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ERRORS IN SAMPLING PLANS BASED ON WALD’S
'SEQUENTIAL PROBABILITY RATIO TEST

Gary W. Fowler, Associate Professor of Biometrics,
School of Natural Resources, University of Michigan,
- Ann Arbor, Michigan

Various sequential sampling plans based on
Wald’s Sequential Probability Ratio Test
(SPRT) (Wald 1947, Wetherill 1966) have been
developed for sampling forest populations. Such
plans have been used to test hypotheses for
. decisionmaking and to classify populations. At
least 27 plans have been developed to aid in mon-

- itoring insect populations or their damage.

Some plans were based on one SPRT to yield a
two decision procedure such as control versus no
control, while others were based on two SPRT’s
~ to yield a three decision procedure such as light
versus medium versus heavy infestations. Be-
- cause most sequential sampling plans in forestry
" . have been applied to the field of entomology,
this paper will emphasize entomological ex-
amples.

The sample size needed to make a decision to
accept or reject a hypothesis for sequential
sampling plans based on Wald's SPRT is a
random variable. A decision to accept or reject a
hypothesis or to continue sampling is made after
each observation is taken, and observations are
taken until enough evidence has been collected

- to make one of- thp terminating decisions. Such

plans usually require only 40 to 60 percent as
* many observations as an equally reliable fixed
- sample size procedure. They are intuitively ap-
pealing ini that few observations are needed to
make a terminating decision when, for example,
insect populations are sparse or abundant. Given
the budget restraints faced today, sequential
sampling plans should find wide applicability
where we need to classify populations or com-
pare populations with some standard for de-
- cisionmaking purposes and observations are

time consuming, costly, and/or destructive.
Such plans would also be useful when it is impor-
tant to make a quick decision.

The first step in constructing a sequential
sampling plan is to define the sampling unit and
associated random variable of interest. The dis-
tribution of the random variable must then be
determined. All of the plans developed to sample
forest populations are based on. either the bi-
nomial, negative binomial, normal, or Poisson
distributions. For the normal and negative
binomial distributions, the population variance
o? and the clumping parameter K, respectively,
are assumed known, and if unknown must be
estimated.

The second step is to set the class limits (e.g.,
economic thresholds or pest density levels), the
simple null and alternative hypothesis parameter
values of the underlying random variable, and
the associated risk levels (probabilities of a Type
I Error (a) and a Type II Error () ). The gap
between the two class limits (the interval be-
tween treatment and nontreatment thresholds)
depends on the biology and behavior of the in-
sect and its damage (Knight 1967; Waters 1955,
1974). The two class limits define three decision
zones: the two terminating decisions or category
classifications such as no control (acceptance of
the null hypothesis) and control (acceptance of
the alternative hypothesis), and the no decision
zone (continue sampling).

Because there are two class limits or simple
hypotheses that are used to construct a SPRT,
two types of error can occur in decisionmaking:



(1) accepting the null hypothesis when the alter-
native hypothesis is true and (2) accepting the
alternative hypothesis when the null hypothesis
is true. The probabilities (risks) of these errors
‘'must be set in"advance according to the serious-
ness of each error.

After the decision boundaries for a given
SPRT have been developed given the underlying
distribution and the class limits and associated
risks, the operating characteristic (OC) and
average sample number (ASN) properties of the
‘test should be determined. Wald (1947) has
developed OC and ASN equations to describe
the properties of the test for all possible values
of the random variable of interest. The OC equa-
- tion-or curve shows the probability of accepting
the null hypothesis or lower classification, and
the ASN equation or curve shows the average
number of observations needed to make a ter-
minating decision. The shapes of the OC and
ASN curves depend upon the underlying distrib-
ution and class limits and associated risks
(Waters 1974, Onsager 1976). -

In all of the sequential sampling plans devel-
oped to sample forest populations, it is assumed
. that Wald’s OC and ASN equations describe the
actual OC and ASN functions of the plan, which
" means that the nominal values used to construct
a SPRT are assumed to be the actual values.
Wald’s equations are developed on the assump-

- - tion that a terminating decision is made as soon

" as a decision boundary is crossed. This assump-
tion is not true because of the integer nature of
the decision process of a SPRT, which results in

" overshooting of the decision boundaries when a

~ terminating decision is made (fig. 1) (Wald

'1947). Thus, Wald’s equations are not accurate.

N | Wald’s equations also assume that (I) only one
~ observation is taken at each stage of the sequen-

- tial process, (2) terminating decisions are possi-

"ble after one observation has been taken, and (3)
there is no upper limit to the number of observa-
tions taken before a terminating decision is
made. Many forest researchers have modified
the decision process of the SPRT by taking more
than one observation at each stage of the sam-

" pling plan, not making a terminating decision

. until some minimum number of obseryations has
been taken, and forcing a terminating decision to
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Figure 1. — Acceptance (d.) and rejection (dy)
-decision boundaries for the lodgepole needle-
miner sequential sampling plan. Lines con-
necting points (.) show a sequential sample of

- 11 observations yielding a decision of light in-
festation. Notice overshooting of the lower
decision boundary.

be made at some maximum number of observa-
tions. Any of these modifications will, of course,
affect the actual OC and ASN functions of a
sampling plan. However, in all applications
where one or more of these modifications are
made, Wald’s OC and ASN equations are still
used to describe the properties of the sampling
plan.

This paper examines (1) the errors inherent in
Wald’s OC and ASN equations due to overshoot-
ing of the decision boundaries and (2) the effects
of the above modifications on the accuracy of
Wald’s equations for sequential sampling plans
based on the normal distribution using Monte
Carlo procedures.

WALD’S SPRT — NORMAL
'DISTRIBUTION

- In forest sampling, Wald’s SPRT is used to
test the simple null hypothesis H, : 6 =68, against



the simple alternative hypothesis H,: 6 = 6, (6,
> 6, ), where 0 is the test parameter of the distri-
bution of the random variable X. The binomial
distribution is used to describe X when X takes
on one of two values (X = 1 for tree or plant or
part of tree or plant infested and X = 0 for tree
- or plant or part of tree or plant not infested).
The negative binomial, normal, or Poisson dis-
tributions are usually used to describe X when X
is the number of insects per sampling unit. 6,
and 0, define the class limits for the two decision
categories — control or no control. The proba-
bility of a Type I Error (a) is the probability of
‘rejecting H, when 6 = 6,, and the probability of
a Type II Error (B) is the probability of rejecting
H, when 6 = 0,. At the class limits, 6, and 6, ,
the risk levels are set according to the serious-
ness of the two errors.

The two above simple hypotheses are used to
develop- the following decision rule: H,: 6 <6,
(no control) versus H, :0 > 6, (control). The class

~ limits, 8, and 6, , are critical values of 6. If 6>6,

(the zone of rejection), protect against accepting
H, by setting 8 at 8, . If 8 <6, (the zone of accep-
tance), protect against rejecting H, by setting «
at 6,. If 6, <6 <6, (the zone of indifference), it
- does not matter what decision is made if 6 is
about halfway between 6, and 8, but becomes

- more important what decision is made as 6> 6,

‘and 6~ 6,. This concern is expressed by the
values of a and 8 set at 8, and 6, , respectively.
The values 6,, 6, , a, and 8 given the distribution
of X describe a particular SPRT.

Decision Boundaries

. 'The SPRT bases its decisons on a sequence of
observations (x,, x., . . .) from the given dis-
. tribution of the random variable X. At each
stage of the test, an observation is taken at ran-
. dom from the given distribution f(x,6), and the
. probablhty ratio
'l l'l [ f(xhel )/f(xueo )] ’

based on n observations taken up to and in-
cluding the n* stage is calculated. At each stage
one of the following decisions is made:

(1) If R.> A, stop sampling and reject H,.

(2) If R.<B, stop sampling and accept H, .

~ (8) If B<R,<A, continue sampling.

AX(1-8)/a and BZ=p/(1-a). The approximate
equalities are due to the fact that the number of

observations is a discrete integer variable that
causes overshooting of the decision boundaries
before a terminating decision can be made for a
SPRT (fig. 1). Observations are taken until one
of the terminating decisions is made.

R. can be simplified by taking the natural
logarithm of each density functlon ratio in the
product R, , which yields &, =2, 8, where Z, =1n
[ f(x.,6,)/f(x,,60)]. The decision procedure is
now
(1) If 2.> a, stop sampling and reject H, .
(2) If 2.<b, stop sampling and accept H, .
(3) If b <2,<a, continue sampling.

aZ~ln A and b~1n B.

2. is usually converted to the statistic .2, x,,
which is easier to calculate by setting Z. =a
and Z, = b and solving for .1, x, to determine the
upper rejection (D, = =, x,=h, + sn) and lower
acceptance (D.=,%,x,=h, + sn) boundaries,
respectively. The decision boundaries are parallel
straight lines with intercepts h, and h, and com-
mon slopes. The decision is now:

(1) If .}, x,> h, + sn, stop sampling and
reject H, .

(2) If ,3.x,<hl+sn, stop sampling and
accept H,.

(8) If h,+sn<.}, x,<h,+sn, continue sam-

pling.
h,, h;, and s are calculated from 6,, 6,, a, and .
For the normal distribution, _ (x-u )?

1 20?
e

(2n)'/%20

f(x) =

bz
h1= °

Hi-Ho

ao?
hz =

Hi-Ho
_ M1t
2

when the test parameter 6=y, the mean of the
distribution and the nontest parameter o? is the
variance of the distribution.




Once the density function f(x), 6,, 6,, a, and
are determined, the decision boundaries D, and
D, are easily obtained from the probability ratio
" R.. For the normal distribution, 0* is assumed
known and if unknown must be estimated. Even
though the decision boundaries are parallel
straight lines, the probability of making a ter-
‘minating decision is one. The class limits used
" for decisionmaking are in terms of the mean of
the underlying distribution and are functions of
the test parameter 6. For the normal distribu-
tion, the test parameter u is the mean of the dis-
tnbuhon The equations for h,, h,, and s were
by Waters (1955) for the binomial,
nega ive binomial, normal, and Poisson distribu-
. tions, Talerico and Chapman (1970) developed a

" Fortr IV computer program (SEQUAN ) to

- throughout this paper. Stark (1952) developed a
plan: for classifying lodgepole needleminer
" (Recurvaria milleri Busck.) populations as light,
. medium, or heavy to make preliminary surveys
of needleminer outbreak areas. The sampling
unit was a branch tip including needles up to 5
years old, and the random variable was the num-
ber of live larvae per branch tip. It was deter-
mined that the number of live larvae per branch
tip followed approximately a normal distribu-
tion, and the standard deviation o0 was estimated
to be 15.62. One of the SPRT’s in the three de-
~ cision (2SPRT) procedure was used to test
- whether insect infestations were light or medi-
~ um. The class limits y , and u , were set at 5
- and 15 larvae per branch tip, respectively, and
and § were set at 0.05 and 0.10, respectively.

The decision rule was to classify an infestation
"as light if u <uo =5 and to classify it as heavy
_ifu > po =5. If u =5 for a specific needleminer
population, the SPRT would indicate a medium
infestation 1 out of 20 times when the infestation
was light. If u =15 for a specific needleminer
population, the SPRT would indicate a light in-
festation 1 out of 10 times when the infestation

" . was medium. Using the formulas for the normal

distribution, h,, h,, and s were calculated to be
- -54.93, 70.52, and 10, respectively (fig. 1).

Wald’s OC and ASN Equations

The OC function L(6) is the probability of ac-
cepting H, as a function of 6. Wald’s OC equa-
tion is L(6) =(A*©®-1)/A*@-B* ) where A
and B are as defined earlier and h(6) is such that

*® h(8)

f(xral )
f(x,0)dx =1
f(x,eo )

-00

T f(x,0,) h(6)
X o
f(x,Oo)

where x is a continuous or discrete variable, re-
spectively, and h(6) #0 (Wald 1947). To obtain
points on the OC function, one of the above equa-
tions is solved for h(0), 0 is determined for vari-
ous values of h(6), and L(0) is calculated. When
h(6) =1 and -1, 6 =6, and 6,, respectively. For
the case where h(0) =0, L(6) 2a/(a-b) (Wald
1947). For the normal distribution,

Liu ) ~(A* ®-1)/(A* @B+ ®)

ho-2
h(u)="t"He %K
Hi-Ho

where 6=y .

The ASN function Ey(n) is the average num-
ber of observations needed to make a terminat-
ing decision. Wald’s ASN equation is

Ee(n)"‘ o(Z. )/ E4(2) for h(8) #0

where Z,. =,:,2, as defined earlier, Eg(n) ~bL
(6) +a[ 1-L(6)], and E4(Z)=E,[ 1n(f(x,6,)/
f(x,60) ) ] (Wald 1947). To obtain points on the
ASN function, E4(n) is calculated for several
values of 0 determined from h(6) above. For the
case where h(8) =0, Ey(n) 2ab/Ey(% ) (Wald
1947). For the normal distribution, '

Eu(n) = bL(u ) + a[ 1-L(u )]

B (220 (- £ )
o? 2

(Fl'ﬂo)z

Eu(z)2 =
0?
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OC and ASN points for h(6) =4(-0.5)-4 will
usually describe the OC and ASN functions ade-
_quately. Formulas for Wald’s OC and ASN equa-
tions for the four distributions discussed earlier
were summarized by Waters (1955). Talerico and
Chapman (1970) and I have developed Fortran
IV computer programs to calculate OC and ASN
points for selected values of h(6). My program
also calculates Monte Carlo OC and ASN points
for selected values of h(6). Wald’s OC and ASN
pomts for various values of h(u ) and u are given
in table 1 for the sampling plan presented earlier
“to classify populations of the lodgepole needle-
. miner, and the resulting OC and ASN equations
are shown in figure 2.
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Figure 2. — Wald’s approximate OC (L(u ) ) and
ASN (Eu(n)) functions for the lodgepole
needleminer sequential sampling plan. Notice
-that L(u)=1 - a=0.95 at p =po, =5 and
L(u) ﬁ=010atu =u, =156.

As mentioned earlier, Wald’s OC and ASN
equations, and associated nominal « and f, are
only approximate in that they are based on the
assumption that a terminating decision is made
as soon as one of the decision boundaries is
crossed. Because the number of observations is a
discrete integer variable, overshooting of a
decision boundary almost always occurs before a
terminating decision is made. Wald (1947) states
that the errors inherent in his equations due to
overshooting are small if o and $ are small (less
than 0.05) and the class limits 6, and 6, are suf-
ficiently close together. Because a and f are
usually 0.10 (0.05 at the smallest) and the class
limits are wide for most sampling plans in for-
estry, Wald’s equations may not be good approx-
imations to the unknown actual OC and ASN
functions,

Sequential sampling plans require substan-
tially fewer observations than equally-reliable
fixed sample size procedures. For the lodgepole
needleminer example, where uo, =5, u, =15,
0=15.62, @ =0.05, and  =0.10, approximately
21 observations are needed to yield a =0.05
@u,=5 and =010 @u, =15 for a ﬁxed
sample size % - test. Compare this sample sizé
with the ASN function for the sequential sam-
pling plan (fig. 2). The advantage of the sequen-
tial sampling plan is clear. However, in compar-
ing the two procedures, it must be remembered
that Wald’s equations are only approximate.

" Table 1. — Wald’s Operating Characteristic (L(u ) ) and Aver-
age Sample Number (Eu (n) ) points for several values of
h(u ) and p for the lodgepole needleminer sequential sam-

pling plan

LYCORRE A (1 A M LV v L P Em)
4 -10 1.000 2.75 11.25  0.405 15.76
3 -5 1.000 3.66 12.5  0.268 14.73
2 0 0.997 5.45 15 0.100 11.60
1 5 0.950 9.73 20 0.011 6.91
0.5 7.5 0.828  13.32 25 0.00L 4.69
0.25  8.75 0.711  14.96 30 0.000 3.53
0 0

-

0.562 15.88




THE ERRORS IN WALD’S OC
 AND ASN EQUATIONS

To investigate the effects of overshooting the
decision boundaries of a given sequential sam-
pling plan on the accuracy of Wald’s OC and
ASN equations, Monte Carlo simulation tech-

_ niques were used to estimate the unknown actu-
. al OC and ASN functions. A distribution genera-
_ tor was developed to simulate taking observa-

. tions at random from a normal distribution. The

errors in Wald’s equations were examined by

comparing:

.(l) Wald’s nominal risk values (« and ) and

~ associated average sample numbers (ASN) with

Monte Carlo estimates of the actual risk values

" (a and )3) ‘and associated average sample num-
"bers (ASN) at class limits p o[ hip ) =1] and
[ h(p)=-1] for various values of a = and

uo and u,; and (2) Wald’s OC and ASN equa-
tions and Monte Carlo estimates of the unknown
actual OC and ASN functions for the lodgepole

- needleminer example.

A sensitivity analysis indicated that 5,000 and
1,000 samples from a normal distribution (trials
or iterations) yielded adequate accuracy for the
Monte Carlo OC and ASN values at h(u )= + 1
and h(u ) # + 1, respectively. Unless otherwise
stated, that many iterations were used. Any de-
sired degree of accuracy can be obtained but the
cost increases with the number of iterations.
Throughout the discussion, OC and ASN refer to
Wald’s equations, OC and ASN refer to Monte
Carlo functions, SDo"c =| oC( l-OC)/ #trials-
1]*/? is the standard deviation of the OC value,
SE, i~ is the standard error of the ASN value,
and RE,s» =(ASN-ASN)/ASN is  the
estimated error of Wald’s ASN value.

The Pattern of Errors

To establish if there are any trends in the er-
rors inherent in Wald’s equations, Wald and
Monte Carlo OC and ASN values at h(u )=+ 1
were compared for a =p =0.05, 0.10, and 0.20
and 4, =0.1, 0.25, 0.5, 1, 2, and 38 (tables 2 and
3). 6, =(u.-uo:)/0 is the noncentrality para-
meter of the standardized normal distribution.

Table 2. — Comparison of Wald’s and Monte Carlo values of
a and B at hfu ) =+ 1 for several values of 6, and a = for

the normal distribution
H a=B

§ H 0.05 0.10 0.20

Yioa Psog !me, i G D osog | RE, (& P ospg ! oRE
0.1 0.047 0.0015 0.064 0.093 0.0021 0.075 0.192 0.0020 0.042

25 .046 .0010 .087 .088 .0014 .136 177 .0019 .130
.5 .037 .0009 .351 .077 .0013 .299 .156 .0018 .282
1 .028 .0008 .786 .057 .0012 915 .123 .0016 .626
2 .016 .0006 2.12 .031 .0009 2.23 .064 .0012 2,12
3 .008 .0004 5.25 .016 .0006 5.25 .028 .0008 6,14

" Table 8. — Comparison of Wald’s and Monte Carlo values of Average Sam-.
ple Number (ASN) at h(u ) =+ 1 for several values of 8, and a = for the

normal distribution ;
I
a=8
: 0.05 0.10 0.20
1% asw } ASN P SEpgy [ REpgy . ASN | ASN  SEpdy | REagy | ASN | ASN | SEpdy | REpgy
0.1 530.0 541.5 3.87 -0.021 351.6 367.5 1.97 -0.043 166.4 179.1 0.71 =-0.074
.25 84.8° 90.9 .32 - .067 56.2 62.2 .23 - .096 26,6 31,8 .12 - .164
.5 212 2.2 .08 ~-.124 141 17.1 .06 - .175  6.6- 9.5 .04 =~ .305
1 5.3 7.0 .023 -.243 3.5 5.2 ,018 -.327 L7 3.2 012 - .469
2 1.3 2.3 .007 - .435 .9 1.9  .006 - .526 4 1.5 .006 - .733
3 .6 1.4 .003 - .571 4 12 .003 - 667 2 11 .002 - .818
6




The OC value at h(u )=1 is 1-a, and the OC
value at h(u ) =-1 is . Because a =8 and the
normal distribution is symmetrical, the Monte
Carlo results at h(u ) =+ 1 were pooled. The re-
sults were based on 40,000 iterations for each

~ combination of « = and d, except for values at

a=f=0.05 and 0.10 and J, =0.10, which were
based on 20,000 iterations.

Results showed that & and  were always less
than « and 8 and ASN values were always larger
than ASN values. The errors in Wald’s equa-
tions increased as J, increased. The errors in
Wald’s ASN equation increased as o =p in-
creased with no apparent trend for the errors in
Wald’s OC equation. The errors in Wald’s equa-
tions are large for high values of d, .

- An Example

Wald’s OC and ASN equations were compared
with Monte Carlo OC and ASN functions for
several values of h(u ) for the lodgepole needle-
miner sequential sampling plan with u, =5,

-~ p1 =15, 0=15.62, @ =0.05 and § =0.10 (table 4,

figs. 3 and 4). In general, Wald’s OC equation

underestimated the actual OC function near y ,

(4 <10) and overestimated it near u,(u > 10)
with @ =0.036 and  =0.073. Wald’s ASN equa-
tion always underestimated the actual ASN

function; the largest error was near h(u ) =0
where ASN reaches a maximum. The errors in
Wald’s equations were moderately serious for
this example even though J, =0.64 is not large.

1.0 |
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Figure 3. — Comparison of Wald’s and the
Monte Carlo Operating Characteristic (OC)
functions for the lodgepole needleminer se-
quential sampling plan (table 4).

Table 4. — Comparison of Wald’s and Monte Carlo Operating Characteristic
(OC) and Average Sample Number (ASN) values for several values of h(u )
and u for the lodgepole needleminer sequential sampling plan (u, =5,
u. =150 =15.62, a=0.05 and  =0.10)

: E ocC ASN

BT Wt e g fspgp joc-Oc ASN AN D sEagw [ REasy iRy’ L My i M
4 -10 1.000 1.000 2.75 3.40 0.04 -0.19 1-11 1.25 2.61
3 -5 1.000 1.000 3.66 4.57 .07 .20 1-17 1.64 4.11
2 0 0.997 1.000 -0.003 5.45 6.66 .13 - .18 1-33 1.70 4.02
1 5 : .950 0.964 0.003 - .014 9.73 11,84 12 - .18 1-74 1.84 4.98
0.5 7.5 .828 .866 .011 - .038 13.32 17.11 44 - .22 1-80 1.88 4.89
.25 8.75 711 749 .014 - .038 14.96 19.11 50 - .22 1-97 1.99 5.52

0 10 .562 .557 .016 + .005 15.88 21.58 .56 - .26 1-95 1.74 3.88

- =225 11.25 .405 .392 .015 + .013 15.76 19.73 48 - .20 1-92 2,05 7.22
- .5 12,5 .268 .211 .013 + .057 14.73 19.20 .48 - .23 1-100 2.12 6.26
=1 15 .100 .073 .004 + .027 11.60 14.35 .14 - .19 1-9% 1.78 4.63
-2 20 .011 .001 .001 + .10 6.91 8.17 14 - .15 1-35 1.61 3.78
-3 25 .001 .001 .001 4.69 5.45 .07 - .14 1-18 1.29 2.86
-4 30 .000 .000 3.53 4.23 .05 - .16 1-13 1.20 2.87

IRpgy=range of the decisive sample number; ql-skewness coefficient;

-

72- kurtosis coefficient.
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Flgure 4. — Comparison of Monte Carlo Average
Sample Number (ASN) functions for sequen-
tial sampling plans with p, =5, u, =15,
0=15.62, a =0.05, and B =0.10, for numbers
of observations taken at each stage of the plan
equal to 1, 2, 5, and 10. The ASN function for
the fixed sample size plan with equal reliability
is also shown.

It must be remembered that the ASN value is
the average number of observations needed to
make a terminating decision. The number of
observations needed to make a terminating de-
cision for one sample is a random variable called
the decisive sample number (DSN), and the ASN
is the mean of this random variable. The serious-
ness in the errors of Wald’s equations can be bet-
ter shown by looking at the distribution of the
DSN (table 4, fig. 5). The distributions of DSN
are skewed to the right; the skewness increases
as ‘ASN increases. The number of observations
needed to make a decision for a particular se-

~ quential sample can be much larger than ASN.

. Procedure to Obtain More
~Accurate OC and ASN Functions

Monte Carlo results for the normal distribu-
tion showed that the errors inherent in Wald’s
'OC and ASN equations can be large and are a

P(DSN) 0.2 | u=-10

0.1}

0.0

P(DSN) u=6

n=10

P(DSN}
0.025 -

0.00 1 1 N 1 ) : A iem AN o
0 10 20 30 40 50 60 70 80 90

DSN

Figure 5. — Empirical distributions of the De-
cisive Sample Number (DSN) for three values
of u for Wald’s Sequential Probability Ratio
Test (SPRT) with a=0.05 and p =0.10. The
dashed line_shows the mean Average Sample
Number (ASN) for each DSN distribution.

function of the difference between the pest den-
sity levels or class limits (d, =(u,-po)/0 ) and
associated error probabilities used to construct a
given sequential sampling plan. The practical
consequences of these errors are (1) the actual
error probabilities can be smaller than the nom-
inal error probabilities used to build the sam;
pling plan, and (2) more field observations
made than necessary. If sampling is destructive
time consuming, expensive, and/or early deci
sions are desirable, the consequences of
errors can be severe. Monte Carlo proced
should be used to determine if these errors
serious for a given sampling plan, and if
are, new sequential sampling plans should
developed to yield actual error probabilities, an
resulting OC and ASN functions, approximatel
equal to the nominal ones desired.



In developing a sequential sampling plan,
Monte Carlo OC and ASN functions should be
" obtained for the decision boundaries based on
the nominal values of a and B. If a and  are
close enough to « and § and Wald’s and the
Monte Carlo OC and ASN functions are similar,
the Monte Carlo functions should be used to des-
cribe the operation of the sequential sampling
plan. If the errors associated with Wald’s equa-
tions are serious, new nominal values of a(a) and
B(p) should be debermiged to yield new Monte
. Carlo estimates a’ and f§ that are approximately

equal to the desired (old nominal values) of « and
B. Monte Carlo OC and ASN' functions can then
be obtained for the new sequential sampling plan
based on the new nominal error probabilities o
“and . If &' and f§ are not close enough to « and ,
as many iterations of this procedure as are neces-

sary to yield the desired Monte Carlo values of a’

and f§ should be used. Usually one or two itera-
tions will be sufficient.

Considering the lodgepole needleminer prob-
lem, if the difference between the Monte Carlo
OC and ASN functions with a=0.036 and
. [3 =0.078 and Wald’s OC and ASN functions
- with @ =0.05 and g =0.10 (table 4, figs. 3 and 4)
are not_considered important, then the Monte
Carlo OC and ASN functions should be used to
describe the operation of the original sampling
plan based on o =0.05 and § = 0.10.

If the errors in Wald’s equations are consid-
ered serious, a new sampling plan should be con-
structed. @ and  were determined to be 0.035

and 0.072, respectively, based on 20,000 itera-
tions each. To determine new nominal values o’
and f’that yield new Monte Carlo values & and
that are approximately equal to the desired old
nominal values « and 8, a'=(e/d)a =a*/a and
p’=(B/B)B =p* /B. For our example, a'=(0.05)* /

0.035 =0.0714 and f'=(0.10)* /0.072 = 0.1389.
Using these new nominal values, new decision
boundaries can be developed for a new sequential
sampling plan and Monte Carlo oc’ and ASN -
functions can be obtained (table 5). a=0.051
with SDz=0.003, and ﬂ =0.097 with SDp— 0.004.
Notice the difference between the ASN values
for the new sampling plan and the ASN values
for the old sampling plan (table 4). Also, com-
pare the empirical distribution of DSN’ of the
new sampling plan (table 5, fig. 6) with the
empirical distributions of DSN for the old sam-
pling plan (table 4, fig. 5) for 4 =-10, 5, and 10.

Notice the close agreement between OC and
ASN of the new plan and OC and ASN of the old
plan. A comparison of the ASN function of the
new samphng plan (¢ =0.051, f =0.097) (table
5), which is closely approximated by the ASN
function of the old sampling plan (fig. 4), with the
ASN function of the fixed sample size Z - test
sampling plan (FIXED, «=0.05, $ =0.10, n=
(B.+ B5)* /d: =21) is more valid than the com-
parison with the ASN function of the old sam-
phng plan (a =0.035, f =0.072). This compari-
son is also more in favor of the sequential pro-
cedure.

Table 5. — Monte Carlo Operating Characteristic (OC) and
Average Sample Number (ASN) values for several values of
h{u ) and u for the lodgepole needleminer sequential sam-
pling plan (uo =5, pu, =15, 0=15.62, a'=0.0714, and p'=

0.1389)
: : oc : : ASN

ROD s okt osngp! P ASN' P osEygy' fosDpgy' DPosy' D Tl oY,
4 -10 1.000 3.07  0.04 1.3 1-9 1,16 1.76
3 - 1.000 401 .06 2.25  1-15 1.48 3.48
2 0 0.993 0.002 5.70 .11 3.99 123 1.43 2,41
1 5 .99  .003  9.97 .10 8.66 1-63  1.77 4.24
0.5 7.5 .818  .012 14.07 .38  13.82 1-75  2.34 8.90
.25 875  .726  .014 14.51 .38 15.76 1-91  2.21 8.09
0 10 .568  .016 16.40 .42  17.57 1-91 1.8 5.38
-.25 11.25  .407 .06 16.61 .40  15.25 1-88 1.7 3.75
-.5 12.5  .255 .04 14.68 .35  15.28 1-79  1.65 3.32
-1 15 .097 .04 11.92 .12 9.83 167  1.75 4.30
-2 20 012 .003 7.16 .12 4,38 1-25 . 1.38 2,45
-3 25 .001 .00 4.81 .07 2.35 1-18  1.40 3.26
-4 30 .000 3.70 .05 1.55  1-13  1.40 3.61
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anure 6. — Empirical distributions of the De-

.~ cisive Sample Number (DSN) for three values
of u for Wald’s Sequential Probability Ratio
Test (SPRT) with o' =0.0714 and B’ =0.1389.

. The dashed line shows the mean Average Sam-
ple Number (ASN) for each DSN distribution.

MODIFICATIONS OF
WALD’S SPRT

Many forest researchers (Cole 1960; Connola
" et al. 1959; Ives 1954; Ives and Prentice 1958;

 Knight 1960a, b; Tostowaryk and McLeod 1972)
have modified the decision process of sequential
- sampling plans based on Wald’s SPRT by taking
- more than one observation at each stage of the
‘plan, not making a terminating decision until
some minimum number of observations has been
taken, and/or forcing a terminating decision to
~ 'be made at some maximum number of observa-
tions. These deviations from the assumptions of
- Wald's SPRT will, of course, affect the actual
OC and ASN functions of the modified sampling

" plan. However, in all forest applications where

-one or more of these modifications are made,

10

“maximum point, and a truncation point of 21

Wald’s OC and ASN equations are still used to
describe the properties of the modified sampling
plan.

To investigate the effects of these modifica-
tions on the accuracy of Wald’s equations in des-
cribing the actual OC and ASN functions of the
modified sampling plans, Monte Carlo OC and
ASN functions were obtained for the following
sampling plans for the lodgepole needleminer
example (uo =5, u, =15, 0=15.62, a=0.05,
B =0.10):

(1) Wald’s SPRT with no modifications.

(2) Wald’s SPRT with 2, 5, and 10 observa-
tions taken at each stage.

(3) Wald’s SPRT truncated at 10, 16, and 21
observations.

(4) Wald’s SPRT with terminating decisions
first possible at a minimum of three and
five observations (minimum points).

(5) Wald’s SPRT with (a) a minimum point of
5, (b) a truncation point of 10, (c) a mini-
mum point of 5 and a truncation point of
10, and (d) a minimum point of 5, a trunca-
tion point of 10, and 5 observations at
each stage.

To obtain OC and AQN values; 5,000 and 1,000
iterations were used for each sampling plan at
h(u ) =+1 and h(u ) #+ 1, respectively.

Two to 10 observations taken at each stage
represent the range encounter in forestry sam-
pling plans. A truncation point of 16 was ob-
tained using Water’s (1974) suggestion of using
the maximum of Wald’s ASN function as the

was obtained from Wald’s (1947) rule for trunca:
tion, which is to use the sample size of the equal
ly reliable (« =0.05, 8 = 0.10) fixed sample size
- test as the maximum point. A truncation poini
of 10 is approximately the average truncatio
point encountered in forestry sampling plans
Wald’s ASN value at h(u ) = 1. If a terminati
decision has not been made when the truncatio:
point is reached, the average of the acceptan
and rejection value at that stage is used as
decision point. The largest minimum point u
in forestry sampling plans is 5.



Monte Carlo results were obtained with the
same starting seed value for the random number
generator for sampling plans with number of
observations equal to 1, 2, 5, and 10; truncation
points of 10, 16, and 21; and a minimum point of
5. Monte Carlo results were also obtained for
sampling plans with number of observations
equal to 1 and a minimum point of 5 using a dif-
ferent starting seed. _This was done to reduce
Monte Carlo variability in comparing the dif-
ferent modified samphng plans and to show

Monte Carlo variability in the case of the oc

and ASN values for Wald’s SPRT (number of
observatxons = 1) (table 6).

" The Monte Carlo results showed that @ and B
~ become smaller and the associated ASN values
at h(u ) =+ 1 becomes larger as the number of
observations taken at each stage, truncatlon
point, or minimum point increase (table 6).
 These trends are distinct for the range of
number of observations taken at each stage and
the truncation pomts considered and slight for
the range of minimum pomts considered. The
- Monte Carlo variability in estimating a and f
was larger than the Monte Carlo variability in

- estimating the associated ASN values at

hiu)==1 for Wald’s SPRT with no modifica-
tions.

The ASN functions increased substantially as

the number of observations at each stage in-.

~ creased, and the ASN functions decreased sub-
‘stantially as the truncation point decreased

(figs. 4 and 7). Wald’s SPRT with Wald’s trunca-
tion point (21) yielded as ASN function closer to
the ASN function of Wald’s unmodified SPRT
than both Wald’s SPRT with Water’s truncation

, pomt (16) or the average truncation point used

in forestry examples (10). Howeyer, the ASN.
function is still larger than the ASN,, function
for5<u <15.

Figure 7. — Compan’é’on of Monte Carlo Average

Sample Number (ASN) functions for sequential
sampling plans (uo =5, u, =15 0 =15.62,
a=0.05, and B =0.10) for truncation points of
N =10, 16, 21, and .

Table 6. — Comparison of Monte Carlo values of a and p and Average Sam-
ple Numbers (ASN’s) at k(u ) ==+ 1 for sequentzal sampling plans (u o =5,
Ui =15, 0=15.62, a=0.05, and f =0.10) for various numbers of observa-
tions taken at each stage of the plan, various truncation points, or various

minimum number of observations ehe s
: Number of observations Truncation points * Hinimun monber
ChQu) ¢ L(u)

: :_of observations
i : 1t : 2 : 5 : 10 , 10 : 16 : 21 3l : g

a? 0.036 0.032 0.031 0.023 0.020 0.123 0,077 0.061 0.032 0.035
ASN 11.84 11.86 13.19 15.54 18.84 7.86 9.87 10.74 11.89 12.22
g3 .073 .071 .066 .049 .031 .202 .140 111 .071 +069

-1 .
ASN  14.35 14,27 15.22 17.60 21.25 8.62 11.28 12.53 14.28 14.58

1gaged on a different Monte Carlo run than the other Operating Characteristic (ot) and ASN values.
23 =1 - 0C =1~ L(u) for h(u) = 1.
38 = 0t = L(p) for h(n) = -1.
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Monte Carlo results were obtained with the
‘same starting seed value for Wald’s unmodified
SPRT and for Wald’s SPRT with one observa-

tion at each stage and (a) a minimum point of 3,
(b) a truncation point of 10, and (c) a minimum
point of 3 and a truncation point of 10 (table 7).
Monte Carlo results were also obtained with a
different starting seed value for Wald’s unmodi-
fied SPRT and for Wald’s SPRT with one obser-
vation taken at each stage and (a) a minimum
point of 5, (b) a truncation point of 10, and (c) a
~ minimum point of 5 and a truncation point of 10.
. Monte Carlo results were also obtained for

Wald’s SPRT with 5 observations taken at each
- stage, a minimum point of 5, and a truncation
point of 10.

The Monte Carlo results showed that in com-

parison to Wald’s unmodified SPRT:

(1) a minimum point decreased @ and j and
increased the associated ASN values at
h(u )=+ 1 with these effects increasing
slightly as the minimum point increased
from 3 to 5; .

(2) a truncation point increased a to  and de-
creased the associated ASN values at
hiu)==+1;

- (3) the effects of a minimum and a truncation
point above and beyond the effects of a
truncation point are none to small de-
creases in a and 8 and small increases in

the associated ASN values at h(u ) = -
with these effects increasing slightly
the minimum point increased from 3 to

(4) the effects of more than one observatio:
each stage above and beyond the effect
a truncation and, minimum point are
creases in a and p and increases in the
sociated ASN valuesat h(u ) =+ 1.

The three modifications of Wald’s SPRT ¢
sidered in this paper definitely affect the a
racy of Wald’s equations in describing the ac:
OC and ASN equations of the modified sampl
plans. The size of the errors in Wald’s equati
depends on how far these modifications dev
from the assumptions of Wald’s SPRT and w
combination of modifications are used.

CONCLUDING REMARKS

Assuming a normal distribution, a compari
of Wald’s and Monte Carlo OC and ASN fu
tions indicated that the errors inherent in Wal
equations can be serious. The practical cor
quences of these errors are: (1) the actual e
probabilities can be smaller than the nomi
error probabilities used to build the sampl
plan, and (2) more observations are usu
taken in the field than necessary. These err

Table 7. — Comparison of Monte Carlo values of a and B and Average Sam-
ple Numbers (ASN’s) at h(u ) = x 1 for sequential sampling plans (u , =5,
K1 =15, 0=15.62, a=0.05 and f =0.10) for two Monte Carlo runs with
various combinations of numbers of observgtions taken at each stage of the
plan, truncation points, and minimum number of observations

Run number : L N 2
‘No. of observations : 1 : 1 : 5
Minimum! .1 3 : 1 : 3 : 1 5 : 1 : 5
Truncation point! ® : 10 : w3 = 10
&2 .032 .032 115 .115 .036 035  .123 - .123 .119
h(u) = 1
. ASN 11.86 11.89 7.84 7.88 11.84 12.22 7.86 8.19 9.01
‘ 83 071 .071 L1964  .194 .073 .069 .202 200 .196
h(u) = =1
ASN 14.27 14.28 8.64 8.65 14.35 14.58 8.62 8.78 9.45

1A minimum of 1 indicates no minimum point, a truncation point of » indicates no truncation point,
-and a minimum of 1 and a truncation point of « indicates an unmodified sequential sampling plan.

232 1-0C=1-L(u for h(p) = 1.
38 = 0C = L(p) for h(p) = -1.
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increase as’' the difference between the class
limits (6, =(u.-po)/0) and associated error
probabilities (a and ) used to build a sequential
" 'sampling plan increase. Similar results have
been obtained for the binomial, negative binom-
ial, and Poisson distributions.

‘Also assuming a normal distribution, Monte
Carlo results indicate that any of the above mod-
ifications will affect the actual OC and ASN
functions of the sequential sampling plan and
thus decrease the accuracy of Wald’'s equations
~ in describing these actual functions. The prac-

tical consequences of these modifications are (1)

the actual error probabilities decrease and the

ASN function increases as the number of obser-

vations taken at each stage increases, (2) the
“actual error probabilities increase and the ASN

function decreases as the truncation point de-
creases, and (3) the actual error probabilities
decrease and the ASN function increases as the
minimum point increases. Similar results would
be obtained for the binomial, negative binomial,
and Poisson distributions.

Regardless of what distribution and whether
no or any combination of the above modifi-
. cations were used in developing a sampling plan
" based on Wald’s SPRT, I strongly suggest that

Monte Carlo OC and ASN functions be obtained
for the decision boundaries of the original SPRT.

If a, f, and the Monte Carlo functions are con-

sidered to be not seriously divergent from a, j,

and Wald’s equations, then the Monte Carlo
" functions should be used to describe the actual

functions of the original sampling plan.

If, on the other hand, the differences between
Wald’s and Monte Carlo results are substantial,
_a new sampling plan should be developed using
.~ the procedure presented in this paper so that the
. Monte Carlo values a ‘and ﬁ of the new plan are
approximately equal to the nominal values ¢ and
B of the old plan. Monte Carlo OC and ASN func-
- ‘tions should then be obtained for the decision
boundaries of the new plan and used to describe
the actual functions.

Given the budget available, the time and cost
‘of taking observations, whether sampling is des-
tructive or not, and the importance of early
decisions, the forest researcher will have to
‘decide whether to use fixed sample size or se-
-quential sampling plans. If a sequential sam-
pling plan is used, the forest researcher then
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must decide whether to construct the new or old
sequential sampling plan and associated Monte
Carlo OC and ASN functions. The only fair com-
parison is between the fixed sample size and the
new sequential sampling plan. For either sequen-
tial sampling plan, the cost of obtaining OC and
ASN functions is inexpensive.
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"~ A COMPARISON OF TWO METHODS USED TO
ESTIMATE STAND STOCKING IN UPLAND
_ CENTRAL HARDWOODS

Robert Rogers, Research Forester,
Columbia, Missouri

. The term stand stocking used in this paper
‘refers to the density of trees in a stand expressed
b_y the formula given by Gingrich (1967)* :

Stand Stocking Percent (SSP) =
(-0.0507N + 0.1698 3D + 0.0317 3D*)/10

where

N = number of trees per acre

2D = sum of their individual diameters

3D* = sum of the squares of their diameters.
Each tree in the stand must be tallied and mea-
sured to derive stocking percent using the above
equation. This process is time consuming, so
- sampling methods are used to estimate the quan-

l tities needed for the stocking equation.

. One sampling method, which I call ‘“variable
plus fixed area sampling’’ (F'), provides an esti-
mate of basal area from the variable area plot
and an estimate of the number of trees from the
fixed area plot with origin in common with the

point.

Typically, the fixed area plot is circular with
1/20 acre area. Thus

BA = Dbasal area/acre = BAF x k =basal area
factor x point sample tree count

n = no. of trees/acre = fixed plot tree count/
_fixed area plot size

D, ,= diameter of tree of average basal area

" =( (BAF x k)/0.005454 n)"*

' Gingrich, S. F. 1967. Measuring and evalu-
ating stocking and stand density in upland hard-
wood forests in the Central States. For. Sci.
13:38-53.
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Now substituting
N=n
3D =nD,,
3D* =(BAF x k)/0.005454

into Gingrich’s equation we have

SSP =(-0.0507n + 0.1698nD,, + (0.0317BAF
k)/0.005454)/10

or

SSP =-0.00507n + 0.2299n ( (BAF xk)/
n)v?* + 0.58122 BAF x k.

The second method uses only the trees
pled from a variable area plot. In this case sam
ple tree diameters must be measured.
Thus

n=5 BAF/0.005454d i=1,2,... k: k
sample trees

=(BAF/0.005454) ,g, 1/d2
D= ,g. (BAF/0.005454d* ) d,

=(BAF/0.005454) ,g. 1/d,

3D* =3BAF/0.005454d,*) d.?

=(BAF x k)/0.005454



and subsﬁituting - :
BAF
Y .
0.005454  dg
BAF 1
+0.1698 3
0.005454 d

- BAF*k
+0.0317T —— )/10

0.005454

SSP = (~0.0507

or
, BAF - 1
SSP = — (5.8122k + 31.1331,5, ——

- 10 A d

-9.2950,5,

1
)

d:?

Note that ;avhen BAF =10 then

N 1 1
SSP =5.8122k + 31.1331.-%: _ -9.2959,-%. J—

d; d:?

Frequently, in addition to stocking we need to
know the diameter of the tree of average basal
area. For the variable plus fixed plot method this

18 K * B'AF :
Ya
Diyr=(—)
0,05454n

Aand,fv(')r the variable plot method is

| kK %
va=(—_)

T

The stocking and average diameter equations
differ in each method by the way in which the
“number of trees per acre are obtained. These dif-
ferences affect the estimate obtained by each
method. From these equations we can see that
the variability of point sample estimates in-
.crease as the variability of tree diameters in-
crease among points whereas among plots the

variability of estimates are related to the varia-

bility in the number of trees sampled among
plots.

Thus the variability of stocking and average
diameter estimates is sensitive to the distribu-
“tion of tree diameters within a stand. To see how
each method compares in its ability to estimate
stocking and average diameter in stands with
different diameter distributions, I simulated the
sampling process on a computer using four
stands that had different diameter distributions
(fig. 1). Trees were located randomly within each
stand. Then for each stand 10 points were sel-
ected and 1/20 acre circular plots were located
with their center at each point. For each sam-
pling method stand stocking percent and mean
stand diameter were averaged over the 10
points. This procedure was repeated 100 times
while keeping tree location constant. In addition,
stocking and average diameter were calculated
using all trees in the stand and these were desig-
nated as true values.
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Figure 1. — Diameter structures of two aged,
pole, uneven-aged, and even-aged stands.



Each method estimated stocking percent with
about the same accuracy except the uneven-
‘aged stand was estimated more closely by the
variable plus fixed plot method (fig. 2). The
variable plot method deviated farthest (under-
estimated) true stocking percent and had a vari-
ance 15 times greater than that of the variable
plus fixed plot method for the uneven-aged
. stand.

- The comparison of average diameter revealed
that the methods were similar in their estimates
for the two-aged and pole-sized stands (fig. 3).
But, their estimates were not similar for the
"even- and uneven-aged stands. In uneven-aged
stands estimates obtained from the point sample
are biased upward and the variance is 32 times
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Figure 2. — A comparison of stocking precent
' estimates based on 100 averages of 10 points
. in four stands using variable area plot (V) and
variable area plot plus fixed area plot (F) sam-
pling methods. ‘Lines through bars represent
estimates of true value of stocking percent
(line at 0) and vertical scale shows deviation
values.
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larger than for the point plus fixed plot method.
In the even-aged stand the pattern in variance is

reversed, but estimates are not biased.

Therefore, point sampling methods alone
should not be used to estimate stocking and
average diameter in uneven-aged stands. But the
point sampling method can be used to provide
estimates of stocking and average stand diam-
eter in stands having distributions similar to the
other three studied with a reliability equal to or
better than the combination method. In particu-
lar, for stands having diameter distributions like
the even-aged stand presented here, estimates of
mean stand diameter obtained by point sampling
tend to be more reliable than those obtained by
using the combination method.
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Figure 3. — A comparison of mean stand diam
eter (tree of average basal area) estimate
based on 100 averages of 10 points in fou

methods. Lines through bars represent esti
mates of true value of mean stand diamete
(line at 0) and vertical scale shows deviatio
values.




NONLINEAR BASAL AREA
GROWTH MODELS FOR RED PINE

Chung-Muh Chen, Forest Biometrician,
Mi innesota Department of Natural Resources,
St. Paul, Minnesota

and Dietmar W. Rose, Associate Professor,
University of Minnesota,
St. Paul, Minnesota

Previous models of individual tree growth
have been based on the open-grown tree concept
(Newnham 1964, Arney 1974, Ek and Monserud
1974) and on empirical functions (Bella 1971,
Tennent 1975, Moore et al. 1973, Adlard 1974).
In the open-grown tree approach, individual tree
size is assumed to be maximum if the tree is
> grown in the open (free from competition); the
maximum size is reduced if the tree is grown in a
stand (subject to competition).

Most periodic growth models for individual
trees express the amount of competition a tree
" receives from its neighbors. Many view compe-
_ tition between trees in terms of zones of in-

fluence (Staebler 1951, Newnham 1964, 1966,

Opie 1968, Bella 1971, Gerrard 1969, Arney
1974, Keister 1971, Ek and Monserud 1974). The
"basic assumption is that competition between
individual trees occurs only when their zones
. overlap.

The objectives of this study were to formulate
nonlinear biological basal area growth models
~and to analyze the relation between individual

tree competition and growth. We used data from

an even-aged red pine plantatlon near Star Lake,

Wisconsin.! Initial spacing of the plantation was

6 by 6 feet. Site index was 65 at age 50 and tree
. survival was high on the site (Wilson 1963).

' The data were provided by Dr. Alan R. Ek,

- University of Minnesota, College of Forestry,

“and ' Wisconsin Department of Natural Re-
sources.
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FORMULATION OF
NONLINEAR BASAL AREA
GROWTH MODEL

Periodic basal area growth can be related to
potential basal area increment when the im-
mature tree is free from competition. This
growth can then be reduced by a competition fac-
tor when the tree is grown under competition.
This relation can be shown by the following
equations:

AB=AB*[1-e™*t/om]v (1)
orA B=A B*e*° (2)
where AB = the periodic tree basal area growth
of the tree,
A B* = the potential growth when the tree is
free from competition,
C = the competition index of the tree,
k, m, and N = growth factors such as site,
species, age, and density.
AsCHAB! ;asCl ;AB?
limAB=AB*fork>0m> 0
C-0

lim B = 0 for intolerant species.

C—ro0

The advantage of the models (equations 1 and
2) is that they offer a logical explanation of the
relation between the dependent and independent
variables. However, the potential growth of a
tree might not be realized not only because of



competition, but also because of disease, insects,
animals, wind, frost, etc. Furthermore, the
model is less useful for predicting growth of
intermediate and suppressed trees when they are
completely released because these trees may not
regain their full potential growth. So the con-
dition that
AB—~AB* as C—+0
* may not be fully realized.

. An alternative approach is to assume that tree
periodic basal area growth is directly related to
site, initial basal area, and functional crown sur-

face, and inversely related to competition index.
Functional crown surface is correlated with tree

- growth. Tree height or basal area are correlated

~ with the functional crown surface for immature
individual trees growing in dense even-aged

‘stands (not stagnant) of single intolerant
species. Therefore, in the case of lacking informa-

_tion on tree height and functional crown surface,
initial tree basal area or diameter breast height
and competition index may predict tree periodic
basal area increment. For this study, we define
two models similar to equations 1 and 2, except
AB* was replaced by ‘“a B®’’; where B is the
basal area of the tree at the beginning of the

.growth period and a and b are two additional
factors.

MEASURE OF
TREE COMPETITION

The competition imposed on a tree is measured
by the distance to the competing tree, amount of .

_ overlap area, and relative size. It is formulated
Cin 'the following manner:

N
C_i =(1/A;);210U Wu : (3)

where C. = the competition index of tree i,

A, = the area of the influence zone or circle
about the sample tree i with the
radius (P;) proportional to the tree
diameter,

~ P,=1,15,20,25,
0., = the area of overlap between tree i

and its competitor j forj=1,2,...,
N,
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- parable results. When no iterations on E and

N, = number of competitors of tree i,
W, = a weighting factor for O,,.

We used the following weighting factor:

W, =R[1-exp(-k r,)]" (4)

where
r, =(d,/d,)* and d,/d. is the ratio of dia-
meters of tree i and its competitor j,

R =max (d,/d,)* for all trees (i, j) with
overlapping influence zones,

k, and E are factors related to species,
age, site, and density (E =1 to 4).

ki =-log [ 1~(1/R)?] (5)

when weighting factor W, = 1 is assigned for the
condition d, = d,;, n was assigned the value 1 or 2.

As r,~0, W ,~0;
r;—>o, W‘.J-vR;

flect the potential size difference of the sample
tree i and its competitor j.

RESULTS AND DISCUSSION

Approximately optimal values of Pi and E (for
equations 3 and 4) for standard error and correl
ation of regression between basal area
and competition index were derived via iteratio
(table 1). Bella’s (1971) index generated co:

were performed, i.e., E=n=1 Chen’s (1976)
model resulted in correlations that were approxi
mately 10 percent higher. A modification
Gerrard’s (1969) index (inclusion of the exponen
E) proved somewhat inferior to the two oth
indexes, but is easier to calculate. The index
will have to be compared using different specie
ages, and stand conditions.

For predicting individual tree growth one
the two proposed basal area growth models w
fitted via nonlinear regression (table 2).



Table 1. — Correlation between periodic basal area growth
and competition index for three competition models*

Plot2 ° Observations :_Coefficient of Determination® : Standard :_Standard Regression Coefficients
o : Total® : Regression® : Adjusted : Unadjusted : _error : a : b H k
. Inch?
1 186 17 0.55 0.85 2.84 34.63 -0.4571 1.5557
2 ‘203 20 .52 .86 2.16 3.25 .1137 0.7839
3 269 19 .88 .95 0.52 0.043 1.2744 .2038
11, 2,83 A
combined 658 56 .60 .86 1.81 1.38 .3682 .7912
4 296 24 .56 .80 5.17 3134.23 -1.4585 1.9977

'AB = aBP (exp (-kC))
AB = the periodic tree basal area growth in square inches.
C = the competition index (equation 3) with weighting factor (equation 4).
Parameter E = 2, R = 1, n = 2 used for all in calculation of competition index.
‘ 2Stand age 32-37.

3Total observations used for calculating competition index.

. “Number of trees for which growth and competition was determined.

5The coefficient of determination adjusted for the mean measures the contribution of the sample mean in

explaining variance of the dependent variable.

Table 2. — Nonlinear regression gits for a nonlinear basal area growth

models!
: : Standard : B H :
2 3 4
Plot . : error : E : Pi . 0, Remarks
Inch? Inch?
1 -0.82 1.26 2 1 2 Chen (1976) model
E

2 -0.72 1.41 2 2.5 1wy = (-e -kp (d4/dg)")n
3 -0.73 1.60 2 1.0 2 (equation 4)
4 -0.70 2.42 1.5 1.0 2
1 -0.82 1.27 3.5 1.0 - Bella (1971)
2 -0.72 1.42 2.0 2.5 -
3 -0.73 1.60 4.0 1.0 - Wy o= (d4/d)F
4 -0.70 2.43 1.5 1.0 -
1 -0.72 1.50 4 2.5 - modified Gerrard index
2 -0.63 1.57 4 2.0 -

044 )E
3 -0.72 1.62 4 1.0 - 2%: b Fil)
4 -0.63 2.63 2 1.0 - Wiy =1

lap, = ae™¥Ci or log 4By = log a - kC; where Cy =jgi 3 3 Wy
i
(competition index) and Wij is a weighting factor.

2plot age 32-37;plots 1 to 3 are control plots and plot 4 is a
thinned plot.

3E = parameter of competition index

4pi = proportionality factor for radius of zome of influence of
subject tree and tree diameter.
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model adequately explained basal area growth as
a function of basal area and competition for the
first three plots. The large standard error for the
thinned plot (plot 4) indicates a much poorer fit.

Further work is underway to test those models
using more plots and different species and ages.
Preliminary results indicate less satisfactory fits

_ for an older plot of the Star Lake plantation (age
. 58-65). Relative diameters or basal areas are ade-

- quate weighting factors only in some instances.

- It will be necessary to find weighting factors
that better reflect the potential size increment of
the sample tree i and its competitor j such as
‘height, crown ratio, live crown length, or func-
- tional crown surface or volume. These variables
may improve the growth models for red pine as
.~ well as for other species in even-aged stands.

Species .tolerance will have to be considered if
‘the competition model is applied to mixed stands

(Chen 1976).
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* DISCRETE TIME MARKOV PROCESSES

John W. Moser, Jr., Professor of Forestry,
Purdue University, West Lafayette, Indiana

By observing the evolution of natural phenom-
ena, it is readily apparent that events occur that
- are not entirely predictable. The modeling of
such events is often facilitated by employing
random processes. The intent of this paper is to
consider and to illustrate a subclass of the set of
- stochastic processes — one known as discrete
‘time Markov models. This subclass is termed
discrete timie because time is indexed in finite
steps rather than as a continuum. Diameter
class distributions in forest stands will be used
to illustrate the process.

. A Markov chain is a discrete time stochastic
process -consisting of a sequence of random
events { X,, X,, X,, ...}, each with a finite
" number of possible outcomes { a,, a;, .. ., a,}
" (Phillips et al. 1976) This set of possible out-

comes is termed state space. The value assumed
by X, is called the state of the process at time i.

-. It is assumed that the random variable, X,,

-depends only upon the previous event X,-,, and
affects only the subsequent one, X, ;. This as-
sumption, known as the Markov assumption,
‘avoids having to express joint distributions for
all events at one time. Instead, it is sufficient to
express conditional distributions of just two
neighboring random variables at a time. Mar-
kov’s assumption simplifies the problem but
does not completely eliminate the dependence

- - between random variables. Therefore life pro-

ccesses can be realistically represented.

‘Given that X, =a, is the present state of a
process, one desires to know the probability dis-
tribution of the possible outcomes for X, . These
transitional probabilities are designated p,,
‘which represent the conditional probability of
going from state a, to state a, after one step or
transition, i.e., P{ X, =a,| X, =a/}.
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A conventional means of exhibiting transition
probabilities is with a square matrix. A transi-
tion matrix for a three-state process may be
represented as:

a, az as
a; P11 P12 Pi,s
P=(p,)=a; P21 P22 P23

a; P31 P32 Pas

Because each row of the above matrix repre-
sents a probability distribution for X,, ;p,, =1
for each .

The matrix P completely describes the process
for any given outcome at X, given its initial
dependence upon X,. If event X, is described,
the probability distribution for X, must be de-
veloped. By the Markov assumption, the next
state, X, in this instance, depends only upon the
previous state, X,. However, X, depends upon
X, . Three mutually exclusive paths exist to pro-
gress from X, =a, to X, =a, (fig. 1). The prob-
ability of being in state a, at time 2 given that
the process was in state a, at time o may be
represented as the sum of the three ‘‘path proba-
bilities’’:

P{ Xo=a|_’Xz =a|}=
P{ Xo =a, _’x1 =a, _’Xz =al}
+ P{ Xo =a|_’x1 =a;"x: =a,}
+P{ X, =a,~X, =a; X, =al} (1)

By employing the Markov assumption and the
matrix of -one-step transition probabilities,
Equation (1) can be rewritten as:

P{ Xo =a|-’Xz =a|} =
pi,: P{ X, =a,~X; =a,}
+ P12 P{ X, =a,-’X; =a1}
+ Pu,s P{ X, =a; X, =a,}.
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. Figure 1. — Possible transitions from X, = a,
to X, =a, fora three-state process.

The probability for the first leg of each path is
readily obtained from the matrix of one-step
probabilities. The probabilities for the second
step of each path is really the transition proba-
bility associated with the second transition. At

this point an additional simplifying assumption -

is needed. If it is assumed that the transitional
probabilities do not change with time, then:’

P{Xo =g, X, "al}"pmpu +pnzpzx

Py3Ps,. (2)
The assumption is known as stationarity; with-
out it the process would not be able to continue
because a new transition matrix would be needed
for each transition. Using similar logic, probabil-
ities may be developed for other states at X,
given that X, =a,:

P{ Xo —ar’X; —az} =P1,1P1,2 + P1,2P22 +
P1,3Ps,2. (3)
P{ Xo al*Xz —a;;}—pupn +pl.2p2,
P1,3Pss. (4)
Thus, ,Equations (2), (3), and (4) specify .the
. probability distribution of X,, given that
X, =a,. Similarly, other expressions may be
developed to specify the probability distribution
for X, glven that X, =a, or X, =a;. The nota-
tion p,,?’ is utilized for the individual elements
of the two-step transition matrix and the com-
plete two-step matrix, P¢*’, for the three-state
process may be represented as:

22

- for 19 consecutive years. The 25 states chose

— —_
(2) (2) 2)
»pl.l pl 2 pl 3
) 2) (2)
= 2 .
P(2) =p,*’)) P2 P2,2 P23
(2) 2) )
Psa Ps,2 P3.s

As indicated above, the individual elements
are calculated from the one-step matrix:

p:,zl) =pP1,1 P11 + P12 P21 + Pus Psa.

The two-step transition matrix is obtained by
squaring the one-step matrix:

. p®)=P . P=P (5)
The relation expressed in Equation (5) is only
possible by use of the Markov and stationarity
assumptions.

To obtain the distributions of X, given var-
ious possible states of X,, it is again necessary
to consider possible paths that lead from X, to
X, in a similar fashion as was illustrated for X,.
Following that logic, the elements of the three-
step transition matrix can be written in terms of
the two-step and one-step probabilities:

p(nfx’ = p(:x)px,. + p(n,zz)pz.x + p‘;’,s’pa_;n .
In matrix notation that is:
P@)=p® . p=p* .p=p’.

The n-step transition matrix is equal to the one
step transition matrix raised to the n** power,
P((- )=P=, » (6)

The relation expressed by Equation (6) is the
most important result for Markov chains be
cause it gives the probability of being in a parti
cular state at a particular time, given the initi
state.

To illustrate the use of the discrete time M
kov model, data were obtained from permanen
growth plots in a central Wisconsin mixed hard.
wood stand that had been measured for diame

for the model are the 1-inch diameter clas
from 8-inch through 29-inch, a diameter clas
called > 29 inch, and the categories of death an
harvest. The 8-inch class was the lowest di
eter class in which all trees were measured an



31-inch was the largest diameter of any tree after
19 years. Because only the first nine growth
periods were utilized to develop the model, it
was necessary to define the largest diameter
class as > 29 to obtain numerical values for the
transition probabilities.

A tree in any state representing a diameter
class may either remain in that class, move to a
higher class, die, or be harvested. The dead and
harvest states are considered absorbing states
~ because once a tree has entered either one of
these states it cannot leave it. The 1-inch diam-
-eter classes are termed transient states.

The information to determine the probabilities
for transitions between states and to verify the
- predictive ability of the model was obtained by
summarizing the progression of the initial trees
in each diameter class for the 19-year :period
(table 1). Ingrowth trees were not included in the
summaries.

If a tree was in the 10-inch diameter class 9
years ago, the transition probabilities associated
with its movement are determined as follows: (1)
the tree will remain in the 10-inch class, ps,0,1,0,
'=44/139; (2) the tree will advance to the 11-inch
class, pio,..,=81/139; (3) the tree will move
into the 12-inch class, p;,0,1,2, =5/139; (4) the
tree Will dien_ pl;o m = 8/139; or (5) the tree Will
be harvested, pi,0,. =1/139.

The transition probabilities for the other diam-

* _eter classes are similarly determined with the

respectwe diameter class progression sum-
maries. Because death and harvest are absorbing
- states, Pm,m =Pc. = 1 (table 2).

As indicated by Equation (5), the two-step
transition probabilities are obtained by squaring
the initial transition matrix. The numbers p,,¢*’
foriandj=8...29, > 29, M', and C given the
probability of a tree being in state j given that it
was in state i two steps ago (table 3).

Ift0) =(ts ), £, ..., t°, ¢ > 290,
t. ), t.©)) is a vector whose elements corres-
pond to the initial number of trees in each state,
then the matrix of two-step transition probabili-
ties can be used to predict the disposition of
those initial trees after 18 growing seasons. The
numbers p,.. ‘*’ and p,.*’ fori=8...29, >29
are, respectively, the death and harvest proba-
bilities for a tree given that it was initially in the
i** diameter class. The predicted number of mor-
tality trees, m,, and harvested trees, c,, are
m; = t‘(o) ‘e p:,.u 2)
and
C; = t‘(o )

(7)

-pi.? fori=8...29,>29. (8)

Because Equations (7) and (8) account for
death and harvest, the number of surviving
trees, s,, from each initial diameter class is

8=t - (1-ppm * =pi.??)
fori=8...29, > 29.

Equation (9) indicates the number of trees in the
i** diameter class expected to survive. It does
not indicate the distribution of the surviving
trees.

To determine the diameter distribution for sur-
viving trees it is necessary to sum all the ways
that a tree can enter a diameter class, regardless
of its initial class:

=z
tj(z) _‘t‘(o) . pu(l)

' M =dead trees; C = harvested trees.

(9)

(10)

Table 1. — The progression of all trees initially in the 10-inch diameter class
by number of trees and change in diameter class

(In number of trees)

Diameter Measurement
class(in) s 1 2 3 4 5 6 7 : 8 : 9 :10:11 :12 : 13 : 14 : 15 : 16 : 17 : 18 : 19
10 139 133 115 107 98 83 69 62 61 4 41 35 29 25 22 19 16 15 13
11 0 5 23 31 37 50 61 68 68 81 75 75 69 67 66 67 67 60 56
12 0 0 0 0 0 0 2 2 2 5 12 18 29 34 35 36 37 38 38
.13 0 0 0 0 0 0 0 0 0 0 2 2 2 2 3 4 6 10 12
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 2 2
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Total ' 139 138 138 138 135 133 132 132 131 130 130 130 129 129 128 128 128 125 122
Total mort.ality 1 1 1 4 6 7 7 ? 8 8 8 9 9 10 10 10 13 15
Total cut 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2
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where t,*? is the number of trees in state j after
two transitions, regardless of the initial state.

If the values obtained from Equation (10) are
defined in vector-form as
£ =(ts ), £, ..., tas?), £ D> 20, ¢, ),
't.2?), then the equation

t2) =g . p@)

may be used to obtain the individual elements.

. The elements t.. *’ and t. ‘2’ of t‘*’ are equiv-
-alent to the %m, and 3¢, from Equations (7) and
(8), respectively. The total number of surviving
trees equals

Xg, =7t for i=8...29,>29.
“Thus, this value may be determined as the sum
of the elements from Equation (9) or from the

~ sum of all elements of the vector t‘*’ except

‘death and harvest. .
' The foregoing relations may be utilized to pre-
dict' diameter distributions. We demonstrated
the predictive ability of the model by using data
collected from a stand for 19 consecutive years

(table 4). The observed and predicted values

agree closely; however, the number of surviving
trees by initial diameter class is more accurately
predicted than the distribution of surviving trees
‘(Bruner and Moser 1973).

In another study (Cassell and Moser 1974) the
trees were grouped into six tolerance classes and
each class was individually modeled to provide
information on species composition and diameter
distribution (tables 5 and 6). The results from
this study are similar to those of the composite
model. In general the predicted number of sur-
viving trees by species group was accurate and
the prediction of death, harvest, and future
diameter distribution somewhat less accurate.

For both of the above studies, the basic data
were utilized to develop additional models with
transition periods of 4, 5, 6, 7, and 8 years.
Predictions obtained with these models were
similar to those of the 9-year model. Further, it
was indicated that the accuracy of prediction
was not dependent upon the length of the predic-
tion period but that predictions beyond one per-
iod were less accurate.

To utilize the Markov process, the Markov and
stationarity properties must be satisfied. First,
to predict the next state the present state must
be known. Second, the transition probabilities
between two specific states must remain con-
stant. In regard to the dynamics of diameter
distributions, these properties imply that: (1)
the diameter distribution some time in the future

Table 4. — Observed and predicted stand values at measurement 19 using
composite model

(In number of trees)
d.b.h. class : Initial : Survivors :Diameter Distribution: Mortality : Harvested
__(inches) : no. trees : Actual : Predicted : Actual : Predicted : Actual : Predicted : Actual : Predicted
) 8 209 175 165 22 28 29 37 5 6
9 148 117 117 97 98 23 26 8 5
10 - 139 122 122 116 109 15 14 2 3
11 131 110 113 116 108 14 12 7 6
‘12 111 91 90 94 91 10 14 10 8
13 107 85 86 72 92 14 17 8 4
14 88 76 75 85 79 7 8 5 5
15 . 86 73 70 74 75 4 8 9 7
16 74 54 55 75 73 8 11 12 8
17 64 50 48 67 66 8 9 6 7
18 52 35 35 67 56 6 7 11 10
19 32 19 20 51 45 3 3 10 9
20 -26 19 19 24 35 1 0 6 7
21 : 14 11 11 36 26 1 0 2 3
22 8 5 5 16 24 0 0 3 3
23 9 - 7 18 8 0 0 4 2
24 6 3 4 7 11 1 0 2 2
© 25 3 3 2 8 7 0 1 0 1
26 6 3 2 2 7 1 2 2 2
.21 5, 2 2 7 4 2 3 1 1
‘28. 4 1 2 2 0 2 3 1 0
29 4 3 1 0 4 1 3 0 -0
> 29 1 0 0 6 3 1 1 0 0
Totals 1,327 1,062 1,051 1,062 1,049 151 179 114 98




Table 5. — Observed and predicted survivor distributions at measurement
19 using tolerance class model

(In number of trees)

d.b.h Composite Final distributions
class distributions Class 1 Class 2 Class 3 : Class 4 Class 5 Class 6

he : : Predicted :Actual:Predicted:Actual:Predicted:Actual:Predicted:Actual:Predictéd¢Actual {Predicted:Actual:Predicted

8 209 22 29 1 1 1 4 18 23 1 1 0 0 1 1

9 148 97 99 5 7 13 12 75 76 2 2 0 0 2 2
10 139 116 110 3 6 17 18 85 83 7 1 0 0 4 2
11 131 116 111 12 9 21 27 76 66 3 4 0 0 4 5
12 11 94 90 7 4 24 22 54 50 8 10 0 0 1 4
13 107 72 92 4 4 15 17 44 63 8 5 0 0 1 1
14 88 85 80 5 4 9 10 61 56 6 9 1 0 3 1
15 86 74 76 3 7 16 13 47 49 5 4 0 0 3 3
16 74 75 1 6 H 11 10 52 50 3 2 0’ (] 3 3
17 64 67 68 5 2 9 13 46 45 4 3 0 0 3 5
18 52 67 56 3 5 12 7 41 39 6 3 0 0 5 1
19 32 51 46 5 4 5 7 36 30 4 2 0 0 1 2
20 - 26 24 36 1 3 3 5 20 27 0 (] 0 0 0 2
21 14 36 24 3 1 4 2 28 20 0 0 0 0 1 1
22 8 16 26 0 0 2 1 14 23 0 0 0 0 0 1
23 9 18 9 [ 1 1 2 15 6 0 0 0 0 2 1
24 6 7 11 0 1 1 1 6 9 0 0 0 0 0 0
25 3 8 6 1 0 0 2 7 5 0 0 0 0 0 0
26 6 2 7 0 (] 0 1 2 6 0 0 0 0 0 1
27 5 7 4 0 0 [ 0 6 4 0 0 0 0 1 1
28 4 2 0 0 0 0 0 2 0 0 0 0 0 0 0
29 “ 4 0 6 0 0 0 0 0 6 0 0 0 0 0 0

> 29 1 6 5 0 0 3 4 2 0 0 0 0 0 1 1

Totals 1,327 1,062 1,062 64 64 167 178 737 736 57 46 1 ] 36 38

Table 6. — Observed and predicted mortality
and harvest at measurement 19 using tolerance

class model

(In number of trees)

. : Measurement 19
| Class. : Mortality Harvested

:_Actual : Predicted : Actual : Predicted

1 0 1 0 0
2 16 7 13 9
3 31 44 50 38
4 9 19 2 4
5 0 1 0 0
6 . 1 0 1 1
Totals 57 72 66 52

-~ depends only upon the distribution now and not
-+ upon past distributions; and (2) the probability
. of a tree moving, for instance, from the 8-inch to
" the 9-inch class in any specific period must re-
main the same regardless of stand conditions.

- The larger discrepancies for predictions be-
yond one period may be attributable to not satis-
" fying the stationarity assumption. To examine
this. possibility, the 19 years of remeasurement
* data were used to determine transition probabili-
ties between the various states over time. These
probabilities were fairly constant for diameter

- classes with a large initial number of trees, but

- this was not true for diameter classes with a

small initial number of trees. This suggests that
the accuracy of predictions for several periods is
dependent upon good estimates of the transition
probabilities which, in turn, are dependent upon
sufficient data for all diameter classes. Also, be-
cause uneven-aged stands are characterized by a
large number of trees in the lower diameter
classes, permanent plot data from such stands
will have a similar diameter distribution. This
situation will inherently lead to greater accuracy
in prediction in the lower classes.

Prediction of diameter distributions with the
Markov model has both positive and negative
points. One disadvantage is that mortality and
harvested trees are predicted as numbers of trees
by original diameter class so that the actual
diameter class of a tree when it dies or is har-
vested is not known. Another disadvantage is
the difficulty of introducing ingrowth into the
process. The only way to allow for ingrowth is to
inventory trees in diameter classes below the
lower limit for which predictions are important.
For example, if predictions with ingrowth are
desired for sawtimber trees in the 12-inch diam-
eter classes and above, trees in the 8-, 9-, 10-, and
11-inch diameter classes at the initial measure-
ment can be considered as possible ingrowth into
the 12-inch and larger classes during the predic-
tion periods. To include ingrowth in all diameter




classes 8 inches and above, trees in roughly the
4-, 5-, 6-, and 7-inch diameter classes would have
be inventoried. A third disadvantage is the lack
of flexibility in the length of prediction periods.
If the two inventory measurements used for the
prediction are, for example, 5 years apart, pre-
dictions of stand conditions can only be made for
subsequent multiples of 5 years. Lastly, at least
two measurements from permanent plots are re-
quired as data for predictions. This prediction
method is not applicable for areas not under a
continuous forest inventory system.

Ease of application is a major benefit of the
Markov model. Accurate predictions of numbers
of survivor, dead, and harvested trees, and the
- distribution of surviving trees depend only upon
conventional continuous forest inventory data
and a knowledge of elementary matrix opera-
tions.
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~ AN ACCURATE WAY TO SELECT SAMPLE PLOTS
ON AERIAL PHOTOS USING GROUND CONTRO

Alexander Vasilevsky, Mensurationist,
and Burton L. Essex, Principal Resource Analyst,
North Central Forest Experiment Station,
St. Paul, Minnesota

'Most forest inventories begin with the classi-
- fication of points selected from individual aerial
‘photographs. The information developed from
this procedure is subject to several sources of
. error. Photo cover type classification of a sample
point can be in error due to the quality and age
of the photos or to the skill of the photo inter-
- preter. These errors can be adjusted by field
checking a portion of the photo points. A source
of error that cannot be corrected by field check-
_ing occurs when end lap (overlap), sidelap, crab,
and tilt distort the photo coverage of the land
area. This results in some areas being sampled
more intensively than others.

The normal forest aerial photography con-
tracts specifies 60 percent endlap and 30 percent
sidelap in line of flight. However, the contractor
usually delivers more coverage of the area to be
sure that these requirements are met. This type
of bias is recognized by aerial photo interpreters,
but usually ignored in the hope that the errors
will be compensating. Contract specifications for
‘aerial photos also require a specific scale — the
deviation from specified flight altitudes shall not
-exceed 300 feet for the purchaser to accept the

photos.

" We tested photo intensity during the forest
survey in Iowa where photographing conditions
were good — differences in elevation were mod-
erate and each township had many roads lying
- north-south and east-west. In spite of these ideal
conditions, photo overlap was 0.66 percent great-

. er than specified, which represented 237,000

-acres. This means that in sampling individual
- photos, without regard to overlap variation, area
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of the predominant land class would have been

- overestimated. A similar test done by the Pacific

Northwest Forest and Range Experiment Sta-
tion in Oregon and Washington had similar
results (Pope et al. 1972).

PROCEDURES USED AT
OTHER STATIONS

The PNW selects plot locations on maps, then
transfers these plot locations to aerial photos
using a radial line plotter or stereopotter. This
procedure is considered too expensive by many
inventory foresters.

The Southern Forest Experiment Station
locates sample plots on the most recent conven-
tional aerial photographs and establishes them
on the ground. Then assigns geographic coor-
dinates to the nearest mile for each plot using a
coordinatograph with a 7%.-minute quadrangle.
The cost of this method is considered rather high
also.

The Southern Region establishes forest sur-
vey field plots on maps by a systematic grid.
Then transfers these locations to aerial photos
and establishes a cluster of photo plots on each
photo containing a field plot.

The Northeastern Region locates samples
directly on individual conventional photos. Then
arranges samples systematically using three
photo plots per photo print and randomly
chooses ground plots by photo class.



A new .way was needed to use these photos
that would estimate forest area accurately. For-
est Survey at the North Central Station ap-
- proached the problem with the objectives to: (1)
select plot locations on. aerial photos that would
avoid bias due to uneven photo intensity, (2)
determine how to select the proper grid scale to
represent the land area sampled, and (3) keep
costs down. The method we developed is des-
cribed below.

'~ NORTH CENTRAL
~ PROCEDURE

- A township mosaic is assembled from individ-
ual conventional photos for each township in our
Region instead of using single individual con-
ventional photos. Next, township boundaries are
transferred from maps of plat books to the
mosaic (thus providing the gound control of the
‘area). This compensates for overlap, sidelap,
crab (apparent sidewise motion of an airplane
headed into a cross-wind), and tilt (departure
from the vertical position of the camera). The
time spent to assemble one township is %2 to 1
hour. Then a systematic grid of plots is placed
‘over the township mosiac. Therefore, sample
plots are uniformly spaced and an equal number
of plots is represented in each township.

. In our Region differences in relief are not great
and contracting companies usually deliver
photos in the prescribed range, but the scale of

_ photos varies. To compensate for this, we have

many sets of grids with variations of scale from

1:15,000 to 1:42,000. The appropriate grid is

. selected to match the scale of the photo mosaic.

The township mosaic assembly corresponds
closely to township area on the ground. To avoid
too many of the plots falling on roads (north-
south and east-west), the grid is turned 5 de-
grees to the left. In the eastern part of the
United States where land area is not divided by
the township and range system, other controls of
land area could be used such as geological sur-

vey contour maps (U.S.G.S. quads).

RESULTS AND DISCUSSION

The assembled mosaic system allows us to
locate plots systematically on the aerial photos,.
which minimizes the bias due to photography in
photo plot sampling. We still cannot entirely
eliminate small differences of relief and some dis-
tortion on the edge of the photos, but we do
eliminate costs of the map-ground transfer
process and believe that our statistical results
are realistic.
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ESTIMATING D.B.H. FROM STUMP DIMENSIONS

Gerhard Raile, Research Forester,
North Central Forest Experiment Station,
St. Paul, Minnesota

"A means of estimating diameter at breast
“height (d.b.h.) from stump measurements has
several applications: (1) the volume removed in
cases of timber tresspass can be calculated using
“local volume tables, (2) diameter distributions
and basal areas for sample plots or stands can be
_calculated if trees have been cut and the data
were not previously recorded or were lost, and
(3) removals from a large forest area can be cal-
culated. The equations presented here were
- developed as part of the 1977 Minnesota forest
inventory. The d.b.h. estimated by these equa-
tions was used as an input to other volume equa-
_tions to make an estimate of the timber removed
from Minnesota’s forests.

Previous studies of d.b.h. and stump diameter
relations in other regions of the country have
included few tree species of interest in the north-
central States or have not been done in a form
easily adaptable to forest inventory computer
processing. Several of these studies were pub-
lished only as tables or charts (Rapraeger 1941,
Cunningham et al. 1947), while others were
based on a linear relation from a fixed stump
height (Bones 1960, 1961). Stump height was
‘used as a variable by Curtis and Arney (1977)
for estimating d.b.h. of second-growth Douglas-
fir in the Pacific Northwest. McClure (1968) used
stump height in a model similar to the model
~ used in our study but his equations and tables
"cover species found in the southeast.

METHODS

We collected data from 2,575 trees. These data
were collected as part of forest product utiliza-
_ tion studies conducted in conjunction with forest
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inventories in Michigan, Wisconsin, and Minne-
sota. Measurements were taken from random
samples of felled trees at logging operations in
these States. Along with the d.b.h. for each tree,
the diameter outside bark (d.o.b.) was measured
to the nearest 0.1 inch at half-foot intervals from
0.5 to 2.5 feet above the ground (table 1). If an
abnormality, such as a bulge or fork, occured at
the measurement height, the measurement was
not taken.

Table 1. — D. b.h. regression coefficients for tree
species of the Lake States

: Coefficient

Species group ; Trees ; Observations ; D.b.h. range ; A+1.0
Number TInches
White pine 34 138 9.4-33.0 1.07035
Red pine 98 392 3.4-22.6 1.05462
Jack pine 474 1918 4.9-19.4 1.04608
White spruce 51 n7 5.0-18.4 1.01082
Black spruce 124 426 5.0-13.3 1.02679
Balsam fir 189 532 4.2-15.6 1.01367
Tamarack 7 14 7.2-9.2 1.01752
Northern .

white-cedar 97 194 5.2-17.2 L .95610
Other softwoods -- -- - 1.04608
White oak 34 137 10.6-22.9 1.04427
Red & northern

pin oak 107 425 6.3-30.6 1.05658
Hickory - - - 2],05658
Yellow birch 22 47 13.2-23.8 1.10481
Hard maple 89 239 5.7-24.2 1.05199
Soft maple 27 M4 8.0-24.2 1.05199
Ash kil 218 7.4-24.7 1.05559
Balsam poplar,

Bigtooth aspen 187 582 5.0-17.8 1.07897
Paper birch 189 795 5.0-13.8 1.05155
Quaking aspen 738 2706 5.0-20.5 1.06439
Basswood 25 99 9.8-26.7 1.07428
Elm 48 174 7.0-30.5 1.06734
Select hardwoods 4 20 8.1-11.7 1.10929
Other hardwoods -- - - 31.06439
Noncommercial

species - - - 31.06439
TOTAL 2,575 9,287 3.4-33.0 -=

;Used the value for jack'pine.
Used the value for red oak.
Used the value for quaking aspen.



'RESULTS

Because the best estimate of d.b.h. is obtained
by measuring stump diameter at the highest
point on a given stump and stump heights vary
so greatly, stump height was chosen as an inde-
pendent variable along with d.o.b. Plotting the
ratios of d.b.h. to d.o.b. suggests a model of the
form: :

d.b.h.
— =A+B-1n(H)+C-dob.-H

d.o.b.

where, A,B, & C =regression .parameters, and
"H = stump height at which d.o.b. was measured.

“‘Then, we modified the equation as follows to
~make it usable for stump heights ranging from 0
to 4.5 feet, because the natural logarithm of zero
is undefined.

db.h.

_ =1+A+B. (In(H+ 1.0)-1n - 5.5)
d.o.b. + C- d.o.b. - (H-4.5)

~where, A = the regression coefficient for a given
species group, B + C =regression coefficients,
H = stump height in feet, d.o.b. = stump diam-
eter outside bark in inches at H, and d.b.h. =
diameter at breast height in inches.

- This modified regression model was fit using
multiple linear regression with species groups as
. a dummy variable. The species included in each

species group are listed below.

- Common name

Scientific name

SOFTWOODS
~ Eastern white pine Pinus strobus
- Red pine Pinus resinosa
"Jack pine Pinus banksiana
White spruce Picea glauca
Black spruce Picea mariana
Balsam fir Abies balsamea var.
- : _ balsamea

Tamarack Larix laricina
‘Northern white-cedar  Thuja occidentalis
Other softwoods Juniperus virginiana

all other softwoods
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HARDWOODS

Oaks Quercus alba

Quercus bicolor

Quercus macrocarpa
Red oak Quercus rubra
Northern pin oak Quercus ellipsoidalis
Hickories Carya cordiformis

Carya ovata
Yellow birch Betula alleghaniensis
Hard maples Acer nigrum

Acer saccharum
Soft maples Acer rubrum var.

rubrum

Acer saccharinum
Ashes Fraxinus americana

Fraxinus nigra

Fraxinus pennsylvanica
Balsam poplar Populus balsamifera
Paper birch Betula papyrifera var.

papyrifera

Bigtooth aspen Populus grandidentata
Quaking aspen Populus tremuloides
American basswood Tilia americana

Elms
Select hardwoods

Other hardwoods

Noncommercial species

Ulmus americana
Ulmus rubra
Ulmus thomassii
Juglans cinerea
Juglans nigra
Prunus serotina
Acer negundo
Betula nigra
Celtis occidentalis
Populus deltoides

The R?2 for the regression is 0.64616 and the

standard error of estimate is 0.5955. The A + 1
species coefficients are given in table 1. The
coefficients B and C equal 0.1273 and 0.001641,
respectively.

Figure 1 illustrates the advantages of this
model,- which increases the taper in the lower
section of the stump for large trees. For ex-
amples, the data for northern white-cedar, bal-
sam poplar and bigtooth aspen, and ash have
been put in table form (tables 2, 3, and 4). These
tables may be used to find the estimated d.b.h.’s
for these trees when the stump height and stump
d.o.b. are known. When the stump diameter is in
other than 1-inch increments, interpolate to esti-
mate d.b.h. A graph could be used in the field as
a quick method of estimating d.b.h. (fig.2).



(In inches)

Table 2. — Estimated d.b.h. for northern white-
cedar fram stump height and d.o.b.
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STUMP DOB (INCHES)
stump d.o.b.

' . Figure 2. — D.b.h. for red pine as a function of



Table 3. — Estimated d.b.h. for bigtooth aspen
~ and balsam poplar from stump height and d.o.b.
T (In inches)

i Stump height (feet)
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Table 4. — Estimated d.b.h. for ash from stump
height and d.o.b.
(In inches)

Stump :___ Stump helght (feet]
d.ob. : 05: T1.0: T.5: 2.

5 4.3 4.5 4.7 4.8
6 5.1 5.4 5.6 5.7
7 5.9 6.2 6.4 6.6
8 6.7 7.0 7.3 7.6
9 7.5 7.9 8.2 8.5
10 8.2 8.7 9.1 9.4
n 9.0 9.5 9.9 10.3
12 9,7 10,3 10.8 11.2
13 10.5 11.1 11.6 12.0
14 11.2 1.8 12.4 12.9
15 11,9 12,6 13.2 13.8
16 12,6 13.4 14,0 14,6
17 13.2 14,1 14,8 15,4
18 13.9 14,8 15.6 16.3
19 14,5 15,5 16.4 17.1
20 15,2 16.2 17.1 17.9
21 15,8 16.9 17.9 18,7
22 16.4 17.6 18.6 19.5
23 17.0 18,3 19.4 20.3
24 17.6 18.9. 20.1 21.
25 18,2 19.6 20.8 21.9
26 18,7 20,2 21.5 22.7
27 19.3 20.8 22.2 23.4
28 19.8 21.4 22,9 24,2
29 20,3 22,0 23.6 24.9
30 20,8 22,6 24,2 25.7
31 21,3 23.2 249 26.4
32 21.8 23.8 25,5 27.1
33 22,2 24,3 26.2 27.8
34 22,7 24.9 26.8 28,5
35 23,1 25.4 27.4 29,2
23,5 25.9 28.0 29.9
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