the stand
gets older. In general, each cutting decision in a
stand affects all future growth, cutting decisions,

- and returns. Stated another way, forest managers
face sequential or interdependent decision-mak-

- ing problems when planning the intermediate

harvests in forest stands. An optimal sequence of
such interrelated decisions can be derived using
the procedure called dynamic programming (DP).

Dynamic programming has been extensively
applied in many other areas: inventory and pro-

- duction decisions, allocation and control problems,
and in systems design (Bellman 1957, Nemhauser
1966, Wagner 1975). In forestry, however, DP has

* been used sparingly. Arimizu (1958) used it to
regulate intermediate cutting with the objective of
producmg a maximum harvest volume. Hool
(1965), using simply a “cut” or “do not cut” strate-
gy, applied a discrete DP model. Later he intro-
duced a Markov chain approach to production
control using a DP model (Hool 1966). Amidon and

_AKkin (1968) compared traditional marginal analy-

sis with DP for determining optimal growing stock
and found the latter to be more flexible and conve-

" nient. Other authors have illustrated the feasibili-

ty of DP for deriving optimal cutting schedules for
timber stands (Risvand 1969, Kilkki and Vais-
anen 1969, Schreuder 1971).

Unfortunately inany of the above papers are
difficult to follow because explicit derivation of the

lBvase'd on a paper presented by the authors at the
Midwest Forest Mensurationists’ Meeting at Pin-
gree Park, Colorado, August 14-17, 1978.

solution procedures is lacking. An additional
shortcoming of several of the papers is the absence
of suitable forest growth models—ones directly re-
lated to the decision variable. These two factors,
plus the unfamiliarity of most readers with the
special conditions which must be met for a problem
to be solved as a DP problem, account for the lim-
ited application of DP in forestry.

The purpose of this paper is, therefore, not only
to derive a set of optimal stand densities over time
(an optimum thinning schedule), but also to intro-
duce DP to the reader in a comprehensive, easy-to-
understand, way.

CONVERTING TRADITIONAL
PROBLEM STATEMENTS
INTO THE FORM NEEDED
FOR A DP SOLUTION

Traditional Description

A general description of a forest stand may be
given in a number of ways: by specifying an indi-
vidual attribute of the stand, such as its age, spe-
cies composition, or standing crop. Or, one may
give a description by specifying an ordered pair of
attributes of the stand (age, standing crop), (stand-
ing crop, height), etc. The number and nature of
the attributes used to characterize a stand are
somewhat arbitrary, but an often-used stand attri-
bute, when just one will suffice, is basal area per
acre. We shall refer to basal area per acre as the
stand state variable, and associate with it an age
variable, although the latter will not be considered
a state variable. Other variables that characterize
stand attributes of interest are net basal area



growth per unit area, basal area harvested per
unit area, and some measure of return from the
material harvested. Although these variables
change in value every year, we will consider their
values at periodic intervals. We can summarize
the variables used to characterize our forest stand
at any particular time, t, as follows:

Symbol used
- to designate Name given to
Stand attribute the attribute _the varlable
standing crop basal area
per-unit area (pua) B._, state variable
net periodic basal area
growth pua AB, net growth
- basal area ,
harvested pua Y, decision variable
return_from basal area '
* harvested R; ' return

Forest managers frequently want either to max-
imize physical yield or returns from forest stands.
A mathematical statement of this relation for
- maximum physical yield is:

' BASAL AREA

N
Maximize aH, Y,
(over all t=1

- harvest cuts)

where N = number of the final stage, and
aH,_; = numerical constant times mean height
of trees removed at the beginning of
stage t. .

A statement of this relation for maximum re-
turn is:

n
Maximize ) R, where R, is related to Y,
(over all t=1
harvest cuts)
Of course, the amount cut at any time t, Y,, cannot
be greater than the amount present at that time,
Bi-,, nor less than 0.

A geometric portrayal of the above problem
statement shows the traditional saw-toothed pat-
tern of stand development following cutting (fig.
1). Maximum physical yield comes from thinning

)
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Figure 1. — Traditional formulation of the “optimal stand density over time”
problem expressed in terms of growth periods (t), initial and final stand basal
areas (B), and amounts harvested at each cutting (Y).



intensities Yy, t = 1,2,3,4, in such a way that their
" sum, plus the final harvest cut, Y5, is a maximum,
or that the return from the four intermediate and
one final harvest cut is a maximum.

- Let us now convert the familiar problem into a
form that lends itself to dynamic programming. To
do this we must convert it into a description for a
multistage decision problem.

Multistage Decision
Process Description

- The limited use of DP in forestry has come about
not because forestry has no suitable problems, but
“rather because many potential users have not
known how to formulate problems so that DP can
be used to solve them. Part of the difficulty may
stem from the DP symbolism—the shorthand used
in expressing problems in a multistage decision
process. Another source of confusion is the variety
of decision process frameworks: deterministic, sto-
_chastic, finite time, infinite time, discrete state,
continuous time, etc. We will treat two types of
~ deterministic, finite time problems in this paper.
7 They are both discrete time, one being discrete
state and one continuous state (fig. 2).

TIME
discrete continuous
A @ & ©
discrete
" i e e e e e > _—D
STATE
(b) (d)
continuous ‘
.......... D

Figure 2. — Kinds of deterministic multistage de-
cision problems. Problems of type (a) and (b) are
treated in this paper.

Let us return briefly to the symbolism used in
expressing multistage decision processes. In addi-
tion to the normal “let B designate basal area
per unit area” type of symbolism, we have the
following:

(1) Small “n” designates one of the discrete
times called a stage. “Stage” can also be read
as “growth period.” Thus, B, designates -
basal area at the end of stage (growth peri-
od) n.

(2) *( , )” signifies the arguments in a tradi-
tional mathematical function. Normally the
arguments are related in some arithmetic
manner, such as

y=f(x,z), where f=x+ z or x/z, etc.

(3) “[ , I” signifies a more general situation
than “( , )”. The arguments in the square
brackets can be simple variables, such as x,
as well as functional relationships between
x and, say, z. Thus, [x,z] may be shorthand for
x+ z— f(x,z), where f = x/z. Normally “[ T’
designates a transformation.

An additional source of confusion in DP stems
from using symbols for a functional relation and
its numerical value. Normally in mathematics one
does not write y = y(x,z), because the y to the left of
the equality designates the numerical value of the
function on the right side. Normally one would say
y= f(x,z), with f designating the manner in which
x and z are combined. But in DP problem formula-
tion it is normal to use expressions such as T=
Tx(1),u(1), ... ,uM)]. It isusually safe to associate
the letter “T” with the transformation implicit in
the brackets, but sometimes “T” stands for the
numerical value of the quantity on the righthand
side of the equality. In the latter case, it should
have a stage number attached—for example, T,—
to indicate over how many stages the transforma-
tion applies.

@ “{ }” is typically used as

max Tix(1),u(l), . . . ,u(N)]}

u()...ulN)
subject to any

restrictions
to designate “the maximum value of T[x(1),
u(l), . . . ,u(N)Jthat can be obtained by adjust-
ingu(l), . . . ,u(N) without infringing on any of
the restrictions”.



Now let’s convert the traditional expression of -

the problem into the form required for multistage
decision problems. First, we need to identify the
old variables in their new garb:

n —instead of the continuous time vari-
able, t, we shall use the discrete vari-
able n to designate a stage in time.
Ordinarily, “n” takes on values from
1 to N. The value of N is often used to
classify the problem; e.g., if N=4, we
refer to a four-stage process. In this
paper a stage is treated as a growth
period of unspecified length.

B, —basal area per unit area at the begin-
ning of stage n.

Y, — the amount of basal area removed per
unit area at the beginning of stage n.

AB, —net periodic basal area increment per
unit area during stage n.

‘R, —the return at the beginning of stage
n.Itisrelated to the amount cut, Y,—
i.e., the decision variable.

(B -1—Yy) —the residual basal area per unit area
at the beginning of growth period n.

 BEGIN END

The traditional and multistage formulations of
the optimum stand density problem are actually
very similar. The traditional form was given in
figure 1, and the multistage form in figure 3. The
time axis in (1) has been divided into stages of
uniform length in (3), each with a beginning and
an end. The standing crop, By, B, . . . , By-, is re-
duced at the beginning of each stage by an amount
Y,, Y., ... Yy togive residual standing crop at the
beginning of each stage, (B,-Y),),
B;-Y,), ..., By-1—Yy). The latter standing crop
values form the base on which growth is based
during the stage, e.g., AB, occurs during stage one,
begins with (B,—Y,), and ends with B,. Similarly,
AB; occurs during stage two, begins with (B, -Y,),
and ends with B,, etc.

With these old ideas in new garb, let us re-
express our objective using

max z R,
Y,Y,,...,Yyn=1
subject to: B, = B,., — Y, + AB,,
0<Y,<B,_,, with B, given, and
R, = Ry(By-y, Yo).

The objective is to determine how much to thin
atstagel,Y,,stage2,Y,,...,andstage N, Yy, such

' *.

END BEGIN

STAGE n STAGEN

STAGE 1 I

STAGE 2
BEGIN

STAGE N-1
END

Figure 3. — Multistage decision problem formulation of the "optimal stand
density over time” problem. The decision variable, Y, is contained in the circle.
Note the numbering of the stages, and that a point in time may, simultaneously,
be the end of stage n-1 and the beginning of stage n.



that the suﬁi of the returns from the intermediate
cuts plus the final clearcut is maximized when the
forest standing crop basal area, B,, changes as
indicated. -

Looking at the change in more detail we have

Er ,) CHEE SSRGS IE
ena o end o
stage n stage n-1 be%{z’a’:e, of stage n

: B, = B,-1—-Yn) + AB, @
Equatlon (1) is_called the recursive relationship
for stage dependence.

_ Looking further at the growth component of (1),
we have

AB, = gBy_,~Ya, S, age), @

where g is an unspecified (for now) mathematjcal
combination of what is available to grow during
stage n, (B,—,—Y,), site (S), and stand age.

This, of course, is a stand growth formulation as
opposed to an individual tree growth formulation.
Equation (2) can be simplified by removing age
" from the argument list and letting the mathemati-

cal function itself carry age’s proxy, stage:

. ABn = gn(Bn—l_Yn’ S) (3)

_Substituting equation (3) into (1) gives a more
~ complete statement of the “recursive relationship
for stage dependence”:

Bn = (Bn—l"'Yn) + &n (Bn—l Y S) (4)

T.[Bn-1, Y5] for a given site.

C A fundamental stratagem in formulating mul-
. tistage problems is to show that the state of the
system, our B,_,, at any stage is a function of the
initial system state, B,, and the intervening deci-

. sion variables Y, ... Y,—;. This can be shown by
repeated substitution into the stage transforma-
tion relation T[],

R B, = Tn[Bn—l, Y.l
‘Recall - By = Ta-1[Bn-2, Yn-1l, s0
. Bh =."]-‘n[Tn—l[Bn-z, Yn—l]; Yn]-
Again; By, = Ty 2[Bu-s, Yu-s), s0

"By = Tul Tacs[ Toe[Ba-s, Yaosl, Yarul, Yal.

If n=3, and we look only at the variables in brack-
ets, we see the only state variable used is B, — the
initial system state —but all the decision vari-
ables are used, i.e.,

= Ty'[Bo, Y1, Yo, Y,l 5)

This says simply that the basal area at the end of
stage 3 is dependent on the basal area present
initially, B, the amount cut (Y,, n = 1,2,3), and
any relationships between B, and Y, that are
implicit in the stage transformation T[,]. The *'” on
T in equation (5) simply means that the substitu- -
tion of previous stage transformations has been
carried to completion— completion being when B,
is the only state variable in the list of stage trans-
formation arguments.

A parallel stratagem is employed for the stage
return, R,. Figure 3 shows that the return at the
beginning of stage n, R,, is affected by the decision
variable at the beginning of nth stage, Y,,, and the
state variable at the end of the previous stage,
B,-,, i.e,, R, is affected by Y, and B,. Thus

Ry = Ru(Bu—y, Yo), 6)

and, as before, B,—; = To-y[Bn-z, Yol
Carried to completion we have the “recursive rela-
tionship for stage dependence,” i.e.,

Rn = Rn,(BO, Yl; Yz, YS’ ey Yn—l, Yn)° (7)

This simply states that the return from managing
a forest to the beginning of the nth stage is related
to how much has been harvested, Y, (n=1, ... ,n),
how much standing crop was present initially, B,
and the relationship (invisible in this notation)
between growing stock and cut given in

B, = By1—Yo) + gn(Bn—l’_Yn’ S).

SOLVING MULTISTAGE
DECISION PROBLEMS
WITH DP

Up to this point we have concentrated on con-
verting the concepts and terminology used in ex-
pressing traditional forest management problems
to those used in expressing multistage decision
problems (table 1). Now let’s solve our problem
using DP.

A universal limitation on using DP to solve mul-
tistage decision problems is called the decomposa-
bility constraint, and it applies to the total return
function

TRN = TR(RI, Rq, c ey RN)



Table 1. — Traditional and multistage decision de-
scriptions of the problem of determining
_an optimal cutting regime for one rota-

. tion of an even-aged stand

Traditional description

Multistage decision description

Cutting will.be spread out over
- the rotation.

- Standing crop cannot be more
than previous standing crop
plus growth. Maximum cut is a

- clearcut. -

‘Standing crop in a stand depends
on how much was available to
grow. Amount cut at any given
 time-depends on amount cut
earlier in the rotation

) Cutting opportunities occur at
X-year intervals of which
. there are N.

Eachr cutting opportunity results
in some (possibly zero) level
of cutting.

The total return from managing
. aforest depends on the returns
from each cut.

A series of decisions is required.

There are restrictions on the
possible values of the state
variable B,_, and the
decision variable Y,,.

The state at the end of stage n, B,,,
depends on the state at the
previous stage and the
decision, (Y,) which
depends on previous decisions
Yoo1r Yo-2s « -+, Yoo

The process runs for N stages.

Each stage of the process
requires a decision, Y, that
can be converted to a return,
R..

The total return from N stages of
the process, TRy, depends on
the returns from each stage
according to some functional
relationship,i.e.,

TRy =TR(Ry, - . .,
Ra,Ro—1s - . . ,Ry).

a :for‘an N-stage process. According to Nemhauser

(1966), the objective of decomposing the total re-
turn function into N equivalent subproblems is to
‘have a formulation where:

. 1) Each subproblem contains only one state
variable B,_, and one decision variable Y,,
n=12,... N.
‘2) Each of the subproblems will be roughly
~ equivalent to a one-stage optimization prob-
lem, but all the decisions are interdepen-
~ . dent.

- 8) -The optimal decision Y,* (for n=1,
* n=2,...n=N) will be derived one at a time.
4) The optimal solutions from the subproblems
' are combined to derive the optimal solution

to the whole problem.

. 5) The decompos1tlon according to the princi-

. pleof DP, insures that the number of feasible

_solutions does not change from the original
number, and the value of the objective func-
tion associated with each feasible solution

" also does not change.

Two mathematical properties of the return func-
tion are sufficient for decomposition to be valid:
separability and monotonicity. They are discussed
in Nemhauser (1966), pages 34 to 39. The simple
return functions used in this paper are known to be
decomposable.

We now need to develop our return function. The
total return (TRy) from the first stage through the
Nth stage is some as-yet-unspecified function of
the individual stage returns

TRy=TRRy,...,Ry, ..., Ry (€))
R.=Ri(By-1, Yn)
=Rn,(B0, Yl, L} Yn)
forn=1,...,N.

where

Let us introduce a new variable fy(B,) as follows:

fu(B,) = the optimal value of TRy using the op-
timal cutting policy over N stages
(growth periods) starting from the
state Bo,

max { TR(Ry,..., R,)} 9)
YN’YN-I, eee ’Yl

subject to constraints
The problem is to choose Y,, (n=1, ...
equation (9) is true.

A simple and reasonable optimal return func-
tion that can be decomposed is
By =

{ z R.,} (10)
YN’YN—I’ e

subject to constramts

,N) so that

Recall the return at the beginning of stage n is
R, = R,(B,_,, Y,) and that the stage trans-
formation is
Bn—l = Tn-l [Bn—z’ Yn-l] = Tn—ll [BO, Yl, Y2, . o
,Yn—Z’Yn—I]
as well as

Rn = Rn’(B09 Yl’ YZ, RS ] Yn—l, Yn)-

So, in expanded terms, equation (10) is:

R/(B,, Y) + R:(B,, Y5 . ..

+...RiBpy, Yo) . ..
+ ... Rx(By-1,Yy)

fx(Bo) = max RiBo, Y) + R'(By, Yy, Yo) ... +
Yy,... YN
subject to constraints Fn'Bo, Y1, ..., Yo) ... 4.0
YN—ly YN) }

fn(By) = max
Y, ...,Yy
subject to constraints

or

RvB,, Yy, ...,



When the total return function is decomposable,
- we can modify the above equation as follows and
not change its value:

fyB) = max JR, + max {R{(B.,,YI,Y,) o
0<Y,<B, Y, ..., Yx Rn'(BO’Yl’ . yYn) o+

.. R¢B, Y,,... ,YN)}}.

Doneb 6nce legitimately, it may be repeated:

" fyBy)= max JR, + max RI(B.,,Y.,Y,)+max
0<Y,<B, 0<Y,<B, Ys,

{RB Y Yo Y+ BB Y Yo m}}}

Expressing this in a recursive manner gives

By = max R, + fy-1(BY }, 11
0<Y,<B,
where R; = R,[B,, Y,], and
' - B, = T\[B,, Y,1.
- Decomposing fy_,(B,) in equation (11) further,
we have, generally
fy-t-» Bn-r) = max {Rn + fy—a(Bo) } (12)
’ OsYnan—l

for n = N, N-1,..., 2, 1, when we use the
backward solution approach. Note that equation
(12) is identical to equation (11) when n=1—i.e.,
at the final solution stage. Describing the vari-
_ables in equation (12), we have

. fy—@-»(Ba-1) = the cumulative return over
N—(n-1) stages when the
backward solution reaches
the beginning of the nth
stage, with state variable
B,-,, having used optimal de-
cision variables Y,, Yn.1,

.Y

R, = the return at the beginning
of nth stage = R,(By—;, Yn),
with Y, the basal area
thinned at the beginning of
the nth stage, and

fy—n(B,) = the cumulative return over
N-n stages when the

backward solution reaches -

the beginning of the (n+1)

stage, with state variable By,

having used optimal deci-

sion variables Y,.;, Yn+s,
.y YN, and

Bn = Tn[Bn—la Y, ]

Figure 4 summarizes how equation (12) works in
the backward solution approach.

Equation (12) expresses what is called the func-
tional recurrence relation.

If we have a four-stage decision problem such as
the one portrayed traditionally in figure 5a and in
the multistage form in 5b, the equation embodying
the functional recurrence relation is given in 5c.
From 5a we see that we know two states of the
system: B,, the initial state, and B, the final state.
Since we are clearcutting the stand at the begin-
ning of the Nth stage, By = 0.

Now let’s work the equation in 5¢ backwards for
four stages.

Start: n=4

fl(BS) = max R4 + fo(B4)}
Y,

a) From figure 5a we see that B, = 0, therefore
fO(B4) =0, and

fi(By) = max R4}
Y *=B;

n n=n+1 n=N-1 n=N
S O i S

Figure 4. — Schematic summary of relations given in equation (12).



S
NS

BASAL AREA
<

® /O

.

Yl

e

N-tn-1)Bn-1' = vax { R, +fy_n(B) ] .forn=432,1.
n

Figure 5. — Traditional geometric (a), multistage decision (b), and DP formula-
tions (c¢) of the “optimal stand density over time” problem.
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b) The ophihal decision is to clearcut at begin-
" ning of stage 4 at which time there is B; basal
area. -

Let n=3 -

f;(B;) = max
. Y,

with f,(By) coming from the above equation.
When n=2

f3(Bl) =" max
Y.

when n¥1, fhe final solution stagé,
R, + £z(B) } (13)

R'3 + fl(Ba) }’

R, + f2(B,) }, and

£,B,) = max.
Y,

Repeatedly substituting what is known into equa-
tion (13) gives .
B me {R. + mex {m + 58 } }, and

£By) = .m'{n. + mx {R, + max {R, +£4By) }}} and finally
Y,

oo {0 e {010 }}} e
N=4
Y R,
n=1

ﬂ(Bo)=.h;{mg{R.+max{R—z+

= max
YI,Y29Y37'Y4

To solve the DP problem above, we need to know
the numerical values of two variables: B, and
fy(B,). B, is the initial stand basal area and f,(B,) is
the cumulative return over 0 stages. Because we
- are clearcutting at the beginning of stage four we

know f,(B,) = 0. This allows us to determine the
innermost maximum, and progressively work our
.way to the outer maximum.

'NONCALCULUS SEARCH OF
- ANETWORK USING DP

Suppose we possess the ability to simulate the
development of forest stands with and without
thinning. This ability may be based on, say, a
stand or individual tree growth projection system.
Then, for a species on a given site class, an initial
stand density (B,) branches according to different
levels of basal area removed at the beginning of
the stage (growth period). The basal area at the
end of the first growth period is given by B, = B,_,
—Y, + AB,, with n=1. The process is repeated for

as many values of Y, (thinning levels) as we wish
to try. Let us say we try three different values of
Y,, giving rise to three values of B, at the end of the
first growth period. For each of the three resulting
values of B,, there can be several values of Y,
tested, giving a set of B, values at the end of the
second growth period. Carried to completion, the
result is a network such as that shown in figure 6.
This figure shows that from one to three cutting
intensities were tried at the beginning of each
stage for each state at that stage. Thus, at the
beginning of stage three there are four possible
states (BA = 185, 145, 175, and 2145), and each
was tested with two thinning intensities. Of
course, many more thinning intensities can be
tested, but the resultant computational load is
best handled by a computer. Since we are dealing
with a number of stages and a discrete number of
states at each stage, the problem can be classified
as discrete stage-discrete state (fig. 2).

To facilitate handling the functional recurrence
equation of DP we attempt to find the thinning
schedule that will maximize total cords harvested
from this hypothetical stand by applying the for-
mulation

fN-m-n(Bp-) = max { Vi + fy—n(Bn) } 14)
Y,

to EACH NODE OF EACH STAGE. (We have
substituted V,, for R, because the objective is maxi-
mum physical volume yield.)

Of course, N=4, so

for n=4 f,(B;) = max

V4 + fO(B4) }-
Y,

Asbefore, f,(B,) = 0, because of the pre-established
decision to clearcut at the beginning of stage
N(=4). Thus,

f.By) = max V, }
*=B,

This equation applies for every value of B;, so we
list them here along with the cordwood yield that
would result from clearcutting the stand with B,
square feet of basal area:

£,(176) = 60 £,(175) = 75
f,(140) = 55 f,(148) = 70
£,(160) = 60 f,(165) = 75
f,(146) = 65 £,(152) =

Having evaluated equation (14) for every node
under B; in figure 6 we proceed backward to the
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Figure 6. — Network of simulated stand densities and harvest cuts for a four-
stage process. Darkened line is the optimal cutting policy.

nodes under B, that represent the system state at

j _the beginning of stage three.
- Forn=3 f;(By) = max < V; + f,(B3)}. (15)
. L Y,

R Again we evaluate equation (15) for every value of
B, and, for each value of B,, every value of Y;.

C 8+£176) | 8+6071
. fa8s = ' {16 + f,(140)*} TN {16 + 55*} =n

Comparing the sums (8 + 60) and (16 + 55), we

choose the larger, and place a “*” to indicate that

the 71 came from the route f,(185) — f,(140). Con-

- tinuing for the remaining three nodes under B,
‘gives

: 7 + £,(160) 7 +60
1 = = max =
i('145) = max {12 +£,(146* { 12 + 65* 77
Y, Y,
~ 9+£175) | _ 9+75 1 _
6078 = max {13 srasrf TN {18 rvf =88

10 -

_ 9 + £,(165) _ 9+76 _
£,(*146) = max {15 +faserf = mex { r70f =%
Y, Y,
For n=2
fs(B) = max 4 V, + fz(Bz)}
Y,
~ 6 + £,(185) _ 6+171 =
£(170) = max {13 +heusrf T Y {13 crpf =%
Y, Y.
~ 6 + £,(175) _ 6 +88 -
£5(160) = n;{a’x {13_5 + o146 | "‘;f { 135 + sa'} =985

For n=1 (the final solution stage)

f4(Bo) = max {Vl + fa(Bl)}
Y,

2 + £5(170) 2+90
£(130) = max 4.5 + f3(160)* = max 4.5 + 98.5* » =103
Y, 0 + control Y, 0 +55

Then, the optimal thinning schedule can be traced
back through the nodes by locating the starred



return functions as follows (see heavy line in
fig. 6):

Sm‘ n=1 @ n=2 @ n=3 n=N=4 End

The associated returns (cord volume yields) are
4.5 + 13.5 + 15 + 70 = 103 cords/acre.
N=4

Note that f,B,) = 2 V.*= 103 cords/acre.
n=1

The basal areas that must be removed at the be-
ginning of each stage to give these cord yields were
omitted from figure 6 to avoid clutter. They are as
follows: At the beginning of n=1, thin from 130 to

- 90sq. ft., at the beginning of n=2, thin from 160 to
80 sq. ft., at the beginning of n=3, thin from 145 to
90 sq. ft., and at the beginning of n=N=4, cleartut
(remove 152 sq. ft.).

Thus, total basal area harvested is 40 + 80 + 55
+ 152 = 327 sq. ft./acre, to give 103 cords/acre. The
reader is-invited to find a thinning policy from
among those shown in figure 6 that gives a greater
total yield in cords per acre. If the problem in-
- volved more than four stages and more than two or
three thinning intensities at the start of each
stage, the number of alternative policies would
increase rapidly, making the digital computer a
. necessity. Of course, the optimal path through the
network is not necessarily the optimal way of
thinning the stand; rather, it is the best from
‘among the ways simulated. Now let’s look at an
approach that can be used to compute the exact
optimal thinning intensity for each stage of a four-
stage process.

CALCULUS SEARCH
USING DP

In theprevmus example we dealt with a problem
formulated in terms of discrete stages as well as
discrete states. Now let’s consider a problem for-
mulated so there is a continuum of possible states
at each stage (see fig. 2a,b, for comparison). The
basic unknowns are the same as in the previous
example: How much do we thin a stand, on a parti-
cular site, at each of four times so that we maxi-
mize total cordwood volume production? Figure 5a
provides a geometric picture of what we know and
what we need to determine.

We know:

B, = the initial basal area stocking of the
stand,

B, = 0 because we want to clearcut at the
beginning of stage four, so

Y = B; because the optimal decision is to
cut as much as is present at the

beginning of the last stage.

We assume:
V. = the cordwood volume harvested at the
beginning of stage n, or
= aH,_,Y,, where
H,-, = average height of trees re-
moved at the beginning of
stage n,
a = a model parameter, and

Y, = basal area cut at the begin-
ning of stage n.

An acceptable periodic basal area growth
equation is given by

AB, = aS(B,-;—Y,)-bB,-,-Yp)", (16)

(Bn-1—Y,) = residual stand basal area/
acre at the beginning of

stage n,
S = (Si)", where Si is site index,
and
a,b,m = positive numerical con-
stants.
We do not know:

Y,,(n=1,2,3) = the basal area to be removed
in thinnings at the begin-
ning of stages one, two, and
three so that total yield is
maximized.

Again we employ the functional recurrence
equation for DP that implements a backward
solution:

fuoBar) =  max { Vo + fy-n(By) } an
0<Y,<B,.,
with n=N,N-1,...,2,1,
N =4, and

V. =R, in equation (12).
Starting with n=4, we have

fl(Bs) =max aH3Y4 + fo(B4)} 5
Y,

11



fo(Bs) =0 because B, = 0. (Recall we

where
clearcut at the beginning of
stage 4, so in the equation
B4 = (B3—Y4) + AB4,
B4 = (Bs_Y4) + g4(B3_Y4, Site)).

But this is
: B, =0 + g40, Site) =0,
since Y * = B;, therefore

fl(B3) = aH3B3

We see this result characterized in figure 7a. The
interpretation of this is, although we do not know
the standing crop basal area at the beginning of
stage four, we should cut all of it.

Our strategy is to express the quantity in brackets
(equation 18) in terms of Y;, or quantities that
determine Y;. Since B; = B,—Y; +AB; (see fig. 3),
we substitute as follows:

fz(Bz) = max aH2Y3 + aH3(B2 - Y3 + ABa) }, but

Ys
AB3 = aS(Bg—Ya) - b(B2 “Ya)m, giVing
f2(B;) = max JaH,Y;+aHy(B,—Y;+aS(B,-Y;)—

Y, T be-vgm ) 19
aO; (Y3) }

max
Ys

Now, the quantity in brackets, the quantity we

N?W’ with n=3, want to maximize by selecting an appropriate
f,B) =  max {Va + fl(Ba)} ,or, from above, value of Yj, is expressed in terms of Y; and B,
0<Y,<B, (ignoring the H, and H; that are determined out-
B side the system). We can use ordinary calculus
B -OSK;::B, { aH;Ys + oHB, } 18) methods to obtain the value of Y, that maximizes
| d
I >
' C
4 : >
| b
3 »>
. a
t >
Bz 83
o O
, ) N
By <>\ OW
. > Y3=8,-Ky
g . >V;"°o"‘1 $ RLRL e
:’: » where where K -<H3-Hz#usl'|3>m-‘-1
= 3 mbH v, =8,
a A 2 S X o/ . 3 > 483
41 ) ) N )
Bo-V; B'I'y;
B4 =0
+ } P« O—>
STAGE 1 2 3 4

12

Figure 7. — Optimal amounts to thin, Y, *,n =1 ... N, at the beginning of each
stage. The amounts to thin are derived analytically at stage four first, stage
three next, etc. Because of the repeating pattern of variables in the equation for
K., the actual application of the formulas can proceed in a forward direction.



O, by taking the partial derivative of ©; with re-
-spect to Y3, equating to zero and solving for Y
Y,
This gives the value of Y, that maximizes ©;,

Y;*=B,-K;,
1

—H. - -1
where K; = H, — H, — aSH, >0, and
mbHj

" K, < B, to be biologically meaningful.

This condition does not necessarily occur when B,
is small. The problem generated if K; > B, imply-
-ing a negative harvest, Y;*, will be discussed after
the final solution to the dynamic programming
problem has been derived.

7/

A sufficient condition for a maximum rather
than aminimum is that the second partial deriva-
tive of ©; with respect to Y; is negative. It can be
shown that this requiresa > 0,b >0, Y; < B, and

-m > 1. All these conditions generally hold. Since

B, is the stand basal area at the end of the second
. stage, the thinning at the beginning of the third
" stage cannot affect B, (see fig. 3), so we assume
3B,/0Y; = 0. What the optimum value of Y3, Y,*,
does affect is the residual basal area at the begin-
ning of stage 3, ABy*, V;*, Y, *, and V*.

Substituting the optimal value of Y3,
o Y* = B, - K,
back into equation (19) gives
- f:(By) = a(Hy(B; — Ky) + Hy(K; + aSK; —
bK;™)), or
a(Hy(B, — K;) + H;P3), where
K; + aSK; — bKj".

P,

. What is the optimal amount of basal area to thin at
the beginning of stage three? It depends on the
amount of standing crop present at the beginning
of stage three (B,) and K;. And B, we do not yet
know.

Getting on with the search, we let n=2,
fs(B) = max Vv, + fz(Bz)}
o ) 0<Y,<B,
‘= amax {H,Y, + HyB, - Ky + H:,Ps}

Y,

"= amax 6yY)),

Where .Bz = Bl - Y2 + ABZ = T[Bl, Yg].

99, _ 0 results in
2
Yz* = B1 - Kz,
1
— -1
where K, = H, - H, + aSH,\ m = 0.
msz

Note that P; is not a function of Y, because of the
volume return function and the growth model we
used, so dP;/dY, = 0.

Then
f;(By) = a(H,(B,; — K,) + Hy(P; — K3) + H3Py),
where
P, = K, + aSK, — bK, .

What is the optimal amount of basal area to thin
at the beginning of stage two? It depends on how
much is present to thin (B,), and K,; they depend
on things we do not yet know. But, they are deter-
mined as follows, when

n=1
f(Bo)

1]

max {4V, + f,(B,)}, and
Y,

max { Y, + o(®, - K + BB - Ko+ HRO). (20)
: |

Where Bl = Bo - Yl + ABI = TI[BO’ Yl].

This results in the following optimal amount to
thin at the beginning of stage one:

Yl* = Bo - Kla
_1_
_ -1
where K, = H, - H, + aSH,\m =0.
mbH,

Substituting Y,* into equation (20) gives the cu-
mulative optimal return over four stages:

f4(Bo) =a (Ho(Bo - Kl) + Hl(Pl - Kz) +

H,(P, — K3) + H;Py), (21)
or
N-1
= a(HyB, - K, + H,(P, — Kp4)), withKy =K, =0
n=1
N=4 N=4
= Z aH, ,Y*= 2 V¥,
n=1 n=1

13



since

P, = K, +aSK, — bK,", and
K, =By — Yo,

At last we know the optimal amount to thin at

.the beginning of the first period. This puts us in

- the position of being able to compute the optimal
standing crop present at the start of stage two:

Bl* = BO_YI* + ABI*, or

_ B* = B,—(B,—K,) + AB/*, where
. AB* = aS(By—Y*)-bB,~Y*)", or
AB* = aS(By—(By—K,)—bBy—(By—Ky)"
= aSK,—bK,m, therefore
B* = K, + aSK,-bK, .

. The optimal amount to thin at the beginning of
- stage two is

Y* = Bl* - K,, or
=K, + aSK, - bK," - K,.

. The optimal standing crop at the beginning of
~ stage three is given by

B* = B* — Y,* + AB,*
= B* — (Bi* — K,) + aSK, — bK, '
= K, + aSK, — bK, -
The optimal amount to thin at the beginning of
stage three is, then,
Ys* = By* - K,,
K, + aSK, - bK, - Kj, and

* the optimal standing crop at the end of stage three
is :

By = B — Y;* + ABg*
B,* — (B,* — Kj) + aSK; — bK; |
_ K, + aSK; — bK; .
The final harvest cut, then, is
' Y4’i‘ = Bs¥,
=K, + aSK; — bK; .

I

 We can check our computations by summing the
optimal harvest amounts and comparing this fig-
ure with the value of the functional recurrence
relation f,(B,). We note, however, that the latter is
expressed in cords and the former in sguare feet.

14

Total basal area cut

(thinnings + final = (B, - K,) n
harvest cut) + K, + aSK, - bK.m -K;

K, + aSK, - bK,; - K,

+
+ K, + aSK; - bKy"
3

B -K) + ¥ (K, +aSK, - bK," - Ky,,)
n=1
withK,=0. .
Cordwood volume of -
total cut = a HB, - K) + 3, a Hy(K, + aSK, - bK," - K,.,)
n=1

with K, = 0.

This agrees with the value given by equation (21).

DISCUSSION

Two conditions determine whether DP will yield
an optimal policy. One condition, which applies to
the total return function, must be met for every
kind of multistage DP problem. Called the decom-
position condition (see Nemhauser 1966), it was -
used in the previous two examples. The second
condition states that DP is applicable only to mul-
tistage decision processes where: (1) the state at
the end of stage n depends only on the state at the
beginning of stage n, on the decision at the begin-
ning of stage n, and on the stage; (2) the calculus-
based search procedure is used. If our concern is
with so-called stationary (nontime-dependent)
processes, stage does not explicitly enter the deter-
mination of state. An example of a system where
the state at the end of stage n depends on more
than the immediately previous state is as follows

B, = B,.; — Y, + AB, where
AB, = g(By-;, By—s, Bn—s, Yy, Site).
In this case the stage transformation equation is
B, = Ty[B,-,, By—s, By-3, Y, Site], instead of
B, = Tu[B,-,, Yy, Site].

Although growth functions may be made more
realistic by having historical components, ade-
quate functions have been developed using only
the previous state.

The severity of the restriction on stage-depen-
dence is not what it first appears, because it ap-
plies only when one uses a calculus-based search
procedure. We gave examples of a noncalculus-
based search procedure and a calculus-based
search. In the first example the stage dependence
constraint does not apply, but in the second it does.

Although not addressed directly, the question of
determining the optimal rotation age can be exam-
ined using the following equation from the previ-
ous section:



N

£y(By) = 2 oH,_,Y.*. (22)
: ‘n=1

By determining the numerical values of this func-
tion for several values of N it should be possible to
estimate the number of stages that will maximize
the optlmal yield provided that the growth model
possesses a biological limit as N becomes large. In
a sense, we do a sensitivity analysis of equation
“(22)on N.~ -

Conductmg a sensitivity analysis on N is partic-
ularly easy in this case because of the way the
same algebraic form is repeated in the equation for
‘the optimal amount to.thin, Y,,. In fact, we can, by
simple induction, write the equation for any value
of N, as follows: ’

.for n=N, By =0, and fy(By)=0 (assummg a clearcut
at start of stage N)

) Vy* = aHy-,By-1, and
forn=N-1,N-2,...,3,2,1, 1

H, - H,, + aSH,\ ™!

’ Y.* =Bpy — mbH » Or
n

) “ B, - K, <B,, withK, >0,
The equation for the cumulative optimal return
~ over N—(n-1) stages is
’ N-1

fyan Bact) = & HoesBoy ~K + > HuPa — Ko
0 n=n

- with Ky = 0, and .
P,=K, + aSK, bK forn=n,n+1,... N-1.
Re(:all

- )
¢ _f HizHo +esH,) m-1
Ea " mbH, '
At the final solution stage, when n=1,
L N

@)= ) aH,, Yo

n=1

By letting N=4, 5, 6, and 7, for example, and find-
ing f,(By), f5(By), . . ., f2(Bo), we can plot their re-
spective values over the years corresponding to a
rotation of four stages, five stages, etc. The optimal
biological rotation age is reached in the forward
solution when the average total return is maxim-
ized (maximum mean annual increment).

Let us return now to the problem of a negative
harvest indicated when
Y.* = B,-;—K, < 0 because K, > B,_,.

We can interpret K, as the optimal residual basal
area at the beginning of period n right after the
thinning. IfK,, is greater than the basal area at the
end of stage n—1, this would indicate that the
stand has not yet reached the optimal basal area
for a biologically meaningful thinning. The man-
ager has to wait until the stand has enough basal
area to warrant a thinning, i.e., should not cut
anything. Only at that time, derivation of an opti-
mal dynamic programming solution becomes
meaningful and the condition K, > B,_; will not
occur thereafter as long as net growth is nonnega-
tive. To show this, consider any stage n at which
By > K,

i.e.,a thinning is biologically reasonable. The opti-
mal residual basal area, K,, becomes the base for
additional basal area growth in the next stage. For
the next thinning to be meaningful

Bl‘l = Kn + ABn > Kn+1 or ABI‘I > Kn+l - Kn .

Our experience with numerous derivation of op-
timal thinning schedules for varying initial condi-
tions is that this condition holds after B,-, > K,.

The significance of the generality of the calculus
approach made possible by using growth equation
(16) is increased by the fact that the growth equa-
tion form is that of a modified Richards function
(Richards 1959) that has been shown applicable to
a variety of tree species (Pienaar and Turnbull
1973, Moser and Hall 1969).

The calculus search for an optimal cutting policy
is likely to give a more precise estimate of cutting
intensities than the network search. The latter
finds the optimal combination of those cutting in-
tensities simulated and entered in the network. A
calculus-based search finds the exact optimal
amount to cut at each cutting cycle, and is not
dependent on what was simulated.

Comparing the recurrence equation indexing as
used in this paper with what could be called the

standard method of indexing (Bellman 1957)
shows that the standard indexing is

f.(B,) = max {R., + £,_:(Ba_y) }, (23)
Y.
wheren=1,2,3,...,N (backward approach), and
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" By, =B,- Y, +AB,
The indexing introduced in this paper is

fy-m-nBn-1) = max {Rn + fN—n(Bn)}, (24)
Y,

where n =N, N-1,..., 3,2,1 (backward ap-
. proach), and

‘B, =B, , - Y, + AB,.

~ The importance of the new indexing method can
be appreciated if we examine typical cases of
backward solutions to several problems with dif-
ferent numbers of stages (fig. 8). The traditional
approach (fig. 8a) begins by relabeling the periods
- backwards in time. Thus, the final time period is
represented as n=1, no matter what the value of
N. A continuing source of confusion with the stan-
dard indexing can be seen by examining the in-
dexes above, say, growth period two. They are
f,(By), f5(B,), f,(B,), and f,(B,) for five-, four-, three-,
and two-stage processes, respectively. The stan-
- dard indexing only tells us how many growth peri-
ods from the end we have progressed.

" The new indexing approach for the same set of
- problems is shown in figure 8b. No relabeling of
“periods is necessary, even though we are doing a

2| 1(B2) 11(B1)
3 [ 13(B3) f2(B2) 11(B1)
4| 1a(Bg) f3(B3) 12(B2) 1(B1)

5| 15(B5) ta(Ba) f3(B3) f2(B2) f1(B1)

TOTAL NUMBER OF STAGES (N)

o 1 2 3 4 5

backward solution. Let us again examine the in-
dexes above growth period two, i.e., fi(B,), f3(B,),
f,(B,), and f,(B,).

It can be seen that this method of indexing does
the following:

(1) It preserves one’s sense that states of the
system, B,, should have indexes that in-
crease from left to right (see fig. 8b).

(2) The index, n—1, on, B,_,, the state variable,
is the same for the nth growth period no
matter how many stages the problem
involves.

(3) The index on f tells how many stages we
have come from the Nth stage.

(4) The sum of the indexes on f and B gives the
value of N.

(5) The index (n—1) on B,_, in equation (24)
indicates that the nth growth period starts
with the state variable B,_,, and this corre-
sponds to the traditional stand basal area
identity:

B, = B,—; — Y, + AB,.

If, for economic or other reasons the basal area
per acre removed must exceed a minimum
amount, this new condition can be eliminated from

b

2| f12(Bg) f1(B1)

3| f3(Bg) f2(B1) 11(B2)

4 | 14(Bg) f3(B1) f2(B2) 11(B3)

5| f1s5(Bg) f4(B1) f3(B2) f2(B3) f1(B4)

0 1 2 3 4 5

GROWTH PERIOD

. Figure 8. — Comparative indexes on the functional recurrence equation’s lefthand side when
using the standard DP approach (a) and the new approach (b) for a backward solution.
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the constraint equation by applying the Lagran-

- gian multlpher method (see Nemhauser 1966).

CONCLUSIONS

Dynamic programming can be used to solve “op-.

timal stand density over time” problems expressed
in either of two forms:.a network of simulated
yields or a mathematical stand growth equation.
With the former, one can use a noncalculus-based
search procedure; with the latter, one can use a
calculus-based search. When the stand growth
model has the biologically reasonable form of the
one suggested here, it is simple a matter to
~ determine optimal stand density over any number
of growth periods. This, in turn, makes it easy to
determine the optimal rotation age by doing a
sensitivity analysis of the total return on the num-
- ber of stages in the decision process.

A new method is presented for indexing the
functional recurrence equation of DP that makes
it much easier to follow the solution procedure
stage by stage.
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Binds, animals and §Lowerns are dying to tell us...no
, pollution, please!



