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HOW TO FORMULATE AND SOLVE "OPTIMAL STAND
DENSITY OVER TIME" PROBIEMS FOR EVEN-AGED

STANDS USING DYNAMIC PROGRAMMING 1
Chung M. Chen, Forest Biometrieian,

Minnesota Department of Natural Resources,
Diet-mar W. Rose, Associate Professor,

College of Forestry, University of Minnesota,
and Rolfe A. Leafy, Principal Mensurationist,

North Ceutral Forest Experiment Station,
St. Paul, Minnesota

Any intermediatecuttingina foreststandhas solutionproceduresis lacking.An additional
implicationsforthegrowthandyieldofthestand shortcomingofseveralofthepapersistheabsence
followingcutting.Forexample,a severethinning ofsuitableforestgrowthmodels--onesdirectlyre-
inayoungplantationmay significantlyreducethe latedtothedecisionvariable.Thesetwo factors,
range'ofpossibleresidualdensitiesas thestand plustheunfamiliarityofmost readerswiththe
getsolder.In general,eachcuttingdecisionina specialconditionswhichmustbemet foraproblem
standaffectsallfuturegrowth,cuttingdecisions, tobe solvedasa DP problem,accountforthelira-
and returns.Statedanotherway,forestmanagers itedapplicationofDP inforestry.

facesequentialor interdependentdecision-mak- The purposeofthispaperis,therefore,notonly
:ing problemswhen planningthe intermediate
. toderivea setofoptimalstanddensitiesovertime
harvestsinforeststands.An optimalsequenceof (anoptimum thinningschedule),butalsotointro-
suchinterrelateddecisionscan be derivedusing duceDP tothereaderinacomprehensive,easy-to-
theprocedurecalleddynamicprogramming(DP). understand,way.
Dynamic programming has been extensively

appliedin many otherareas:inventoryand pro-

ductiondecisions,allocationandcontrolproblems, CONVERTING TRADITIONAL
andinsystemsdesign(Bellman1957,Nemhauser
1966,Wagner 1975).Inforestry,however,DP has PROBLEM STATEMENTS
been used sparingly.Arimizu(1958)used itto INTO THE FORM NEEDED
regulateintermediatecuttingwiththeobjectiveof FOR A DP SOLUTION
producinga maximum harvestvolume. Hool
(1965),usingsimplya "cut"or"donotcut"strate-

" gy,applieda discreteDP model.Laterhe intro- TraditionalDescription
duced a Markov chainapproachto production
controlusinga DP model(Hool1966).Amidon and A generaldescriptionofa foreststandmay be
Akin (1'968)comparedtraditionalmarginalanaly- givenina number ofways:by specifyingan indi-
siswithDP fordeterminingoptimalgrowingstock vidualattributeofthestand,suchasitsage,spe-

' andfoundthelattertobemoreflexibleandconve- ciescomposition,or standingcrop.Or,one may
nient.Otherauthorshaveillustratedthefeasibili- givea descriptionby specifyingan orderedpairof

tyofDP forderivingoptimalcuttingschedulesfor attributesofthestand(age,standingcrop),(stand-
timberStands(Risvand1969,Kilkkiand Vain- ingcrop,height),etc.The number and natureof
anen 1969;Schreuder1971). the attributesused tocharacterizea standare

somewhatarbitrary,butanoften-usedstandattri-
Unfortunatelymany ofthe above papersare but,,when justonewillsuffice,isbasalareaper

difficulttofollowbecauseexplicitderivationofthe acre.We shallrefertobasalareaperacreasthe
standstatevariable,and associatewithitan age

_Basedonapaperpresentedbytheauthorsatthe variable,althoughthelatterwillnotbeconsidered
Midwest Forest Mensurationists' Meeting at Pin- a state variable. Other variables that characterize
gree Park, Colorado, August 14-17, 1978. stand attributes of interest are net basal area
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growthper unitarea,basalareaharvestedper NIk===,_
- unitarea,and some measureofreturnfromthe Maximize _i aHt-_Yt.

materialharvested.Although thesevariables (overall _=_=
changeinvalueeveryyear,we willconsidertheir . harvestcuts)

valuesat periodicintervals.We can summarize where N = number ofthefinalstage,and
thevariablesusedtocharacterizeourforeststand aHt__= numericalconstanttimesmean height
atany particulartime,t,asfollows: oftreesremoved at the beginningof

" Symbolused stage t. .
• to designate Namegivento A statementofthisrelationformaximum re-

Standattribute, the attribute the variable turnis:

standingcropbasalarea n
per unit area(pua) Bt-z statevariable Maximize _'_ Rt, where Rt is related to Yr.

netperiodicbasalarea ' (over all _--_=
growthpua ABt netgrowth harvest cuts)

basalarea Of course,the amount cut at any time t, Yt, cannot
harvestedpua Yt decisionvariable begreater than the amount presentat that time,

returnfrombasalarea ' Bt-_, nor less than 0.
harvested Rt return A geometric portrayal of the above problem
Forest managers frequently want either tomax- statement showsthe traditional saw-toothedpat-

im_zephysical yield or returns from forest stands, tern of stand development following cutting (fig.
A mathematical statement of this relation for 1). Maximum physical yield comesfrom thinning
maximum physical yield is:
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Figure 1:--Traditional formulation of the "optimal stand density over time"
problem expressed in terms of growth periods (t), initial and final stand basal
areas (B), and amounts harvested at each cutting (Y).
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intensities Yt, t - 1,2,3,4, in such a way that their Let us return briefly to the symbolism used in
sum, plus the final harvest cut, Ys, is a maximum, expressing multistage decision processes. In addi-
or that the return from the four intermediate and tion to the normal "let B designate basal area
one final harvest cut is a maximum, per unit area" type of symbolism, we have the

following:
Let us now convert the familiar problem into a

form that lends itself to dynamic programming. To (1) Small "n" designates one of the discrete
do this we must convert it into a description for a times called a stage. "Stage" can also be read
multistage decision problem, as "growth period." Thus, Bn designates '

basal area at the end of stage (growth peri-

Multistage Decision od)n.
Process Description (2) -( , )" signifies the arguments in a tradi-

tional mathematical function. Normally the
The limited use of DP in forestry has come about arguments are related in some arithmetic

not because forestry has no suitable problems, but manner, such as
rather because many potential users have not
known how to formulate problems so that DP can y-f(x,z), where f=x or x/z, etc.
be used to solve them. Part of the difficulty may (3) "[ , ]" signifies a more general situation
stem from the DP symbolism--the shorthand used than "( , )". The argmnents in the square
in expressingproblems in a multistage decision brackets can be simple variables, such as x,
process. Another source of confusion is the variety as well as functional relationships between
of decision process frameworks: deterministic, sto- x and, say, z. Thus, [x,z] may be shorthand for
chastic, f'mite time, infinite time, discrete state, x �z-f(x,z), where f - x/z. Normally "[ ]"
continuous time, etc. We will treat two types of designates a transformation.
deterministic, finite time problems in this paper.

. They are both discrete time, one being discrete
state and one continuous state (fig. 2). An additional source of confusion in DP stems

fromusingsymbolsfora functionalrelationand
itsnumericalvalue.Normallyinmathematicsone
doesnotwritey= y(x,z),becausethey totheleftof
theequalitydesignatesthenumericalvalueofthe
functionontherightside.Normallyonewouldsay
y= f(x,z),withfdesignatingthemanner inwhich
x andzarecombined.ButinDP problemformula-

TIME tionitisnormal touseexpressionssuchas T=
T[x(1),u(1),...,u(N)].Itisusuallysafetoassociate
theletter"T"withthetransformationimplicitindiscrete continuous
thebrackets,but sometimes"T" standsforthe

/x (a) A. (c) numericalvalueofthequantityon therighthand
• sideoftheequality.Inthelattercase,itshould

: • have a stage number attached--for example, Tn--
discrete : : toindicateoverhow many stagesthetransforma-

: tionapplies.
•.........D" {>

, STATE_

(b) (d) (4)"{ }" istypicallyusedas

T[x(1),u(1),...,u(N)]max

continuous ' U(1)... u(N)
t J

• subjecttoany
..........C> _> restrictions

todesignate"themaximum valueofT[x(1),

Figure 2. -- Kinds of deterministic multistage de- u(1),... ,u(N) ]that can be obtained by adjust-
cision problems. Problems of type (a) and (b) are ing u(1),... ,u(N) without infringing on any of
treated in this paper, the restrictions".
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Now let's convert the traditional expression of " The traditional and multistage formulations of
the problem into the form required for multistage the optimum stand density problem are actually
decision problems. First, we need to identify the very similar. The traditional form was given in
old variables in their new garb: figure 1, and the multistage form in figure 3. The

time axis in (1) has been divided into stages ofn--instead of the continuous time vari-
able, t, we shall use the discrete vari- uniform length in (3), each with a beginning and

an end. The standing crop, Bo, B1,. • • , BN-1, is re-
able n to designate a stage in time. duced at the beginning of each stage by an amount

• Ordinarily, "n" takes on values from Y_, Y2,. YN to give residual standing crop at the• ItoN.The valueofN isoftenusedto ""
beginning of each stage (Bo-Y_),

classifytheproblem;e.g.,ifN--4,we
refertoa four-stageprocess.In this (B_-Y2),...,(BN-_--YN)-The latterstandingcrop

valuesformthe baseon which growth isbased
papera stageistreatedasa growth duringthestage,e.g.,AB_occursduringstageone,
periodofunspecifiedlength, beginswith(Bo-Y_),and endswithB_.Similarly,

Bn-_--basalareaperunitareaatthebegin- AB2 occursduringstagetwo,beginswith(B_-Y2),
°, ning of stage n. and ends with B2, etc.

With these old ideas in new garb, let us re-Yn the amount ofbasal area removed per
unit area at the beginning of stage n. express our objective using N

ABn"_ net periodic basal area increment per max Rn
unit area during stage n. Y_, Ys,..., YN n--1_

-It.--the return at the beginning of stage subject to: Bn -- Bn-1 - Yn + ABn,
n..It is related to the amount cut, Yn-- 0_<Yn_Bn-_, with Bo given, and
i.e., the decision variable. 1_ = Rn(Bn-1, YH).

' (B,-_-Yn) --the residual basal area per unit area The objective is to determine how much to thin
at the beginning of growth period n. at stage 1, Y_, stage 2, Y2, • • •, and stage N, YN,such

I ,1, II ,i, II /I,1, - ,1,

,',(D,/,',---0,/,",0 ;/i',G ,;;/,',0

• BEGIN END END BEGIN

I STAGE 1 I I ...... STAGE n I I STAGE NSTAGE 2 STAGE N-1

BEGIN END END

Figure 3.- Multistage decision problem formulation of the "optimal stand
density over time" problem. The decision variable, Y, is contained in the circle.
Note the numbering of the stages, and that apoint in time may, simultaneously,
be the end of stage n-1 and the beginning of stage n.

.
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that the sum of the returns from the intermediate B3 - Ts'[Bo, Y1, Y2, Ys]. (5)

cuts plus the final clearcut is maximized when the

forest standing crop basal area, Bn, changes as This says simply that the basal area at the end of
indicated, stage 3 is dependent on the basal area present

Lookingat the change in more detail we have initially, Bo, the amount cut (Yn, n = 1,2,3), and
any relationships between Bn and Y, that are

Basal'area_ Basalarea removedat .I + growthduring . or implicit in the stage transformation T[,]. The on
atendof| = at.endof - beginningof/ stagen
stagen/ stagen-/ stagen-- T in equation (5) simply means that the substitu- .

tion of previous stage transformations has been
•Bn = (Bn-l-Yn) -I- ABn (1) carried to completion--completion being when Bo

Equation (1) is_called the recursive relationship is the only state variable in the list of stage trans-
for stage dependence, formation arguments.

Looking further at the growth component of(l), A parallel stratagem is employed for the stage
we have return, Rn.Figure 3 shows that the return at the

, , _Bn = g(Bn-l-Yn, S, age), (2) beginning of stage n, RH,is affected by the decision

where g is an unspecified (for now) mathematical variable at the beginning of nth stage, Y=,and the
combination of what is available to grow during state variable at the end of the previous stage,
stage n, (Bn-ly-Yn), site (S), and stand age. Bn-1, i.e., R2 is affected by Y2 and B_. Thus

This, of course, is a stand growth formulation as Rn = Rn(BH-1, Yn), (6)

opposed to an individual tree growth formulation.
Equation (2) can be simplified by removing age and, as before, Bn-1 = Tn-l[Bn-2, Yn-1].
from the argument list and letting the mathemati- Carried to completion we have the "recursive rela-
cal function itself carry age's proxy, stage: tionship for stage dependence," i.e.,

' ABn = gn(Bn-l-Yn, S) (3) Rn = Rn'(Bo, Y1, Y2, Y3, • • • , Yn-1, Yn). (7)

Substituting equation (3) into (1) gives a more This simply states that the return from managing
complete statement of the "recursive relationship a forest to the beginning of the nth stage is related
for stage dependence": to how much has been harvested, YH (n = 1,..., n),

Bn = (BH-1-Yn) �gn(BB-_-Yn. S) (4) how much standing crop was present initially, Bo,
• and the relationship(invisiblein thisnotation)

• = Tn[Bn-1, Yn] for a given site. between growing stock and cut given in
Bn = (BH-1-YH) + gn(Bn-l-Yn, S).

A fundamentalstratageminformulatingmul-

tistageproblemsistoshow thatthestateofthe SOLVING MULTISTAGE
• system,ourBn-_,atany stageisa functionofthe

initialsystemstate,Bo,and theinterveningdeci- DECISION PROBLEMS
sionvariablesY1...Yn-,.Thiscanbe shown by WITH DP
repeatedsubstitutionintothestagetransforma-
tionrelationT[ ], Up tothispointwe have concentratedon con-

vertingtheconceptsand terminologyusedinex-
. Bn - Tn[Bn-1, Yn]. pressing traditional forest management problems
Recall " Bn-1 = Tn-l[Bn-2. Yn-1], so to those used in expressing multistage decision

Bn TH[TH-I[Bn-2. Yn-1], Yn]. problems (table 1). Now let's solve our problem
Again, Bn-2 = Tn-2[Bn-3, Yn-2], so using DP.

Bn = Tn[TH-I[Tn-2[Bn-3, Yn-2], Yn-_ ], Yn]. A universal limitation on using DP to solve mul-

Ifn =3, and we look only at the variables in brack- tistage decision problems is called the decomposa-
ets, we see the only state variable used is Bo -- the bility constraint, and it applies to the total return
initial system state--but all the decision vari- function
ables are used, i.e., TRN= TR(R_,R2,..., RN)

5



Table 1. -- Traditional and multistage decision de- Two mathematical properties of the return func-
scriptions of the problem of determining tion are sufficient for decomposition to be valid:
an optimal cutting regime for one rota- separability and monotonicity. They are discussed
tion of an even-aged stand in Nemhauser (1966), pages 34 to 39. The simple

return functions used in this paper are known to be
Traditionaldescription Multistagedecisiondescription decomposable.

Cuttingwill.bespreadoutover Aseriesofdecisionsisrequired. We now need to develop our return function. The
therotation, total return (TRN) from the first stage through the

Nth stage is some as-yet-unspecified function of
standingcropcannotbemore Therearerestrictionsonthe the individual stage returnsthanpreviousstandingcrop possiblevaluesof thestate

plusgrowth.Maximumcutisa variableBn-1andthe TRN =TR(RN Rn, R1) (8)clearcut, decisionvariableYn. "" "" ' "" "'
where Rn =Rn(Bn-1, Yn)

Standingcropina standdepends Thestateattheendofstagen,B.,
=Rn'(Bo, YI,.. Y,)onhowmuchwasavailableto dependsonthestateatthe • '

grow.Amountcutatanygiven previousstageandthe for n = 1,..., N.
time,dependsonamountcut decision,(Y,)which
earlierintherotation, dependsonpreviousdecisions Let us introduce a new variable fN(Bo)as follows:

Yn-,,Y,-, ..... Y,. fN(Bo) = the optima] value of TRN using the op-
Cuttingopportunitiesoccurat TheprocessrunsforNstages, tima] cutting policy over N stages

X-yearintervalsofwhich (growth periods) starting from the
.thereareN. state Bo.

EachcuttingoPportunityresults Eachstageoftheprocess { }
insome(possiblyzero)level requiresadecision,Y,, that = max TR(RN,..., R_) (9)
ofcutting, canbeconvertedtoa return, YN,YN-_,... ,Y_

R,. subject to constraints

. Thetotalreturnfrommanaging ThetotalreturnfromNstagesof The problem is to choose Yn, (n = 1, ,N) so that
•aforestdependsonthereturns theprocess,TRN,dependson " ""
fromeachcut. thereturnsfromeachstage equation (9) is true.

accordingtosomefunctional A simple and reasonable optima] return func-
relationship,i.e., tion that can be decomposed is

TRN= TR(RN.....
Rn,Rn-1..... RI). N

Tor an N-stage process. According to Nemhauser fN(Bo) = max Rn (10)
(1966), the objective of decomposing the total re- YN,YN-1,... ,Y_ n=l
turn function into N equivalent subproblems is to subject to constraints

have a formulation where: Recall the return at the beginning of stage n is

•1) Each subproblem contains only one state Rn = Rn(Bn-_, Y,) and that the stage trans-
variable Bn-_ and one decision variable Yn, formation is

n=l,2,... ,N. Bn-1 = Tn-1 [Bn-2, Yn-1] = Tn-l' [Bo, Y1, Y2,. • •
2) Each of the subproblems will be roughly ,Yn-2,Yn-_]

equivalent to a one-stage optimization prob- as well as

lem, but all the decisions are interdepen- Rn = Rn'(Bo, Y_, Y2,..., Yn-_, Y_).
dent.

3) .The optimal decision Yn* (for n=l, So, in expanded terms, equation (10) is:
n =2,... n =N) will be derived one at a time. /-

4) The optimal solutions from the subproblems fN(Bo)= max _ R_(Bo,Y_)+ R2(B, Y2)...
are combined to derive the optimal solution Y,..... YNC" +... I_(B._,, Yn)... 1
to the whole problem, subject to constraints +... RN(BN-_,Ys)_

5) The decomposition, according to the princi- or J
f

ple of DP, insures that the number of feasible fN(Bo)= max ._ R_(Bo,Y_)+ l_'(Bo, Y_,Y2). •• +...
solutions does not change from the original Y,..... YNI."
number, and the value of the objective func- subject to constraints l_'(Bo, Y_..... Y")" "" +'" "1

tion associatedwith each feasiblesolution RN'(Bo,Y,.....YN-,,YN)_ •alsodoesnot change.
.



When the totalreturnfunctionisdecomposable, Rn = thereturnatthebeginning
we canmodifytheaboveequationasfollowsand ofnth stage= Rn(Bn-_,Yn),
notchangeitsvalue: with Yn the basal area

• _ thinnedatthebeginningof
fN(Bo)= max _Z, + max _Rs'(Bo,YI,Ys)...+... thenthstage,and

0_y,_<Bo t Y2..... YN R.'(Bo,Y_ ..... Yn).. + fN-n(Sn) = the cumulative return over

I.

Rs'(Bo,Y,.... , YN)__. N-H stages when the$ • •

J J backward solution reaches

Done once legitimately, it may be repeated: the beginning of the (n+l)
• • stage,withstatevariableBn,

fN(Bo) = max f R, + max _Rs'(Bo, Y,, Ys)+ max having used optimal deci-
0_<Y_Bo L 0_<yg_<B_t Y8..... YN sion variables Yn+l, Yn+2,

• _ ..., YN, and
{Rs'(Bo. Y,, Y2, Y3)... +...RN'(Bo, Y,, Ys ..... YN)}}.I" Bn - Tn[Bn-1, Yn].

Expressing this in a recursive manner gives Figure 4 summarizes how equation (12) works in

{ } thebackwardsolutionapproach.fN(Bo)= max R_ + fN-I(B_), (11) Equation(12)expresseswhat iscalledthefunc-
0_Y_<_Bo tionalrecurrencerelation.

where R_ = R_[Bo,Y_], and
B_ = T_[Bo,Y_]. Ifwe havea four-stagedecisionproblemsuchas

DecomposingfN-_(B_)inequation(11)further, theoneportrayedtraditionallyinfigure5aandin
we have,generally themultistageformin5b,theequationembodying

fN-(.-,) (B._,) = max _ Rn+ fN-n(Bn) _ (12) the functional recurrence relation is given in 5c.
. 0<_Yn_<Bn___ _ From 5a we seethatwe know two statesofthe

system:Bo,theinitialstate,and B4thefinalstate.
forn = N, N-1,..., 2, 1,when we use the Sincewe areclearcuttingthestandatthebegin-
backwardsolutionapproach.Notethatequation ningoftheNth stage,BN = 0.

(12)isidenticaltoequation(11)when n=l --i.e., Now let'sworktheequationin5cbackwardsfor
at thefinalsolutionstage.Describingthevari- four stages.
ables in equation (12), we have

• Start: n=4

fN-(n-_)(Bn-_)= the cumulative return °ver { }
N-(n-1) stages when the f_(B3) = max R4 + fo(B4)
backward solution reaches Y4

the beginning of the nth a) From figure 5a we see that B4 "- 0, therefore
stage, with state variable fo(B4) = 0, and
Bn-1, having used optimal de- f 1
cisionvariablesYn, Yn+l, fl(B3)-max ,_ R4],
• .. ,YN. Y* -B3 t J

• • • , j.. j.- j.-

xl'_) flIBN 1)_j

o.j)

.

.

Figure 4.--Schematic summary of relations given in equation (12).
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Figure 5. -- Traditional geometric (a), multistage decision (b), and DP formula-
tions (e) of the "optimal stand density over time" problem.
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b) The optimal decision is to clearcut at begin- as many values of Y_ (thinning levels) as we wish
ning of stage 4, at which time there is B3 basal to try. Let us say we try three different values of
area. ' - YI, giving rise to three values of B_ at the end of the

Let n =3 first growth period. For each of the three resulting
values of B_, there can be several values of Y2

f2(B2) = max { R3 + fl(B3) }, tested, giving a set of B2 values at the end of theY3 second growth period. Carried to completion, the

with fi(B3) coming from the above equation, result is a network such as that shown in figure 6. ,
This figure shows that from one to three cutting

When n=2 intensities were tried at the beginning of each

i f3(B1) max _ R2 + f2(Bs) _ and stage for each state at that stage. Thus, at the
I Y2 _ J' beginning of stage three there are four possible

states (BA = 185, 1145, 175, and 2145), and each
when n=l, the final solution stage, was tested with two thinning intensities. Of

{ } course, many more thinning intensities can be
° _f4(Bo)= max. R1 + fs(B_) . (13) tested, but the resultant computational load is

•Y_ best handled by a computer. Since we are dealing
' with a munber of stages and a discrete number ofRepeatedly substituting what is known into equa-

tion (13) gives states at each stage, the problem can be classified

. " f4(Bo) = max {Rl +max {Rs + f2(B_)}},and as discrete stage-discrete state (fig. 2). "

v' Y' To facilitatehandlingthefunctionalrecurrence
{ { { }}}f4(Bo)= max R_ + max Pn + max Re + f_(Ba) ,and finally

y- y_ y, equation of DP we attempt to find the thinning

_(Bo) = max {.Ri + max {R_ + max {Its+ max {R4 + fo(B() }}}},or schedule that will maximize total cords harvested
Y,' Y, v_ Y, from this hypothetical stand by applying the for-

= max _ Rn . fN-(n-1)(Bn-1)= max Vn 4- fN-n(Bn) (14)
Y_,Ys,Y3,Y4 Ynn=l

to EACH NODE OF EACH STAGE. (We have
To solve the DP problem above, we need to know substituted Vnfor Rnbecause the objective is maxi-

the numerical values of two variables: Bo and mum physical volume yield.)

fo(B4).Bois the initial stand basal area and fo(B4)is Of course, N =4, so

thecumulativereturn°ver0 stages"Becausewe { }
areclearcuttingatthebeginningofstagefourwe forn =4 fl(B3)= max V4 + fo(B4) •
know fo(B4)= 0.Thisallowsus todeterminethe Y4
innermostmaximum, and progressivelywork our
Way totheoutermaximum. As before,fo(B4)= 0,becauseofthepre-established

• decisionto clearcutat the beginningof stage
N(=4). Thus,

{ }NONCALCULUS SEARCH OF fx(B3) = max V4" Y* =B3

I A NETWORK USING DP
' This equation applies for every value of B3, so we

Suppose we possess the ability to simulate the list them here along with the cordwood yield that
development Of forest stands with and without would result from clearcutting the stand with B3

thinning. This ability may be based on, say, a square feet of basal area:

stand or individualtree growth projection system, f_(176) = 60 f1(175) = 75
Then, for a species on a given site class, an initial fl(140) = 55 f1(148) = 70
stand density (B0) branches according to different
levels of basal area removed at the beginning of fl(160) = 60 f_(165) = 75
the stage (growth period). The basal area at the f_(146) = 65 f1(152) = 70
end of the first growth period is given by Bn = Bn-_ Having evaluated equation (14) for every node
--Yn+ ABn, with n =1. The process is repeated for under B3 in figure 6 we proceed backward to the
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B3
STAGE n - 1 n = 2 n = 3 n = 4

B1
6

..

_ 12

2

,o ,, -C)"Oo---__ ,o .4
.. ". 13.6 , 18 __

• @ 75

__ 9

15

170 h 2 of basal am

• per acreat the beginning
" of stagen.

6 cordsof wood

i removedat beginning
ofstaeen.

Figure 6. --Network of simulated stand densities and harvest cuts for a four-
" stage process. Darkened line is the optimal cutting policy.

nodes under B2 that represent the system state at f,(,145)-- max 9 + f,(165) _ 9 +

•the beginning of stage three, y, 15 + f,(152)*J maXy, 15 + 70* = 85

. . For n=3 f_.(B2)= max { V3 + f,(B3) }. (15) For n=2 { )}
" Y3 f3(B1) = max V2 + f2(B2

Y2

Again we evaluate equation (15) for every value of
B2 and, for each value of B2, every value of Y3. f,(170) = max = max =90

, Thus _ Y, 13 + f2(,145). Y2 13 + 77,

f8(160) = max = max 13.5 + 85"J = 98.5
Yz 13.5 + f_(2145)* yffi{ { 6o}f, i185) = max 8 + f,(176) "_ 8 +

Ys 16 + f_(140)*J = maXya 16 + 55* = 71

final solutionFor n=l (the stage)

Comparing the sums (8 + 60) and (16 + 55), we { )}
choose the larger, and place a "*" to indicate that f4(Bo) = max V_ + f3(B_
the 71 came from the'route f2(185) --* f_(140). Con- Y_

tinuing for the remaining three nodes under B2 { 2 + f,(170) } {2+90}

gives f4(130) = max 4.5 + fs(160)* = max 4.5 + 98.5* = 103
Y, 0 + control Y, 0 + 55

{ } {oo}7 + f_(160) 7 +
f2(1145) = max = max = 77

Y3 12 + f_(146)* Y3 12 + 65*

9+ f,(175) _1 1f9+ 75 } Then, the optimal thinning schedule can be tracedf2(175) = max _ = max = 88

j-

Y3 - 18 + f_(148)* Y3 18 + 70* back through the nodes by locating the starred
.

10



return functions as follows (see heavy line in We know:

fig. 6): Bo = the initial basal area stocking of the
n= 1 -n=2 n=3 n=N=4 End stand,

Start@ L_O ' _ _O _Q B4 =0 because we want to clearcut at the
• beginning of stage four, so

The associated returns (cord volume yields) are
4.5 + 13.5 + 15 + 70 = 103 cords/acre. Y* ---- B3 because the optimal decision is to

cut as much as is present at the
N =4 beginning of the last stage. °

Note that f4(Bo) = Vn *= 103 cords/acre.
_ n = 1 We assume:
' Vn = the cordwood volume harvested at the

The basal areas that must be removed at the be- beginning of stage n, or
ginning of each stage to give these cord yields were = czHn-lYn, where
omitted from figure 6 to avoid clutter. They are as
follows: At the beginning of n= 1, thin from 130 to Hn-1 = average height of trees re-
90sq. ft., at the beginning ofn =2, thin from 160 to moved at the beginning of
80 sq. ft., at the beginning ofn =3, thin from 145 to stage n,
90 sq. ft., and at the beginning ofn=N =4, clear_ut a - a model parameter, and
(remove 152 sq. ft.). Yn = basal area cut at the begin-

Thus, total basal area harvested is 40 + 80 + 55 ning of stage n.
+ 152 = 327 sq. ft./acre, to give 103 cords/acre. The An acceptable periodic basal area growth
reader is _invited to find a thinning policy from equation is given by

•among those shown in figure 6 that gives a greater
total yield in cords per acre. If the problem in- ABn = aS(Bn-_-Yn)-b(Bn-_-Yn) m, (16)

• volved more than four stages and more than two or

three thinning intensities at the start of each (Bn-_-Yn) = residual stand basal area/
stage, the number of alternative policies would acre at the beginning of
increase rapidly, making the digital computer a stage n,
necessity. OfCourse, the optimal path through the S = (Si)r,where Si is site index,
network is not necessarily the optimal way of and
thinning the stand; rather, it is the best from a,b,m - positive numerical con-
among the ways simulated. Now let's look at an stants.
approach that can be used to compute the exact
optimal thinning intensity for each stage of a four- We do not know:
stage process. Yn,(n=l,2,3) -- the basal area to be removed

in thinnings at the begin-
. . _ ning of stages one, two, and

I three so that total yield is
- maximized.

' CALCULUS SEARCH
USING DP Again we employ the functional recurrence

equation for DP that implements a backward
solution:

I' In the'previous example we dealt with a problem { }
i formulated in terms of discrete stages as well as fN-¢n-1)(Bn-1) = max Vn + fN-n(Bn) (17)

discrete states. Now let's consider a problem for- 0_<Yn<_Bn-i

. mulatedsothereisa continuumofpossiblestates with n = N, N-I,..., 2,I,
, ateachstage(seefig.2a,b,forcomparison).The N = 4,and

basicunknowns arethesame asintheprevious Vn = Rn inequation(12).
example:How much dowe thinastand,onaparti-
cularsite, at each of four times so that we maxi- Starting with n =4, we have
mize tot_ cordwood volume production? Figure 5a /- "t

provides a geometric picture of what we know and fl(B3) =max_c_H3Y4 + fo(B4)_,
what we need to determine. Y4 t J

11



Where fo(B4)=0 because B4"= 0. (Recall we Our strategy is to express the quantity in brackets
clearcut at the beginning of (equation 18) in terms of 'IT3,or quantities that
stage 4, so in the equation determine Ys. Since Bs = B2-Y3 +ABs (see fig. 3),
B4 = (Bs-Y4) + AB4, we substitute as follows:

B4 = (B3-Y4)+ g4(B3-Y4, Site)). f2(B2)= max _ aH2Y3+ aH3(B2- Y3�AB3) _, but
But this is Y3 l J

•. B4 - 0 + g4(0, Site) = 0,
since Y4*.- Bs, therefore AB3 = aS(B2-Y3) - b(B2-Y3) m, giving .

fl(B3) = aHsB3 • f2(B2) = max _aH.Ys+aHs(B2-Ys.aS(B2-Y3)- •

We see this result characterized in figure 7a. The Y3 t r b(B2_ys)m)_._(19)
interpretation of this is, although we do not know - max _ aOs (Ys) _.
the Standing crop basal area at the beginning of Y3 t J

stage four, we should cut all of it. Now, the quantity in brackets, the quantity we
Now, with n-3, want to maximize by selecting an appropriate

' f,(B,) = max Vs �f,(Bs),or, from above, value of Y3, is expressed in terms of Y3 and B2

0_Ys_B2 . (ignoring the H2 and H3 that are determined out-

_ side the system). We can use ordinary calculus
= max L aH2Y3+aH3B3j. (18) methods to obtain the value of Ys that maximizes"0_Ya_B2

d

• ,j i C , 4k_
Ira"

i b

a

B2 B3

, Y; : B2 - K3

"" _ Y_ Y2: -K where

, H1

_,,o

STAGE 1 2 3 4

Figure 7. -- Optimal amounts to thin, Y*, n = 1... N, at the beginning of each
stage. The amounts to thin are derived analytically at stage four first, stage
three next, etc. Because of the repeating pattern of variables in the equation for
Kn, the actual application of the formulas can proceed in a forward direction.
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08by takingthepartialderivativeof03withre- 002 _ 0 resultsin
-spect to Y3, equating to zero and solving for Y3: 0Y2

--003(Y3) _ 0. Y2* = B1 - K2,
0Y 3 1

This gives the value of Y3 that maximizes O3,Y3*=B2-K3, where K2 = (H2 - H' + aSH2)m-lm-bH2 _ 0.
-.

1
.,

I where Ks =( Hs - H_ - aSH_ n-1
mbH3 _ >0, and Note that P3 is not a function of Y2 because of thek volume return function and the growth model we

Ks _<B2 to be biologically meaningful, used, so 0P3/0Y2 = 0.

This condition does not necessarily occur when B2 Then
is small. The problem generated if Ks > B2 imply- fs(B_) = a(H_(B_ - K2) + H2(Ps - Ks) + HsPs),

•ing a negative harvest, Y*, will be discussed aider
the final solution to the dynamic programming where

• - - K mproblem has been derived. , P2 K2 + aSK2 b 2 •

A sufficient condition for a maximum rather What is theoptimal amount of basal area to thin
than a'minimUm is that the second partial deriva- at the beginning of stage two? It depends on how
tive of O3with respect to Y3 is negative. It can be much is present to thin (B_),and Ks; they depend
shown that this requires a > 0, b > 0, Ys < B2 and on things we do not yet know. But, they are deter-

m > 1. All these Conditions generally hold. Since mined as follows, when
• B2 isthestandbasalareaattheendofthesecond

•stage,thethinningatthebeginningofthethird n= 1
' stage cannot affect B2 (see fig..q), so we assume f,(Bo)= max {V, + fs(B,)},andY,

aB2/0Y3 = 0. What the optimum value of Y3, Y3*, = max { aHoY,+ a(H,(B,- K:) + Hf(V,- Ks) + H_Ps)}.(20)
does affect is the residual basal area at the begin- Y,
ning of stage 3, AB*, V*, Y*, and V*.

where B1 = Bo - Y_ + AB_ = T_[Bo,Y1].
Substituting the optimal value of Y3,

• Y* -- B2 - Ks, This results in the following optimal amount to
thin at the beginning of stage one:

back into equation (19) gives
YI* = Bo - K1,

f2(B2) = a(H2(B2 - K3) + H3(K3 + aSK3 - 1

bKsm)), or where K_ =(H_ - Ho + aSH_)m-l>0.• ' = _(H2(B2 - K3) + H3P3), where mbH• .

P3 = K3 + aSK3 - bK3m. Substituting Y_* into equation (20) gives the cu-
mulative optimal return over four stages:

What iS the optimal amount of basal area to thin at
. the beginning of stage three? It depends on the f4(Bo) = a (Ho(Bo - K_) + H_(P_ - K2) +

amount of standing crop present at the beginning H2(P2 - K3) + H3P3), (21)
of stage three (Bs) and K3. And B2 we do not yet
know.

• or

Gettingon withthesearch,we letn=2, N-1

{ }f3(B,) - max V2 + f2(B2) = a(I'Io(Bo - K_) + Hn(Pn - Kn+I)), with Ks = K4 = 0
0_y2_<B_ n=l

=amax ill,Y2 + H2(B2 - K3) + H3Ps_ N=4 N=4

F _t

.Ys

- amax odg2),
n=l n=l

whereB2 = B_- Y2 + AB2 = T[B_, Y_].

13
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Total basal area cut
since (thinnings + final = (Bo - Kz)

Pn = Kn +aSKn - bKnm,and harvest cut) ++K2K_++aSKzaSK__-bKsmbKlm- KaK2
+ K8 + aSKs - bKam

3

Kn = Bn-1 - Yn*. = (Bo - KI) + _ (K_ + aSKn - bKnm - Kn+l)
n=l

At last we know the optimal amount to thin at withI_ = 0. 3

•the beginning of the first period. This puts us in Cordwoodvo],meof
total cut = a Ho(Bo - K_) + _ a Hn(Kn + aSK_ - bK_= - Kn+z)

theposition of being able to compute the optimal n--1
standing crop present at the start of stage two: withK4 = 0.

.,

B_* = Bo-Y_* + ABe*, or This agrees with the value given by equation (21).

BI* = Bo-(Bo-K_) + ABe*, where
DISCUSSION

ABI* aS(Bo-YI*) -b('Bo-Yl*) m= , or

ABe* = aS(Bo-(Bo-K_))-b(Bo-(Bo-K_)) m Two conditions determine whether DP will yield
, m an optimal policy. One condition, which applies to

= aSK_-bK_ , therefore the total return function, must be met for every
K In.BI* - K_ + aSK_-b _. kind of multistage DP problem. Called the decom-

position condition (see Nemhauser 1966), it was
The optimal amount to thin at the beginning of used in the previous two examples. The second

Stage two is condition states that DP is applicable only to mul-
Y2* -- B_* - K2, or tistage decision processes where: (1) the state at

the end of stage n depends only on the state at the
= K_ + aSK1 - bK1 m - K2. beginning of stage n, on the decision at the begin-

The optimal standing crop at the beginning of ning of stage n, and on the stage; (2) the calculus-
stage three is given by based search procedure is used. If our concern is

B* -- B_*-Y2* + AB2* with so-called stationary (nontime-dependent)
processes, stage does not explicitly enter the deter-m

= B_* - (Bi* - K2) + aSK2 - bK2 mination of state. An example of a system where

K m the state at the end of stage n depends on more
= K2 + aSK2 - b 2 • than the immediately previous state is as follows

The optimal amount to thin at the beginning of Bn "- Bn-1 - Yn + ABn where

stage three is, then, ABH- g(Bn-1, Bn-2, Bn-3, Yn, Site).

Y* = B* - K3, In this case the stage transformation equation is
m

= K2 + aSK2 - bK2 - K3, and Bn = Tn[Bn-1,Bn-2,Bn-3,Yn,Site], instead of

the optimal standing crop at the end of stage three Bn = Tn[Bn-1, Yn, Site].is
Although growth functions may be made more

B* = B* -Y* + AB* realistic by having historical components, ade-
m

= B2* - (B2* - K3) + aSK3 - bK3 quate functions have been developed using only
, m the previous state.

. = K3 + aSK3-bK3 .
The severity of the restriction on stage-depen-

The final harvest cut, then, is dence is not what it first appears, because it ap-
Y* = B*, plies only when one uses a calculus-based search

m procedure. We gave examples of a noncalculus-
= K3 + aSK3- bK3 . based search procedure and a calculus-based

search. In the first example the stage dependence
constraint does not apply, but in the second it does.

We can check our computations by summing the
oPtimal harvest amounts and comparing this fig- Although not addressed directly, the question of
ure with the value of the functional recurrence determining the optimal rotation age can be exam-
relation f4(Bo).We note, however, that the latter is ined using the following equation from the previ-
expressed in cords and the former in square feet. ous section:
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" N Let us return now to the problem of a negative

fN(Bo)= V aHn-lYn*. (22) harvest indicated when
-n=4=#1 Y* -" Bn-l-Kn _ 0 because Kn > Bn-1.

By determining the numerical values of this func- We can interpret Kn as the optimal residual basal
tion for several values of N it should be possible to area at the beginning of period n right after the
estimate the number of stages that will maximize thinning. IfKn is greater than the basal area at the
the optimal yield provided that the growth model end of stage n-l, this would indicate that the .

possesses a biological limit as N becomes large. In stand has not yet reached the optimal basal area
a sense, we do a sensitivity analysis of equation for a biologically meaningful thinning. The man-

i (22) on N. - ager has to wait until the stand has enough basalarea to warrant a thinning, i.e., should not cut
Conducting a sensitivity analysis on N is partic- anything. Only at that time, derivation of an opti-

ularly easy in this case because "of the way the mal dynamic programming solution becomes
same algebraic form is repeated in the equation for meaningful and the condition Kn _ Bn-1 will not

•the optimal amount to thin, Yn. In fact, we can, by occur thereafter as long as net growth is nonnega-
simple induction, write the equation for any value tive. To show this, consider any stage n at which
ofN, asfollows: ' Bn-1 _ Kn

forn--N,BN=0,andfo(BN)---0(assumingaclearcut i.e.,athinningisbiologicallyreasonable.Theopti-
ats.ta_ofstage,N) realresidualbasalarea,Kn,becomesthebasefor

• additionalbasalareagrowthinthenextstage.For
V* - aHN-1BN-1,and the next thinning to be meaningful

•Zorn=N-I, N-2 ..... 3, 2, 1, 1 Bn -- Kn + ABn _ Kn+l or ABn _ Kn+l - Kn •

y.=Bn_,_ (Hn-Hn-,+aSHn) m-1mbHn , or Our experience with numerous derivation of op-

= B___ - K_ _<Bn-_,with K_ _>O. tima] thinning schedules for varying initial condi-
• tionsisthatthisconditionholdsafterBn-_> Kn.

The equation'forthecumulativeoptimalreturn
overN --(n-1)stagesis The significanceofthegeneralityofthecalculus

N-1 approachmade possiblebyusinggrowthequation
= a (H.-,(Bn-_- Zn) + _. H.(Pn - Kn+,)), (16)isincreasedbythefactthatthegrowthfs-t.-1,.(Bn-l) equa-

n=n_" tion form is that of a modified Richards function
(Richards 1959) that has been shown applicable to

with Ks- 0, and a variety of tree species (Pienaar and Turnbull1973, Moser and Hall 1969).
Pn= Kn + aSKn - bKnm for n =n, n+ 1,... ,N- 1.

Recall The calculussearchforanoptimalcuttingpolicy•

, " ( ) I is likely to give a more precise estin_ate of cutting

•Kn - Hn- H___+ aSHn m-1 intensitiesthan thenetworksearch.The latter
mbHn " findstheoptimalcombinationofthosecuttingin-

tensitiessimulatedandenteredinthenetwork.A
calculus-basedsearchfindsthe exactoptimal

At thefinalsolutionstage,when n=l, amount to cutat each cuttingcycle,and isnot
' N dependenton what was simulated.

fs(Bo)
__._ aHn-_ Y*. Comparing the recurrence equation indexing as
n=l usedinthispaperwithwhat couldbe calledthe

By lett'mgN=4, 5,6,and71forexample,andfind- standardmethod of indexing(Bellman 1957)
ing:f4(Bo),fs(Bo),.••,f_(Bo),we can plottheirre- showsthatthestandardindexingis
spectivevaluesovertheyearscorrespondingtoa

rotationoffourstages,fivestages,etc.Theoptimal fn(Bn)= max _Rn + fn-1(Bn-1)_, (23)
biologicalrotationage isreachedintheforward Yn L J
solutionwhen theaveragetotalreturnismaxim-
_ (maximum mean annualincrement), wheren = 1,2,3,...,N (backwardapproach),and
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" Bn-1 = Bn - Yn + ABn. backward solution. Let us again examine the in-
dexes above growth period two, i.e., f4(B_), f3(B_),.

The indexing introduced in this paper is f2(B_), and f_(B_).

fN-(n-1)(Bn-1) -- max { Rn + fN-n(Bn)} (24) It can be seen that this method of indexing does• Yn ' the following:

(1) Itpreservesone'ssense that statesofthe

where n = N, N-l,..., 3,2,1(backward ap- system, Bn, should have indexes that in-

proach),and creasefrom lefttoright(seefig.8b).

Bn = Bn-_- Yn + ABn. (2)The index,n-1, on,Bn-_,the statevariable,

is the same for the nth growth period no

Th e importance of the new indexing method can matter how many stages the problem
be appreciated if we examine typical cases of involves.
backward solutions to several problems with dif- (3) The index on f tells how many stages we
.ferent numbers of stages (fig. 8). The traditional have come from the Nth stage.
approach (fig. 8a) begins by relabeling the periods
backwards in time. Thus, the final time pesiod is (4) The sum of the indexes on f and B gives the

represented as n-l, no matter what the value of value of N.

N. A continuing source of confusion with the stan- (5) The index (n-1) on Bn-_ in equation (24)
dard indexing can be seen by examining the in- indicates that the nth growth period starts
dexes above, say, growth period two. They are with the state variable Bn-_, and this corre-
f4(B4), f3(B3), f2(B2), and f_(B_) for five-, four-, three-, sponds to the traditional stand basal area
and two-stage processes, respectively. The stan-
dard indexing only tells us how many growth peri- identity:

. 0ds from the end we have progressed. Bn = Bn-1 - Yn + ABn.

The new indexing approach for the same set of If, for economic or other reasons the basal area

problems is shown in figure 8b. No relabeling of per acre removed must exceed a minimum
periods is necessary, even though we are doing a amount, this new condition can be eliminated from

: a b

_i 2 f2(B2) fl(el) 2 f2(B0) fl(el)

_ 3 f3(B31 f2(B21 fl(Bl) 3 f3lB0) f2(Bl) fl(B2)
O

' "L_

:_. 4 f4(B4 ) f3(B3) f2(B21 fl(B1) 4 f4lB0) f3(Bl) f2(B21 fllB3)
' _)

-_ .
.,J

5 f5(e5) f4(B4) f3(S3) f2(B2) fl(B1) 5 f5(B0) f4(B1) f3(B2) f2(e3) fl(e4)
O

0 1 2 3 4 5 0 1 2 3 4 5

• GROWTH PERIOD

Figure 8. _ Comparative indexes on the functional recurrence equation's lefthand side when

•. Using the standard DP approach (a) and the new approach (b) for a backward solution.
°
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Birds, animals and f low_ are dying to tell us...no
poltution , pleas e !
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