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ERRORS IN SAMPLING PLANS BASED ON WALD'S
SEQUENTIAL PROBABILITY RATIO TEST

Gary W. Fowler, Associate Professor of Biometrics,
School of Natural Resources, University of Michigan,

Ann Arbor, Michigan ,

I

,

Various sequential sampling plans based on time consuming, costly, and/or destructive.
Wald's SequentialProbabilityRatio Test Suchplans wouldalsobeusefulwhen itisimpor-
{SPRT) {Wald 1947,Wetherill1966)have been tanttomake a quickdecision.
developedforsamplingforestpopulations.Suc.h

plans have been used to testhypothesesfor The firststep in constructinga sequential
decisionmakingand to classifypopulations.At samplingplanistodefinethesamplingunitand
least27planshavebeendevelopedtoaidinmon- associatedrandom variableofinterest.The dis-
itoringinsectpopulationsortheirdamage, tributionof therandom variablemust thenbe

determined.Alloftheplansdevelopedtosample
Some planswerebasedon oneSPRT toyielda forestpopulationsare based on eitherthebi-
twodecisionproceduresuchascontrolversusno nomial,negativebinomial,normal,or Poisson
control,whileotherswerebasedon two SPRT's distributions.For the normal and negative
to yield a three decision procedure such as light binomial distributions, the population variance
versusmedium versusheavy infestations.Be- o2 and theclumpingparameterK, respectively,
caUse most sequential sampling plans in forestry are assumed known, and if unknown must be
have been applied to the field of entomology, estimated.
this paper will emphasize entomological ex-

amp!es.. The second step is to set the class limits {e.g.,

Tim sample size needed to make a decision to economic thresholds or pest density levels}, the
accept or reject a hypothesis for sequential simple nullandalternative hypothesis parameter
sampling plans based on Wald's SPRT is a values of the underlying random variable, and
random variable. A decision to accept or reject a the associated risk levels {probabilities of a Type
hypothesisortocontinuesamplingismade after I Error(a)and a Type IIError(fJ)).The gap
eachObServationistaken,and observationsare between the two classlimits(theintervalbe-
takenuntilenough evidencehas been collected tween treatmentand nontreatmentthresholds)
to m_A_eone of tl_terminatingdecisions.Such dependson thebiologyand behaviorof thein-
plansusuallyrequireonly40 to60 percentas sectand itsdamage (Knight1967;Waters 1955,
many observationsas an equallyreliablefixed 1974).The two classlimitsdefinethreedecision
samplesizeprocedure.They areintuitivelyap- zones:thetwo terminatingdecisionsorcategory
pealinghi thatfew observationsareneededto classificationssuchas no control{acceptanceof

• make a terminatingdecisionwhen,forexample, the nullhypothesis)and control(acceptanceof
insectpopulationsaresparseorabundant.Given thealternativehypothesis),and theno decision
the budget restraintsfacedtoday,sequential zone{continuesampling).
sampling plansshouldfindwide applicability
where we need to classifypopulationsor corn- Becausetherearetwo classlimitsor simple
pare populationswith some standardfor de- hypothesesthatareused to constructa SPRT,
cisionmakin"g purposes and observationsare two typesoferrorcan occurindecisionmaking:



(1) acceptingthenullhypothesiswhen thealter-
native hypothesis is true and 12) accepting the
alternative hypothesis when the null hypothesis 1.000

" istrue.The probabilities(risks)oftheseerrors MEDIUM

must be setin-advanceaccordingtotheserious- (REJECT Ho) //
nessof eacherror. 7s0- _/_._ /

• . _x./,_,y/
.After the decision boundaries for a given , o._.#'_-

.SPRT havebeendevelopedgiventheunderlying _ xi s00_ <)_<_,_v/_# .O.ution.nd ,e  .. Oandas.iad,
risks, the operatingcharacteristic(OC)and //_o_ :
averagesamplenumber (ASN) propertiesofthe / / LIGHT

•test shouldbe determined.Wald (1947)has 2s0

developedOC and ASN equationsto describe
the properties of the test fot_all possible values
of the random variable of interest. The OC equa-

- tion_or curve shows the probability of accepting 0 ' '25 5O 75 100

the null hypothesis or lower classification, and n

the ASN equation or curve shows the average
number of observations needed to make a ter- Figure 1. -- Acceptance (d,) and rejection (du)

minating decision. The shapes of the OC and decision boundaries for the lodgepole needle.
ASN curves dependupon the underlying distril> miner sequential sampling pla_ Lines con-
ution and class limits and associated risks nectingpoints (.)show a sequential sample of
(Waters 1974, Onsager 1976). 11 observations yielding a decision of light in-

festatiorL Notice overshooting of the lower
decision boundary.

• In allof thesequentialsamplingplansdevel-
' -oPed to sampleforestpopulations,itisassumed

thatWald'sOC and ASN equationsdescribethe
actualOC and ASN functionsoftheplan,which be made at some maximum number of observa-
means thatthenominalvaluesusedtoconstruct tions.Any ofthesemodifications'will,ofcourse,
a SPRT are assumed to be the actualvalues, affectthe actual0C and ASN functionsof a

Wald'sequationsaredevelopedon theassump- sampling plan. However, in allapplications
tionthata terminatingdecisionismade as soon where one or more of thesemodificationsare
as a decisionboundaryiscrossed.Thisassump- made, Wald'sOC and ASN equationsarestill
tion is not true because of the integer nature of used to describe the properties of the sampling
the decision process of a SPRT, which results in plan.

, overshooting of the decision boundaries when a
terminating decision is made (fig. 1) (Wald This paper examines (1) the errors inherent in

'. . 1947).Thus,Wald'sequationsarenotaccurate. Wald'sOC and ASN equationsdue toovershoot-.. .

. ingof thedecisionboundariesand (2) theeffects
Of the above modificationson the accuracyof

• ' . Wald'sequationsalsoassume that(I)onlyone Wald'sequationsfor sequentialsamplingplans
observationistakenateachstageofthesequen- based on the normal distributionusingMonte
tialprocess,(2)terminatingdecisionsarepossi-

' bleafteroneobservationhasbeentaken,and (3) Carloprocedures.

thereisno upperlimittothenumber ofobserva-
tionstaken beforea terminatingdecisionis

made. Many forestresearchershave modified WALD'S SPRT- NORMAL
thedecisionprocessoftheSPRT by taki'ngmore
than one observationat eachstageofthesam- DISTRIBUTION

piing plan, not making a terminating decision : "
• until someminimum number of 0bseryations has In forest sampling, Wald's SPRT is used to

been taken, and forcing a terminating decision to test the simple null hypothesis Ho" 0 ffieo against



the simple alternative hypothesis HI" 0 ffi 01 (01 observations is a discrete integer variable that
) 00), where 0 is the test parameter of the distri- causes overshooting of the decision boundaries
bution of the random variable X. The binomial before a terminating decision can be made for a
distribution is used _to describe X when X takes SPRT (fig. 1). Observations are taken until one
on one of two values (X ffi 1 for_tree or plant or of the terminating decisions is made.
part of tree or plant infested and X ffi 0 for tree
or plant or part of tree or plant not infested). R. can be simplified by taking the natural
The negative binomial, normal, or Poisson dis- logarithm of each density function ratio in the
tributions are usually used to describe X when X product R., which yields Z. ffi._,_, where _, ffiIn
is the number of in_sects per sampling unit. 0o [ flx,,0z )/flx,,0o )]. The decision procedure is
and0, define the class limits for the two decision now
categories -- control or no control. The proba- (1) If K._ a, stop sampling and reject Ho.
bility of a Type I Error (a) is the probability of (2) If K._<b, stop sampling and accept Ho.

' rejecting Ho when 0 ffi0o, and the probability of (3) If b < iS.< a, continue sampling.
a Type II Error (/3)is the probability of rejecting a_ln A and b_-ln B.
H, when 0 ffi 0,. At the class limits, 0o and 0,,
the risk levels are set according to the serious- K. is usually converted to the statistic ,], x,,
ness of the two errors, which is easier to calculate, by setting 7.. = a

• • and _. ffib and solving for, _, x, to determine the
The two above simple hypotheses _are used to upper rejection (Dr ffi,I, x, = h= + sn) and lower

develop, the following decision rule: Ho" 0 <__0o acceptance (DL = ,._,X, = h, + sn) boundaries,
. (no control) versus H," 0 > 0o (control). The class respectively. The decision boundaries are parallel
i limits, 0o and 0,, are critical values of 0. If 0_:20, straight lines with intercepts h, and h= and c0m-

(the zone of rejection), protect against accepting mon slopes. The decision is now:
Ho by setting/3 at 0,. If 0_<0o (the zone of accel>
tance), protect against rejecting Ho by setting a

'. at Oo. If Oo <0<8, (the zone of indifference), it (I) If ,_, x, __h= + sn, stop sampling and
i does not matter what decision is made if 0 is reject Ho...

x,<h, +sn, stop sampling andabout halfway between 0o and 0, but becomes (2) If ,=, _
more important what decision is made as 0-* 0o accept Ho.
and _ 01. This concern is expressed by the (3) If h, + sn<,], x,< h2+sn, continue sam-
values of a and/3 set at 0o and 0,, respectively, piing.
The values 0o, 0,, a, and/3 given the distribution h,, h=, and s are calculated from 0o, 0,, a, and/_.
of X-describe a particular SPRT. For the norme! distribution, (x-_)_

I 1 2o_

]Decision Boundaries f(x) = e
(2n)'/_ o

, The SPRT bases its decisons on a sequence of

Observations (xt, x_, . . .) from the given dis- h, = b°_
• tribution of the random variable X. At each

, stage of the test, an observation is taken at ran- _ ' -_ o
:. dom from the given distribution fix, O), and the

probability ratio h= ffi a°=
, • R. = ,=_,[ f(x,,O, )/f(x,,Oo )],

based on n observations taken up to and in- P' -_ o
cluding the n_ stage is calculated. At each stage
one of the following decisions is made: s ffip ' + _ o

(1) If R.,> A, stop sampling and reject Ho. 2
(2) If R._< B, Stop sampling and accept Ho.
(3) If B< R. < A, continue sampling, when the test parameter 0= p, the mean of the

A _(1-/3) / _ and B _/_/(l-a). The approximate distribution and the nontest parameter o_ is the
equalities are due to the fact that the number of variance of the distribution.



Once thedensityfunctionfix),0o,0,,a,and/3 Wald's OC and ASN Equations
are determined, the decision boundaries Du and

DL are easily obtained from the probability ratio The OC function L(0) is the probability of ac-
Re. For the normal distribution, 02 is assumed cepting Ho as a function of 0. Wald's OC equa-
known and ifunknown must be estimated.Even tion is L(8)-_(Ahc°_-l)/A__0_-Bhco_)where A
though the decisionboundariesare parallel and B areasdefinedearlierand h{8)issuchthat
straightlines,theprobabilityof making a ter-
minatingdecisionisone.The classlimitsused oo
for decisionmaking are in terms of the mean of fix,0, ) h(0)• f(x,0)dx ffi1
the underlying distribution and are functions of f(x,0o ) '
the _st parameter 0. For the normal distribu-
tion, ithe test parameter _ is the mean of the dis- _oo
tribul;ion. The equations for h,, h_, and s were X fix,0, ) h(0)
sunmmrized by Waters (1955) for the binomial, x
nega! ire binomial, normal, and Poisson distribu- f(x,0o )
tions Talerico and Chapman (1970) developed a
F0rtr m IV computer program (SEQUAN) to where x is a continuous or discrete variable, re
calcuJ ate hi, h2, and s and plot the decision spectively, and h(0)_q) (Wald 1947). To obtain
boun¢ Lariesfor.the four distributions above, points on the OC function, one of the above equa-
• tions is solved for h(0), 0 is determined for vari-

ous values of h(0), and L(0) is calculated. When
A isequential sampling plan based on the h(0) ffiI and -I, 0 = 0o and 0_, respectively. For

normal distribution will be used as an example the case where h(0)=0, L(0)-_a/(a-b)(Wald
thro_ ghout this paper. Stark (1952) developed a 1947). For the normal distribution,
plan for classifying Iodgepole needleminer
(Recurv_a miUeri Busck.) populations as light,
medium, or heavy to make preliminary surveys L(_ )_(A h '_-I)/(A h '"_-Bh '_)
of needleminer outbreak areas. The sampling

unit was a branch tip including needles up to 5 h(_ )= _ ' -/_ o-2/_
years 01d, and the random variable was the num-
ber of live larvae per branch tip. It was deter- _ ' -_ o
mined that the number of live larvae per branch where 0 _.
tip followed approximately a normal distribu-
tion, and the standard deviation o was estimated The ASN function Ee(n) is the average hum-
to be 15.62. One of the SPRT's in the three de- ber of observations needed to make a terminat-
cision (2SPRT) pr_ure was used to test ingdecision.Wald'sASNequationis
whetherinsectinfestationswere lightor medi- E0(n)_E0(K, )/E0(K)forh(0)_)

' urn. The class limits _ o and _ , were set at 5 where Z. = ,-_,Z, as defined earlier, E0(n) -bL
and 15 larvaeperbranchtip,respectively,and a (0) + a[ l-L(0)],and E0(_.)ffiE0[ ln(flx,0,)/
and/3weresetat0.05and 0.10,respectively, f{x,0o))] (Wald 1947).To obtainpointson the

• ASN function, E0(n) is calculated for several
values of 0 determined from h(0) above. For the

The decision rule was to classify an infestation case where h(0) _0, E0(n) _-ab/E0(_ ) (Wald
as lightif_ _<_offi5 and toclassifyitas heavy 1947).For thenormaldistribution,
ifp > _o ffi5.If_ ffi5 fora specificneedleminer

population,theSPRT would indicatea medium E_{n)-_bL(_ )+ a[1-L(_)]
infestationI outof20 timeswhen theinfestation

waslight.Ifp _15foraspecificneedleminer E_(_)ffil/_'-P°)(/_-p,-po)....population, the SPRT would indicate a light in- o2
festation 1 out of 10 times when the infestation 2
was medium. Using the formulas for the normal (_,-_ o)2
distribution, h,, h2, and s were calculated to be E_ (z)2 ffi

- -54.93, 70.52, and 10, respectively (fig. 1). o2

4



'. OC and ASN points for h(O)ffi4(-0.5)-4 will As mentioned earlier, Wald's OC and ASN
: usually describe the OC and ASN functions ade- equations, and associated nominal _ and/3, are

quately. Formulas for Wald's OC and ASN equa- only approximate in that they are based on the
tions for the four distributions discussed earlier assumption that a terminating decision is made
were summarized by Waters (1955). Talerico and as soon as one of the decision boundaries is
Chapman (19_/0) and I have developed Fortran crossed. Because the number of observations is a

i IV..compu_r programs to calculate OC and ASN discrete integer variable, overshooting of a
points for selected values of h(0). My. program decision boundary almost always occurs before a
also calculates Monte Carlo OC and ASN points terminating decision is made. Wald (1947) states

, for selected values of h(0). Wald's OC and ASN that the errors inherent in his equations due to
I

points f0r various values of h(_ ) and/_ are given overshooting are small if a and/) are small (less
i in tabie !, for the sampling plan presented earlier than 0.05) and the class limits Ooand O, are suf-
I to classify populations of the lodgepole needl_ ficiently close together. Because , and /3 are
! miner, and the resulting OC and ASN equations usually 0.10 (0.05 at the smallest) and the class
i are Shown in figure 2. • limits are wide for most sampling plans in for-

estry, Wald's equations may not be good approx-
_o _, imations to the unknown actual OC and ASN

_1.0 _ " I ' I 16

i 14 "0.8

. " I _ _N _2 Sequential sampling plans require substan-
0.6 II -_0 tially fewer observations than equally-reliablefixed sample size procedures. For the lodgepole

L(/a) - 8 E/_(n) needleminer example, where /_o _5, /A,= 15,
offi15.62, a ffi0.05, and/_ ffi0.10, approximately

o.4 - e 21 observations are needed to yield a _0.05
4 @/_o _5 and /3=0.10 @/_, =15 for a fixed

o_ a sample size K- test. Compare this sample_siz_

I _i"_'_ . 2 with the ASN function for the sequential sam-
!
• , piing plan (fig. 2). The advantage of the sequen-0 I I l _ 0 - "

-_o o ,0 2o 3o tial sampling plan is clear. However, in compar-
ing the two procedures, it must be remembered

Figure 2. -- Wald's approximate OC (L(_) ) and that Wald's equations are only approximate.
, ASN (E_(n)) functions for the lodgepole

needleminer sequential sampling plan. Notice

I that L(_ ) = 1 - , ffi0.95 at I_ = I_o = 5 andL(I_ ) = [3= 0.10 at _ =/_, = 15. _

, .

• Table 1. -- Wald's Operating Characteristic (L(I_) ) and Ave_
i age Sample Number (Et_ (n)) points for several values of

h(l_)and I_ for the lodgepole needleminer sequential sam-
! , piing plan
[.

hCP) : p : L(_) : E_Cn) : h(.) : I_ : LCP) : EpCn)
: : : : : : :

4 -10 1 •000 2.75 -0.25 11 •25 0 •405 15•76
3 ' - 5 1.000 3.66 - •5 12.5 O.268 14.73

2 0 O.997 5._5 -I 15 0.100 II.60
1 5 O.950 9.73 -2 20 0•011 6•91
O.5 7 •5 0•828 13 •32 -3 25 O.001 4.69

0.25 8.75 0.711 14.96 -4 30 0.000 3.53
0 i0 0.562 15.88



THE ERRORS IN WALD'S OC A sensitivity analysis indicated that 5,000 and

AND ASN EQUATIONS 1,000 samples from a normal distribution (trials
" or iterations) yi'elded adequate accuracy for the

Monte Carlo OC and ASN values at h(_ ) = _+1
To investigate the effects of overshooting the and h(_ ) _ _+ 1, respectively. Unless otherwise

decision boundaries of a given sequential sam- stated, that many iterations were used. Any d_
pling plan on the accuracy of Wald's OC and sired degree of accuracy can be obtained but the
ASN equations, Monte Carlo simulation tech- cost increases with the number of iterations.

niques were used to est!mAte the unknown actu- Throughout the discussion, OC and ASN refer to
alOC and ASN functions. A distribution genera- Wald's equations, OC and ASN refer to Monte
tor was developed to simulate taking observa- Carlo functions, SDo'c = [ OC(1-O'C)/#trials-tions at random from a normal distribution. The

• 1]'/2 is the standard deviation of the OC value,
errors "m Wald's equations were examined by SEA _ is the standard error of the ASN value,
comparing: and REAs N ffi(ASN-ASN) / ASN is the

estimated error of WalEs ASN value.

(I) Wald's nominal risk values (a and/3) and

associated average sample numbers (ASN) with The Pattern of Errors
Monte Carlo estimates of the actual risk values

(a and _} and associated average sample num- To establish if there are any trends in the er-
bers (ASN) at class limits _ o[ h(_)ffi 1] and rors inherent in Wald's equations, Wald and
_, [ h(_ ) ffi-1] for various values of a =/_ and Monte Carlo OC and ASN values at h(_ ) = + 1
_ o and _, ; and (2) Wald's OC and ASN equa- were compared for a =/J =0.05, 0.10, and 0.20
tions and Monte Carlo estimates of the unknown and d, =0.1, 0.25, 0.5, 1, 2, and 3 (tables 2 and
actual OC and ASN functions for the lodgepole 3). d, ffi(_,-_..0:)/o is the noncentrality para-
needleminer example, meter of the standardized normal distribution.

,

Table 2. -- Comparison of Wald's and Monte Carlo values of
a and [Jat h(l_) ffi± I for several values of d, and a = [3for
the normal distribution

: amB
: 0.05 : 0.10 : 0.20

• 61 : _ : : : : : : : :SD_ PEa REa SDa REa: : o ! : • : :

0.1 0.047 0.0015 0.064 0.093 0.0021 0.075 0.192 0.0020 0.042
•25 .046 .0010 .087 .088 .0014 .136 .177 .0019 .130
•5 .037 .0009 .351 .077 .0013 .299 .156 .0018 •282

1 .028 .0008 .786 .057 .0012 .915 .123 .0016 .626
2 .016 .0006 2.12 .031 .0009 2.23 .064 •0012 2.12

) 3 .008 .0004 5.25 .016 .0006 5.25 .028 .0008 6.14

•

Table 3. -- Comparison of Wald_ and Monte Carlo values of Average Sam-
•' pie Number (ASN) at h(_ ) = ± l for several values of d, and a ffi_ for the

normal distribution
I

: a=_

' :' _ .... o.os ' ' ' :' 0':_o, " i _" _: _ O._o " "
_1 : _ _ A§_ : S_N : REAS_ : _N : ASH : S_N : PJ_ : ASH : _S : S_A§N : REAS_: • . • • • • • .

0.1 530.0 541o5 3.87 -0.021 351.6 367.5 1.97 -0.043 166.4 179.1 0.71 _0.074
.25 84.8 90.9 ,32 - ,067 56.2 62.2 .23 - .096 26.6 31,8 .12 - .164
.5 21.2 24.2 .08 - .124 14.1 17.1 .06 - .175 6.6 9,5 .04 - .305

• 1 5.3 7.0 .023 - .243 3.5 5.2 .018 - .327 1.7 3,2 .012 - .469
2 1.3 2.3 .007 - .435 .9 1.9 .006 - .526 .4 1.5 .004 - .733
3 .6 1.4 .003 - .571 .4 1.2 .003 - .667 .2 1.1 .002 - .818



The OC value at h(_)= I is l-a, and the OC function; the largest error was near h(_)ffiO
value at h(/_ )=-1 is/3. Because . =/3 and the where ASN reaches a m-Yimum. The errors in
normal distribution is symmetrical, the Monte Wald's equations were moderately serious for
Carlo results at h(_ ) = ± 1 were pooled. The re- this example even though d, = 0.64 is not large.
suits were based on 40,000 iterations for each
combination of. ffi/3and d, except for values at
. =/3 _0.05 and 0.10 and d, _0.10, which were _o _,
based on 20,000 iterations. 1.0 _ [

ReSults showed that _ and _ were always less . i[_o _ Ithan a and/3 and ASN values were always larger 0.s
than ASN values. The errors in Wald's equa- Ioc_ I
tions increased as d, increased. The errors in I _ I

I I
Wald's ASN equation increased as . _/3 in- I I
creased with no apparent trend for the errors in 0.e !
Wald's 0C equation. The errors .in Wald's equa- u(_) I

fions are large for high values of d,. [ l
o.4 l I

An Example ' '
" I I0.2

Wald's OC and ASN equations were compared I
withMonte Carlo OC and ASN functions for [ oc _kxoc

several values of h(_ ) for the lodgepole needle- .o I '
miner sequential sampling plan with _ o =5, -'.0 0 10 20 30
, = 15, of 15.62, - ffi0.05 and/3 = 0.10 (table 4,

figs. 3 and 4). In general, Wald's OC equation
underestimated the actual OC function near _ o Figure 3. -- Comparison of Wald's and the
(_ < 10) and overestimated it near _, (_ _> 10) Monte Carlo Operating Characteristic (OC)
With _ ffi0.036 and _ ffi0.073. Wald's ASN equa- functions for the lodgepole needleminer s_

' tion always underestimated the actual ASN quential sampling plan (table 4).

Table 4. -- Comparison of Wald's and Monte Carlo Operating Characteristic
(OC) and A verage Sample Number (ASN) values for several values of h(_ )
and _ for the lodgepole needleminer sequential sampling plan (_ o _5,
_ , ffi15, o_ffi15.62, a _O.05, and _ _0.10)

• .

• 4

: : OC : ASN

• h(p):_ _. :: 0C :: 6C .: SDo_ :0C-6C:__. : ASN :. A§N .: SEA§N : REASN : P.nSN1 :--- __ 1_1 : lq 2
!

i 4 -10 1.000 1.000 2.75 3.40 0.04 -0.19 1-11 1.25 2.61
3 - 5 1.000 1.000 3.66 4.57 .07 - .20 1-17 1.64 4.11
2 0 0.997 1.000 -0.003 5.45 6.66 .13 - .18 1-33 1.70 4.02
1 5 .950 0.964 0.003 - .014 9.73 11.84 .12 - .18 1-74 1.84 4.98

' 0.5 7.5 .828 .866 .011 - .038 13.32 17.11 .44 - .22 1-80 1.88 4.89
•25 8.75 .711 .749 .014 - .038 14.96 19.11 .50 - .22 1-97 1.99 5.52

0 10 .562 .557 .016 + .005 15.88 21.58 .56 - .26 1-95 1.74 3.88
• - .25 11.25 .405 .392 .015 + .013 15.76 19.73 .48 - .20 1-92 2.05 7.22
- .5 12.5 .268 .211 .013 + .057 14.73 19.20 .48 - .23 I-i00 2.12 6.26
-1 15 .100 .073 .004 + .027 11.60 14.35 .14 - .19 1-94 1.78 4.63
-2 20 .011 .001 .001 + .10 6.91 8.17 .14 - .15 1-35 1.61 3.78
-3 25 .001 .001 .001 4.69 5.45 .07 - .14 1-18 1.29 2.86
-4 30 .000 .000 3.53 4_23 .05 - .16 1-13 1.20 2.87

IRDsN=rangeof the decisive sample number; _l=Skewness coefflclent;_2= kurtosls coefflclent.
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o ffi15.62, _ ffiO.05, and p ffiO.10, for numbers

of observations taken at each stage of the plan Itequal to 1, 2, 5, and 10. The ASN function for o.oo , , ,
the fixed sample size plan with equalreliabili_ o _0 20 30 .4o so so 70 8o go 1®
is also shown. DSN

Figure 5. -- Empirical distributions of the D_
cisive Sample Number (DSN) for three values
of _ for Wald's Sequential Probability Ratio

It must be remembered that the ASN value is Test (SPRT) with a _O.05 and _ _0.10. The
dashed lineshows the mean Average Sample

the average number of observations needed to Number (ASN) for each DSN distributio_
• make a terminating decision. The number of

observations needed to make a terminating d_
cision for one sample is a random variable called
the decisive sample number (DSN), and the ASN function of the difference between the pest den.
is the mean of this random variable. The serious- sity levels or class limits (d, = (_,-_ o )/o ) and
ness in the errors of Wald's equations can be bet. associated error probabilities used to construct a

' ter shown by looking at the distribution of the given sequential sampling plan. The practic£
DSN (table 4, fig. 5). The distributions of DSN consequences of these errors are (1) the
are skewed to the fight; the skewness increases error probabilities can be smaller than the

' as ASN increases. The number of observations inal error probabilities used to build the sam.

needed to make a decision for a particul_ s_ piing plan, and (2) more field observations
quential sample can be much larger than ASN. made than necessary. If sampling is

time consuming, expensive, and/or early
, . sions are desirable, the consequences of

errors can be severe. Monte Carlo
Procedure to Obtain More should be used to determine if these errors

Accurate OC and ASN Functions serious for a given sampling plan, and ff
are, new sequential sampling plans should

Monte Carlo results for the normal distribu- developed to yield actual error probabilities,
tion showed that the errors inherent in Wald's resulting OC and ASN functions,
OC and ASN equations can be large and are a equal to the nominal ones desired.



I
I
I

In devel0p'mg, a sequential sampling plan, and 0.072, respectively, based on 20,000 itera-
Monte" Carlo OC and ASN functions should be tions each. To determine new nominal values a"

! obtained for the decision boundaries based on and/_'that yield new Monte Carlo values _"and _"
the nominal values of _ and/3. If_ and _ are that are approximately equal to the desired old
close enough to a and /3 and Wald's and the nominal values , and/3, ,'=(,/&), _a 2/_ and

= Monte Carlo OC and ASN functions are similar, /3°ffi(/3/_)/_ =/32/_. For our example, ,'ffi (0.05) 2 /
i the Monte Carlo functions should be used to des- 0.035 ffi0.0714 and /_'ffi(0.10) 2/0.072 ffi0.1389.

cribe the operation of the sequential sampling Using these new nominal values, new decision
plan. If the errors associated with Wald's equa- boundaries can be developed for a new sequential
tionsare serious, new nominal values of ,(a')and sampling plan and Monte Carlo OC and ASN"

, g(/_') should be determined to yield new Monte functions can be obtained (table 5). _'ffi0.051
Carlo estimates_" and _°that are approximately with SD_ 0.003, and _'= 0.097 with SD_'-0.004.
equalto the desired (old nominal values) of _ and Notice the difference between the AS N" values
/_. Monte Carlo OC'and ASN" functions can then for the new sampling plan and the ASN values
be obtained for the new sequential sampling plan for the old sampling plan (table 4). Also, corn-
based on the new nominal error probabilities _: ,pare the empirical distribution of DSN'of the
and/3" If _'and _'are not close enough to, and/_, new sampling plan (table 5, fig. 6) with the
as many iterations of this procedure as are neces- empirical distributions of DSN for the old sam-
sary to yield the desired Monte Carlo values 6f _" piing plan (table 4, fig. 5) for _ = -10, 5, and 10.

" and _"should be used. Usually one or two itera-
tions will be sufficient.

Considering the lodgepole needleminer prob- Notice the close agreement between O'C and
lem, if the difference between the Monte Carlo ASN'of the new plan and OC and ASN of the old
OC _and ASN functions with _ ffi0.036 and plan. A comparison of the ASN function of the
/3ffi0.073 and Wald's OC and ASN functions new sampling plan(_" =0.051,_" _0.097)(table
with, = 0.05 and/_ ffi0.10 (table 4, figs. 3 and 4) 5), which is closely approximated by the ASN
are not considered impo_t, then the Monte function of the old sampling plan (fig. 4), with the

' Carlo ()C and ASN functions should be used to ASN function of the fixed sample size Z - test
describe the operation of the original sampling sampling plan (FIXED, a =0.05, /3_0.10, n ffi
planbased on. _O.O-5and/3 _O.lO. (_ + Z_)'/d' ~, -21_ is more valid than the com-

parison with the ASN function of the old sam-
If the errors in Wald's equations are consid- piing plan (_ _0.035, _ =0.072). This compari-

ered serious, a new sampling plan should be con- son is also more in favor of the sequential pro-
structed. _ and _ were determined to be 0.035 cedure.

I

Table 5. -- Monte Carlo Operating Characteristic (OC) and
A verage Sample Number (ASN) values for several values of
h(_ ) and _ for the lodgepole needleminer sequential sam-
pling plan (_ o = 5, _, ffi15, of 15. 62, ,' = O.0714, and _ 'ffi

i • 0.1389)

I : : OC : _ ASN

h(IJ) : IJ : O_' : SDo_:' : ASH' : SEA_ N' = SDDsH t :RDS H' : ^' : ._ ,
, , : : : : • _ .... : _'1: 2

. 4 -I0 1.000 3.07 0.04 1.36 1-9 1.16 1.76
J 3 - 5 1.000 4.01 .06 2.25 1-15 1.48 3.48

2 0 0.993 0.002 5.70 .11 3.99 1-23 1.43 2.41

1 5 .949 .003 9.97 .10 8.66 1-63 1.77 4.24

0.5 7.5 .818 .012 14.07 .38 13.82 1-75 2.34 8 •90

.25 8.75 .726 .014 14.51 .38 15.76 1-91 2.21 8.09

0 10 .568 .016 16.40 .42 17.57 1-91 1.88 5.38

- :25 11.25 .407 .016 16.61 .40 15.25 1-88 1.71 3.75

- .5 12.5 .255 .014 14.68 .35 15.28 1-79 1.65 3.32

-1 15 .097 .004 11.92 .12 9.83 1-67 1.75 4.30

-2 20 .012 .003 7.16 .12 4,38 1-25 1.38 2.45

-3 25 .001 .001 4.81 .07 2.35 1-18 1.40 3.26

-4 30 .000 3.70 .05 1.55 1-13 1.40 3.61

i
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Wald's OC and ASN equations are still used to
o= _N°-3.07 describe the properties of the modified sampling

• plan.
PiDSN') 0.2

0.1

To investigate the effects of these modifica-
o.o tions on the accuracy of Wald's equations in des-

2 4 e o _o cribing the actual OC and ASN functions of the

• o._o,_ ^ modified sampling plans, Monte Carlo O'C and

ff_i I ASN'-9_7 ASN functions were obtained for the following. sampling plans for the lodgepole needleminer
PCOSN') example (_ o ffi5, _ = 15, of 15.62, _ ffi0.05,0.06 1

p = 0.10)-

o.oo (1) Wald's SPRT with no modifications.
o _o 2o 3o 40 5o so 70 8o go loo (2) Wald's SPRT with 2, 5, and 10 observa-

" '_' " ' ....... tions taken at each stage. *o.oe ' I . A
J- I _N'-_sAo (3) Wald's SPRT truncated at 10, 16, and 2!
t_ ' ' observations.oo, , •

_(osN.)0.04 (4) Wald's SPRT with terminating decisions
first possible at a minimum of three and

o,o2 five observations (minimum points).

o.oo (5) Wald's SPRT with (a) a minimum_point of
o _o 20 3o 40 so 6o 7o 8o 90 _oo 5,(b) a truncation point of10, (c) a mini-

DSN° mum point of 5 and a truncation point of
10, and (d) a minimum point of 5, a tnmca-

. Figure 6.- Empirical distributions of the De- tion point of 10, and 5 observations at
cisive Sample Number (DSN') for three values each stage.
of _ for Wald's Sequential Probability Ratio

T_t (SPRT) with a' =0.0714 and p'ffiO.1389. To obtain O'Cand ASN values_ 5,000 and 1,000
The dashed line shows the mean Average Sam- iterations were used for each sampling plan at
pie Number (ASN) for each DSN distributio_ h(_ ) ffi_+1 and h(_ ) _ 1, respectively.

MODIFICATIONS OF Twoto 10 observations taken at each stage
WALD'S SPRT rePresent the range encounter in forestry sam-

, , piing plans. A truncation point of 16 was o1>
. . . Many forest researchers (Cole 1960; Connola tained using Water's (1974) suggestion of

. . ' et aL 1959; Ives 1954; Ives and Prentice 1958; the maximum of Wald's ASN function as the
Knight 1960a, b;Tostowaryk and McLeod 1972) maximum point, and a truncation point of 21

' have modified the decision process of sequential was obtained from Wald's (1947) rule for
sampling plans based on WalEs SPRT by taking tion, which is to use the sample size of the
more than one observation at each stage of the ly reliable (a,ffi0.05, p =0.10) fixed sample size

' .plan, not making a terminating decision until -test as the maximum point. A truncation
* some _mi'm'mumnumber of observations has been of 10 is approximately the average

taken, and/or forcing a terminating decision to point encountered in forestry sampling plans
be made at some mA3r|mumnumber of observa- Wald's ASN value at h(_ ) = 1. If a
tions. These deviations from the assumptions of decision has not been made when the
Wald's SPRT will, of course, affect the actual point is reached, the average of the
OC and ASN functions of the modified sampling and rejection value at that stage is used as
plan. However, in all forest applications where decision point. The largest minimum point
one or more of these modifications are made, in forestry sampling plans is 5.

lO



Monte Carlo results were obtained with the (figs. 4 and 7). Wald's SPRT with Wald's trunca-
same s_g seed value for the random number tion point (21) yielded as ASN function closer to
generator for sampling plans with number of the ASN function of Wald's unmodified SPRT

" observations equal to 1, 2, 5, and 10; truncation than both Wald's SPRT with Water's truncation
points of 10, 16, and 21; and a minimum point of point (16) or the average truncation point used
5. Monte Carlo results were also obtained for in forestry examples (10). However, the ASN
sampling plans with number of observations function is still larger than the ASN2, function
equal to 1 and a minimum point of 5 using a dif- for 5 </_ < 15.
ferent starting seed. This was done to reduce
Monte Carlo variability in comparing the dif-

_ ferent modified sampling plans and to show
Monte Carlo variability in the case of the O'C 2o -
and ASN values for Wald's SPRT (number of

, observations ffi I) (table 6).

The Monte Carlo results showed that _ and _ 15 -
become smaller and the associated ASN values
at _h(/A)ffi ± 1 becomes larger as the number of ASN
observations taken at each stage, truncation
pointi or minimum point increase (table' 6). 10-
These trends are distinct for the range of
number of observations taken at each stage and ASN,o

the truncation points considered and slight for
the range of "minimum points considered. The s
Monte Carlo variability in estimating _ and
was larger than the Monte Carlo variability in ,..... , ,
estimating the associated ASN values at -10 o lo 20 3o
h(_)ffi ± 1 for Wald's SPRT with no modifica-
tions.

Figure 7. -- Comparison of Monte Carlo Average
•The ASN functions increased substantially as Sample Number (ASN) functions for sequential

the number of observations at each stage in-. sampling plans (tAo =5, I_, _15, o _15.62,
creased, and the A_;N functions decreased stil_ a ffiO.05, and _ =0.10) for truncation points of
stantially as the tnmcation point decreased N ffilO, 16,21, and oo.

Table 6. -- Comparison of M_te Carlo values of a and [3and Average Sam-
pie Numbers (ASN's) at h(IA) ffi± 1 for sequential sampling plans (IAo ffi5,
t_ , _15, o=15.62, a _O.05, and 13_0.10) for various numbers of observa.
tions taken at each stage of the plan, various truncation points, or various

•, minimum number of observations _..,.

' ...... : '' Number of observations " ' : Truncation points ' : Nlnimum' nfimbe'r
h(,_) : L(p) : .............................. : .... : of obse?rvat£ons

......... : ..... : 1 : 11 : 2 : 5 : 10 : 10 : 16 : 21 : 31 : 5

_2 0.036 0.032 0.031 0.023 0.020 0.123 0.077 0.061 0.032 0.035
1

ASN 11.84 11.86 13.19 15.54 18.84 7.86 9.87 10.74 11.89 12.22

_3 .073 .071 .066 .049 .031 .202 .140 .111 .071 _069
-1

ASN 14.35 14.27 15.22 17.60 21.25 8.62 11.28 12.53 14.28 14.58

....[Based on a different: Honte Carlo run than the other Operating Characteristic (0_:) and A_N values.
., .. 2_. I- O_- i- L(p) for h(_) - I.

3_ = 0_: = L(9) for h(9) ,, -1.
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Monte Carlo results were obtained with the the associated ASN values at h(_)ffi ± 1
same starting seed value for Wald's unmodified with these effects increasing slightly as
SPRT and for Wald's SPRT with one observa- the minimum point increased from 3 to 5;
tion at each stage and (a) a minimum point of 3, (4) the effects of more than one observation at
(b) a truncation point of 10, and (c) a minimum each stage above and beyond the effects of
point of 3 and a truncation point of 10 (table 7). a truncation and minimum point are de
Monte Carlo results were also obtained with a creases in &and p and increases in the as-
different starting seed value for Wald's unmodi- sociated ASN values at h(/_ ) ffi± 1.
fled SPRT and for Wald's SPRT with one obser-

vation taken at each stage and (a) a minimum The three modifications of Wald's SPRT con-
point of 5, (b) a truncation point of 10, and (c) a sidered in this paper definitely affect the accu.
minimum point of 5 and a truncation point of 10. racy of Wald's equations in describing the
Monte Carlo results were also obtained for OC and ASN equations ofthemodified
W_d's SPRT with 5 observations taken at each plans. The size of the errors in Wald's
stage, a minimum point of 5, and a truncation depends on how far these modifications
point of 10. from the assumptions of Wald's SPRT and

combination of modifications are used.
The Monte Carlo results showed that in com-

parison to Wald's unmodified SPRT:
(1) a minimum point decreased & and _ and

increased the associated ASN values at CONCLUDING REMARKS
h(/_ ) ffi_+ 1 with these effects increasing
slightly as the minimum point increased Assuming a normal distribution, a "
from 3 to 5; of Wald's and Monte Carlo OC and ASN

(2) a truncation point increased _ to p and de- tions indicated that the errors inherent in Wald'
creased the associated A_N values at equations can be serious. The practical
h(/_ )ffi ± 1; quences of these errors are: (1) the actual

(3) the effects of a minimum and a truncation probabilities can be smaller than the
point above and beyond the effects of a error probabilities used to build the
truncation point are none to Small de- plan, and (2) more observations are
creases in & and B and small increases in taken in the field than necessary. These

Table 7. -- Comparison of Monte Carlo values of a and p and Average Sam-
pie Numbers (ASN's) at h(p ) ffi+ 1 for sequential sampling plans (IAo ffi5,
I_ _ _15, _=15.62, a _O.05, and p =0.10) for two Monte Carlo runs with
various combinations of numbers of obsert_tions taken at each stage of the

b plan, truncation points, and minimum number of obseruations
•

Run number : 1 : ' 2

_, No. of observations : 1 : 1 : 5 ......
. H:l.n:Lmum1 : 1 : 3 : 1 : 3 : 1 : . .5 ._: 1 : .5

Truncation point 1 : ® : 10 : ® : ® : 10

(;2 .032 .032 .115 .115 .036 .035 .123 .123 .119
h(IJ) ,, i

A_N 11.86 11.89 7.84 7.88 11.84 12.22 7.86 8.19 9.01

133 .071 .071 .194 .194 .073 .069 .202 .200 .196

A§N 14.27 14.28 8.64 8.65 14.35 14.58 8.62 8.78 9.45
.........

1A mtntmmn 0£ 1 Indicates no minimum point, a truncation point of ® indicates no truncation point,
and a minimum of 1 and a truncation point o£ ® indicates an unmodified sequential sampling plan.
2;.z_o-c. Z-L(_) forh(_)- Z.
3_ , O_C, L(p) for h(p) - -1.
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must decide whether to construct the new or old

increase asthe difference between the class sequential sampling plan and associated Monte
limits (d, ffi(_ ,-_ o )/a) and associated error Carlo O'Cand ASN functions. The only fair com-
probabilities (o and/3) used to build a sequential parison is between the fixed sample size and the

sampling plan increase. Similar results have new sequential sampling plan. For either sequen-
been obtained for the binomial, negative binom- tial sampling plan, the cost of obtaining OC and
ial, and Poisson distributions. ASN functions is inexpensive.

Also assuming a normal distribution, Monte
Carlo results indicate that any of the above mod- LITERATURE CITED
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A COMPARISON OF TWO METHODS USED TO
" ESTIMATE STAND STOCKING IN UPLAND

- CENTRAL HARDWOODS

Robert Rogers, Research Forester,
Columbia, Missouri

The term stand stocking used in this paper Now substituting
refers to the density of trees in a stand expressed
by the formula given by Gingrich (1967) z" N ffin

Stand Stocking Percent (SSPI ffi ]K) ffinDb,
(-0.0507N + 0.1698 H) + 0.0317 _ )/10

° ED2 ffi(BAF x k)/0.005454
where

N =number of trees per acre into Gingrich's equation we have
_D ffisum of their individual diameters
]3T = sum of the squares of their diameters. SSP ffi(-0.0507n + 0.1698nDb, + (0.0317BAF

Each tree in the s_Ind must be tallied and mea- k)/0.005454)/I0
sured to derive s_g percent using the above

• equation. This process is time consuming, so or
sampling methods are used to estimate the quan-
tities needed for the stocking equation.

SSP ffi-0.00507n + 0.2299 n ( (BAF x k)/
One sampling method, which I call "variable n)v_ + 0.58122 BAF x k.

plus fixed area sampling" (F), provides an esti-
mate of basal area from the variable area plot
and an estimate of the number of trees from the

fixed area plot with origin in common with the The second method uses only the trees
point, pled from a variable area plot. In this case

ple tree diameters must be measured.
Typically, the fixed area plot is circular with Thus

, 1/20 acre area. Thus

BA = basal area/acre ffiBAF x k = basal area

• factor x point sample tree count n = ,_.,BAF/0.005454d, 2 i = 1, 2,... ,k; k
n ffino. of trees/acre ffifixed plot tree count/ sample trees

fixed area plot size k4

ffi(BAF/0.005454),z i/ds 2
D_,ffi diameter of tree of average basal area k

ED = ,._,(BAF/0.005454d, 2 ) d,
ffi( (BAF x k)/0.005454 n) '/2 Ic

= (BAF/0.005454) ,_., 1/d_
'Gingrich, S. F. 1967. Measuring and evalu-

ating stocking and stand density in upland hard- _)2 ffi]_BAF/0.005454d 2 )d2
wood forests in the Central States. For. Sci.
13:3&53. = (BAF x k)/0.005454
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and substituting variability of estimates are related to the varia-

SSP (-0.0507 BAF _ ! bility in the number of trees sampled among= i=, plots.
0.005454 d,_

=

Thus the variability of stocking and average
BAF- 1 diameter estimates is sensitive to the distribu-

+ 0.1698 _ tion of tree diameters within a stand. To see how
i=1

0.005454 d, each method compares in its ability to estimate
stocking and average diameter in stands with

B AF * k different diameter distributions, I simulated the
+ 0.0317 . )/10 sampling process on a computer using four

, , 0.005454 stands that had different diameter distributions
or (fig. 1). Trees were located randomly within eachBAF -

, SSP-_ (5.8122k + 31.1331, _, 1 stand. Then for each stand 10 points were sel-- ected and 1/20 acre circular plots were located
,I0 . d, with their,centerat each point.For each sam-

_9.2959 _= 1, ) piing method stand stocking percent and mean
; d/ stand diameter were averaged over the 10

points. This procedure was repeated 100 times
. whilekeepingtreelocationconstant.Inaddition,

, stockingand averagediameterwere calculated
Note thatwhen BAF ffi10then usingalltreesinthestandand theseweredesig-

31.1331 __= 1 _9.2959)_.__,1 . nated as true values.SSP 5.8122k +

d, d_ 75

70

. Frequently,inadditiontostockingwe needto , es
know the diameterof thetreeofaveragebasal
area.Forthe,variableplusfixedplotmethod this eo
is

' k * BAF _ ss
D_I= { ) T.oA_

0o05454n so .Pole x 10 "

45

" tu -- Uneven-Aged xl0
r_

40

, . _ ----- , ---- Even-Aged
• and.for thevariableplotmethod is _tU

tU

k _ _ 30 _',,
. Db_ = ( ) ,i_, .

1 _,5 I t .- I t t

• : ', / \I ,t
! t.

, d= : \ /, ' \.t
: X I / _,,

15 _ I '_ I I t ti ',I " t _

, , -j i _',,
I, , I

The stocking and average diameter equations 10 / _/ ..t

differ in eachmethod by theway inwhich the ! / _ ',,
number of trees per acre are obtained. These dif- s t# _ ._...
ferencesaffectthe estimateobtainedby each
method. From these equations we can see that o 2 4 6 O 10 12 14 16 18 20

, DIAMETER
the variabilityof point.-sample estimates-in- •
crease as the variability of tree diameters in- Figure 1. -- Diameter structures of two aged,
crease among points whereas among plots the pole, uneven-aged, and even-aged stands.
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Each method estimated s_g percent_wi.th larger than for the point plus fixed plot method.
about the same accuracy except the uneven- In the even-aged stand the pattern in variance is
•aged stand was estimated more closely by the reversed, but estimates are not biased.
variable plus fixed plot method (fig. 2). The
variable plot method deviated farthest (under- Therefore, point sampling methods alone
estimated) true stocking percent and had a vari- should not be used to estimate stocking and
ance 1_/_times greater than that of the variable average diameter in uneven-aged stands. But the
plus fixed plot method for the uneven-aged point sampling method can be used to provide
stand, estimates of stocking and average stand diam-

eter in stands having distributions similar to the
The comparison of average diameter revealed other three studied with a reliability equal"to or

that the methods were similar in their estimates better than the combination method. In particu-
for the two-aged and pol_sized stands (fig. 3). lar, for stands having diameter distributions like
But, their estimates were not similar for the the even-aged stand presented here, estimates of
even- and uneven-aged s.tands. In uneven-aged mean stand diameter obtained by point sampling
stands estimates obtained from the point sample tend to be more reliable than those obtained by
are biased upward and the variance is 3½ times using the combination method.
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Figure 3. -- A comparison of mean stand
Figure 2. -- A comparison of stoohing precent eter (tree of average basal area)

• estimates based on 100 averages of 10 points based on 100 averages of 10 points in
in four stands using variable area plot (g) and stands using variable area plot (V) and
variable area plot plus fixed area plot (F) sam- ble area plot plus fixed area plot (F)
piing methods. Lines through bars represent methods. Lines through bars represent
estimates of tr_ value of stoching percent mates of true value of mean stand
(line at O) and vertical scale shows deviation (line at O) and vertical scale shows
values, values.

..
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NONLINEAR BASAL AREA
" GROWTH MODELS FOR RED PINE

Chung-Muh Chen, Forest Biometrician,
.. Minnesota Department of Natural Resources,

. St. Pau_ Minnesota

and Dietm_ W. Rose, Associate Professor,
' University of Minnesota,

• St. Paul, Minnesota

Previous models of individual tree growth FORMULATION OF

have been based on the open-grown tree concept NONLINEAR BASAL AREA
{Newnham 1964, Arney 1974, Ek and Monserud
1974) and on empirical functions (Bella 1971, GROWTH MODEL
Tennent-1975, Moore et al. 1973, Adlard 1974).
In the open-grown tree approach, individual tree Periodic basal area growth can be related to_

size is assumed to be maximum if the tree is potential basal area increment when the im-
grown in the open {free from competition); the mature tree is free from competition. This

maximum Size is reduced if the tree is grown in a growth can then be reduced by a competition iac-
stand {subject to competition), tot when the tree is grown under competition.

Most periodic growth models for individual This relation can be shown by the following
trees express the amount of competition a tree equations:
receives from its neighbors. Many view compe-
tition between trees in terms of zones of in- A B _b B*[1- e-_c,, _-]x (1)
fluence (Staebler 1951, Newnham 1964, 1966,. or A B _b B.e -he (2)
Opie 1968, Bella 1971, Gerrard 1969, Arney where AB ffithe periodic tree basal area growth
1974, Keister 1971, Ek and Monserud 1974). The of the tree,
basic assumption is that competition between b B* ffithe potential growth when the tree is
individual trees occurs only when their zones free from competition,
overla p. c ffithe competition index of the tree,

: k, m, and N ffigrowth factors such as site,
The Objectives of this study were to formulate species, age, and density.

• nonlinear biological basal area growth models As C t, b B _ ; as C _ ; A B t
and to analyze the relation between individual lim AB ffiAB* for k > 0,m > 0

• tree competition and growth. We used data from C-_0
an even-aged red pine plantation near Star Lake,

• Wisconsin.' Initial spacing of the plantation was lim B ffi0 for intolerant species.
6 by 6 feet. Site index was 65 at age 50 and tree C-_o
survival was high on the site (Wilson 1963).

The advantage of the models (equations 1 and
The data were prov'uted by Dr. Alan R. Ek, 2) is that they offer a logical explanation of the

Uni'versity of Minnesota, College of Forestry, relation between the dependent and independent
and Wisconsin Department of Natural R_ variables. However, the potential growth of a
sources, tree might not be realized not only because of
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competition, but also because of disease, insects, N, ffinumber of competitors of tree i,
animals, wind, frost, etc. Furthermore, the
model is less useful for predicting growth of W,j ffia weighting factor for O,_.
intermediate and suppressed trees when they are
completely released because these trees may not We used the following weighting factor:
regain their full potential growth. So the con-
dition that W,_ ffiR [ 1 - exp (-k, r,j)]" (4)

AB-_ AB* as C-*0
may not be fully realized, where

r,_ffi(d_/d_)Zand dJd_ is the ratio of alia-
An alternative approach is to assume that tree meters of tree i and its competitor j,

PeriOdic basal area growth is directly related to
site, "initialbasal area, and functional crown sur- R ffimax (dJd,)_ for all trees (i, j) with
face, and inversely related to competition index, overlapping influence zones,
Functional crown surface is correlated with tree

growth. Tree height or basal area are correlated k, and E are factors related to species,
wi'th the functional crown surface for immature age, site, and density (E ffi1 to 4).
individual trees growing in dense even-aged
stands (not stagnant) of single intolerant k, _-log[1-(1/R) _] (5)
species. Therefore, in the case of lackinginforma-
tion on tree height and functional crown surface, when weighting factor W,_ ffiI is assigned for the
initial tree basal area or diameter breast height condition dj ffidj, n was assigned the value I or 2.
and competition index may predict tree periodic
basal area increment. For this study, we define As r,j-_0, W,j--,O;
two models similar to equations 1 and 2, except r_-_o, W,j-*R;
AB* was replaced by "a B b "; where B is the

. basal area of the tree at the beginning of the and as
growth period and a and b are two additional r_y-_1, W,y-_1"
factors. The weighting factor for modifying the overlap

area between a tree and its competitor should re
flect the potential size difference of the sample

MEASURE OF treei and its competitor j.
• TREE COMPETITION

RESULTS AND DISCUSSION
The competition imposed on a tree is measured

by the distance to the competing tree, amount of Approximately optimal values of Pi and E (for
overlap area, and rela_ve size. It is formulated equations 3 and 4) for standard error and correl.

, inthe following manner: ation of regression between basal area
_ S and competition index were derived via

C,=(1/A,)_,O_yWtj (3) (table 1). Bella's (1971) index generated
parable results. When no iterations on E and

• Where C, ffithe competition index of tree i, were performed,' i.e., E ffin ffi1 Chen's (1976)
model resulted in correlations that were

At ffithe area of the influence zone or circle mately 10 Percent higher. A modification
about the sample tree i with the Gerrard's (1969) index (inclusion of the

' radius (P_)proportional to the tree E) proved somewhat inferior to the two
diameter, indexes, but is easier to calculate. The

will have to be compared using different

P, ffi1, 1.5, 2.0, 2.5, ages, and stand conditions.

O_ = the area of overlap between tree i For predicting individual tree growth one
and its competitor j for j ffi1, 2,..., the two proposed basal area growth models
N,, fitted via nonlinear regression (table 2).
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Table 1. -- Correlation between periodic basal area growth
and competition index for three competition models'

°

: Observations : Coefficient of Determination _ : Standard : Standard Regression Coefficients
Pl°t2 : Total _ : RegressionS: Adtusted : Unadjusted : error : a : b : k

Inoh 2
1 I86 17 0.55 0.8_ 2.84 34.63 -0.4571 1.5557

2 203 20 .52 .86 2.16 3.25 .1137 0.7839

3 269 19 .88 .95 0.52 0.043 1.2744 .2038

.1, 2,"& 3
" combined 658 56 .60 .86 1.81 1.38 .3682 .7912

Ii 4 296 24 .56 .80 5.17 3134.23 -1.4585 1.9977

lAB = aBb (exp (-kC))
AB = the periodic tree basal area growth insquare inches.
C ffi the competition index (equation 3) with weighting factor (equation 4).
Parameter E ffi 2, R = 1, n = 2 used' for all in calculation of competition index.

12Stand age 32-37.
_Total observations used for calculating competition index.
_Number of trees for which growth and competition was determined.
5The coefficient of determination adjusted for the mean measures the contribution of the sample mean in

explaining variance of the dependent variable.
m

Table 2. -- Nonlinear regression gits for a nonlinear basal area growth
models'

, Plot 2 : : Standard : E3 : pi_ : : Remarks
r . error : . : 11 .

Inch 2 Inch 2

1 -0.82 1.26 2 1 2 Chen (1976) model

2 -0.72 1.41 2 2.5 1 Wij = (l-e -kl(dj/di)E) n

3 -0.73 1.60 2 1.0 2 (equation 4)

4 -0.70 2.42 1.5 1.0 2

1 -0.82 1.27 3.5 1.0 - Bella (1971)

2 -0.72 1.42 2.0 2.5 -

3 -0.73 1.60 4.0 1.0 - Wij ffi(dj/di)E

4 -0.70 2.43 1.5 1.0 -
•

1 -0.72 1.50 4 2.5 - modified Gerrard index
L

2 -0.63 i.57 4 2.0 -

3 -0.72 1.62 4 1.0 - Ci = r_
• and

, 4 -0.63 2.63 2 1.0 - Wij = 1

IABi ffiae-kCi or log ABi = log a - kCi where Ci = _i
Oij

jffil Wij

(competition index) and Wij is a weighting factor.

2plot age 32-37;plots 1 to 3 are control plots and plot 4 is a

thinned plot.

3E = parameter of competition index

_Pi =proportionality factor for radius of zone of influence of

subject tree and tree diameter.
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model adequately explained basal area growth as Chen, Chung-Muh, 1976. Dynamics of an even-
a function of basal area and competition for the aged stand -- structure, mortality, competition

. first three plots. The large standard error for the and growth, Ph, D. thesis, Univ. Minnesota, CoK
thinned plot (plot 4) indicates a much poorer fit. For., St. Pau_ Minnesot_ 107p.

Ek. Alan R. , and Robert A. Monserud, 1974.
Further work is underway to test those models Forest: A computer model for simulating the

using more plots and different species and ages.
growth and reproduction of mixed species forest

Preliminary results indicate less satisfactory fits stands. Res. Rep. R2635, 13p. Dep. For., Univ.
for an older plot of the Star Lake plantation (age Wisconsin, Madison, Wisconsi_

58-65). Relative diameters or basal areas are ade- Gerrard, Douglas J. 1969. Competition _quo-
quate weighting factors only in some instances, tient: A new reasure of the competition affecting
It will be necessary to find weighting factors individual forest trees. Agric. Exp. St_ and
that better reflect the potential size increment of Michigan State Univ. Res. BuK 20, 32 p.the sample tree i and its competitor j such as
height, crown ratio, live crown length, or func- Hatch, R. C., Douglas J. Gerrard, and J. C.
tional crown surface or volume. These variables Tappeiner. 1975. Exposed crown surface area: a

mathematical index of individual tree growth
may improve the growth models for red pine as potential Ca_ For. Res. 5:224-228.
well as for other species in even-aged stands. Keister, T. D. 1971. A measure of the intra,
Species tolerance will have to be considered if

specific competition experienced by an individual
the competition model is applied to mixed stands tree in a planted stand, Louisiana State Univ.
(Chen 1976)" Agric. Exp. Stn. BuK 652, 30 p.
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DISCRETE TIME MARKOV PROCESSES
..

John W. Moser, Jr., Professor of Forestry,
Purdue University, West Lafayette, Indiana

I

..

.'. _

, By observing the evolution of natural phenom- A conventional means of exhibiting transition
elm, it is readily apparent that events occur that probabilities is with a square matrix. A transi-
are not entirely predictable. The modeling of tion matrix for a thre_state process may be
such events is often facilitated by employing represented as:
random processes. The intent of this paper is to a, a2 a3

consider and to illustrate a subclass of the set of a, _,,, p,,z p,,_
t stochastic processes -- one known as discrete P = (p,j)= az Ip2,, p2,2 p2,3 I

I time Markov models. This subclass is termed a3 [p3,, p3.2 p_discrete time because time is indexed in finite
i s_eps rather than as a continuum. Diameter Because each row of the above matrix repre-

I class distributions in forest stands will be used sents a probability distribution for X_, jY.p,jffi1
to illustrate the process, for each i.I

i A Markov chain is a discrete time stochastic The matrix P completely describes the process

i process consisting of a sequence of random for any given outcome at X, given its initial
events { X,, X_, X3, . . .}, each with a finite dependence upon Xo. If event X_ is described,..

number of possible outcomes { a,, a2, . .., a.} the probability distribution for X2 must be d_
(Phillips et aL 1976) This set of possible out- veloped. By the Markov assumption, the next
comes is termed state space. The value assumed state, X2 in this instance, depends only upon the
by X, is called the state of the process at time i. previous state, X,. However, X, depends upon
It is assumed that the random variable, X,, Xo. Three mutually exclusive paths exist to pro-
-depends only upon the previous event X,_,, and gTeSSfrom Xo ffia, to X2 ffia, (fig. 1). The prol>
affects only the subsequent one, X,.,. This as- ability of being in state a_ at time 2 given that
sumption, known as the Markov assumption, the process was in state a, at time o may be
avoids having to express joint distributions for represented as the sum of the three "path proba-
all events at one time. Instead, it is sufficient to bilities""

_ express conditional distributions of just two
neighboring random variables at a time. Mar- P{ Xo = a, -*X2 ffial } ffi

._ .kOv's assumption simplifies the problem but P{ Xo _a,-_X, _a,-*X2 =a, }
does not completely eliminate the dependence + P{ Xo ffial -"X, = a2 -'X2 ffia, }

•between random variables. Therefore life pro- + P{ Xo _a,--X, =a,--X, =a, } (1)
cesses can be realistically represented.

. By employing the Markov assumption and the
Given that Xo ffia, is the present state of a matrix of one-step transition probabilities,

process, one desires to know the probability dis- Equation (1) can be rewritten as:
tribution of the possible outcomes for X,. These
transitional probabilities are designated p,_, P{ Xo = a, -*X2 ffia, } ffi
which represent the conditional probability of p,,, P{ X, ffia,-_X2 ffia, }

going from state a, to state aj after one step or + p,,2 P{ X, ffia2 -_X2 ffia, )
transition, i.e., P{ X, ffiaj[ Xo ffia_). + p,., P( X, --a_ -_X2 = a, }.
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(2) (2) (2)

83 P,., p, 2 p, 3

P(2) ffip,jC2_) ) p2., p2,2 P213

aI (2) (2) (2)
..

p3,, ps,_ p_._

o 1 2 As indicated above, the individual elements
TIME are calculated from the one-step matrix:

Figure 1. -- Possible transitions from Xo ffia, P',._ffiP,,, P,,, + pz,2p2;, + p,,3 p3,,.
to X2 ffiaz for a three.state process.

The two-step transition matrix is obtained by
squaring the on, step matrix:

pc2_ffip. p = p2 (5)

The probabilityforthefirstlegofeachpath is The relationexpressedin Equation(5)isonly
readilyobtainedfrom the matrix of one-step possibleby use of theMarkov and stationarity
probabilities.The probabilitiesforthe second
stepofeachpath isreallythetransitionproba- assumptions.

bilityassociatedwiththe secondtransition.At To obtainthe distributionsof X_ givenvat-
thispointan additionalsimplifyingassumption i0uspossiblestatesofXo, itisagainnecessary

• is needed. If it is assumed that the transitional to consider possible paths that lead from Xo to
probabilities do not change with time, then: X3 in a similar fashion as was illustrated for X2.

Following that logi'c, the elements of the three

P{ Xo ffia, -*X2 ffia, } ffip,,, p,,, + p,,2 p2,, + step transition matrix can be written in terms of
p_, p,,,. (2) the tw_step and on, step probabilities:

_(3 ) (2) (2) ..(2 ) "
The assumption is known as stationarity; with- P',' ffiP',' P',' + p,,2 p2., + tJ_,,P_,,.
out it the process would not be able to continue In matrix notation that is:
because a new transition matrix would be needed pc 3_ffipC2_. p ffip2 . p ffip3.
for each transition. Using similar logic, probabil- The n-step transition matrix is equal to the one
itiesmay be developedforotherstatesat X2 steptransitionmatrixraisedtothen'hpower,
_given that Xo ffia," P'" _ffiP ". (6)

' ' The relationexpressedby Equation(6)isthe
P{ Xo _a,-'X2 _a_ } _p,,, p,,2 + p,,2 p2.z + most importmlt result for Markov chains be

p,,_ p3,2. (3) cause it gives the probability of being in a
cular state at a particular time, given the

P{ Xo = a, -*X_ ffias } = p,., p,._ + p_.2p2.3+ state.
p,,3 p3,3. (4)

To illustrate the use of the discrete time

Thus, Equations (2), (3), and (4) specify the kov model, data were obtained from
probability distribution of X2, given that growth plots in a central Wisconsin mixed
Xo = a,. Similarly, other expressions may be wood stand that had been measured for
developed to specify the probability distribution for 19 consecutive years. The 25 states
for X; given that Xo ffia2 or Xo ffia3. The nota- for the model are the 1-inch diameter
tion p,j_') is titilized for the individual elements from 8-inch through 29_inch, a diameter
of the two-step transition matrix and the corn- called > 29 inch, and the categories of death
plete tw_step matrix, P_ _, for the threestate harvest. The 8-inch class was the lowest
process may be represented as: eter class in which all trees were measured
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: 31-inch was the largest diameter of any tree after As indicated by Equation (5), the two-step
19 years. Because only the first nine growth transition probabilities are obtained by squaring
periods Were utilized to develop the model, it the initial transition matrix. The numbers po '2_

. was necessary to define the largest diameter for i and j = 8... 29, > 29, M_, and C give n the
ckss as > 29 to_obtain numerical values for the probability of a tree being in state j given that it
transition probabilities, was in state i two steps ago (table 3).

,o) t > ,o)If t '° ) ffi(ts ,o ) t9 (o) t29 ,,9 9 ° ° ° 9 9 lP

A tree in any state representing a diameter t_ ,o) t_ ,o )) is a vector whose elements corres-
c_ss may either remain in that class, move to a
higher class, die, or be harvested. The dead and pond to the initial number of trees in each state,
harvest states are considered absorbing states then the matrix of two-step transition probabili-
because once a tree has entered either one of ties can be used to predict the disposition 0f
these states it cannot leave it. The 1-inch diam- those initial trees after 18 growing seasons. The

• numbers pj. ,2) and p,._,z) for i ffi8... 29, > 29
, eter classes are termed transient states, are, respectively, the death and harvest proba-
' bilities for a tree given that it was initially in the

The information to determine the probabilities i'_ diameter class. The predicted number of mor-
i for transitions between states and to verify the tality trees, m,, and harvested trees, c,, are:

-ability ,of the model was obtained bypredi'ctive m, t,,o). p,,- (7)
summarizing the progression of the initial trees and

, in each diameter class for the 19-year _eriod
' (table t). IngroWth trees were not included in the c, ffit, (o) . p, _(2) for i ffi8... 29, > 29. (8)

summaries. Because Equations (7) and (8) account for
death and harvest, the number of survivingIf a tree was in the 10-inch diameter class 9

years ago, the transition probabilities associated trees, s,, from each initial diameter class is
with its movement are determined as follows: (1) s, ffit, (o) . (1 - p,.. ,2) _ p, _,2 )) (9)

for i ffi8... 29, > 29.
the tree will remain in the 10-inch class, p,,o ,,o

' ' Equation (9) indicates the number of trees in the
• ffi44/139; (2) the tree will advance to the 11-inch i'h diameter class expected to survive. It does

i class, p,,o ,,,,, ffi81/139; (3) the tree will move
into the 12-inch class, p,,o,,,2, _5/139; (4) the not indicate the distribution of the surviving' - trees.
tree will die, p_;o,, ffi8/139; or (5) the tree will

, be harvested, p,,o ,_ ffi1/139. To determine the diameter distribution for sur-
viving trees it is necessary to sum all the ways

The transition probabilities for the other diam- that a tree can enter a diameter class, regardless
eter classes are similarly determined with the of its initial class:

' respective diameter class progression sum- tj,2_ffi_t,,o_, pjj,2) (10)
maries. Because death and harvest are absorbing

[ states, p.,. = p_,_ffiI (table 2). 'M ffidead trees; C ffiharvested trees.

•_ Table 1. -- The progression of all trees initially in the l(_inch diameter class
' by number of trees and change in diameter class
[ (In number of trees)

Diameter : Measurement
, .class (in.) , 1 : .2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10 : 11 : 12 : 13 : 14 : 15 : 16 : 17 : 18 : 19

10 139 133 115 107 98 83 69 62 61 44 41 35 29 25 22 19 16 15 13
11 0 5 23 31 37 50 61 68 68 81 75 75 69 67 66 67 67 60 56

, 12 0 0 0 0 0 0 2 2 2 5 12 18 29 34 35 36 37 38 38
•13 0 0 0 0 0 0 0 0 0 0 2 2 2 2 3 4 6 10 12
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 2 2
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Total 139 . 138 138 138 135 133 132 132 131 130 130 130 129 129 128 128 128 125 122

Totalmortality I 1 1 4 6 7 7 ? 8 8 8 9 9 I0 I0 I0 13 15

, Total cut 0 0 0 0 0 0 0 1 1 1 I I i i 1 I 1 2
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where tj'2 _is the number of trees in state j after In another study (Cassell and Moser 1974) the
two transitions, regardless of the initial state, trees were grouped into six tolerance classes and

" each class was individually modeled to provide
" If the values obtained from Equation (10) are information on species composition and diameter

defined in vectorform as distribution (tables 5 and 6). The results from
t(2) : (ts (2), t, (2),..., t2, ,2), t > 29 _2), t. (2), this study are similar to those of the composite
t_'2)), then the equation model. In general the predicte d number of sur-

t,2) t,o) . p,2) viving trees by species group was accurate and
may be used to obtain the individual elements, the prediction of death, harvest, and future

. diameter distribution somewhat less accurate.
, The elements t. ,2 ) and t_,2 ) of t( 2) are equiv-

alent to the _mt and _cj from Equations (7) and For both of the above studies, the basic data
(8), respectively. The total nUmber of surviving were utilized to develop additional models with

, trees equals transition periods of 4, 5, 6, 7, and 8 years.
s, ffi_t, '2_ for i ffi8... 29, >.29. Predictions obtained with these models were

Thus, this value may be determined as the sum similar to those of the 9'year model. Further, it
of the elements from Equation (9) or from the was indicated that the accuracy of prediction
Sum of all elements of the vector t'2 ) except was not dependent upon the length of the predic-
death and harvest, tion period but that predictions beyond one per-

" iod were less accurate.

The foregoing relations may be utilized to pr_
dict diameter distributions. We demonstrated To utilize the Markov process, the Markov and
the predictive ability of the model by using data stationarity properties must be satisfied. First,
collected from a stand for 19 consecutive years to predict the next state the present state must .
(table 4). The iobserved and predicted values be known. Second, the transition probabilities
agree closely; however, the number of surviving between two specific states must remain con-

' . trees by initial diameter class is more accurately stant. In regard to the dynamics of diameter
predictedthan the distribution of surviving trees distributions, these properties imply that: (1)

(BrUner and Moser 1973). the diameter distribution some time in the future
.

z

I Table 4. Observed and predicted stand values at measurement 19 using
, composite model
. (In number of trees)
!

I d.b.h, class : Initial : Survivors :DiameterDistribution: Mortality : Harvested
: no. Crees : Actual : Predicted : Actual : Predlcced : Actual : Predicted : Actual : Predicted

8 209 175 165 22 28 29 37 5 6
9 148 117 117 97 98 23 26 8 5

, 10 139 122 122 116 109 15 14 2 3
, 11 131 110 113 116 108 14 12 7 6

'12 111 91 90 94 91 10 14 10 8
, . , 13 107 85 86 72 92 14 17 8 4
; " 14 88 76 75 85 79 7 8 5 5
' ' "" 15 86 73 70 74 75 4 8 9 7

• , • 16. 74 54 55 75 73 8 11 12 8
, 17 64 50 48 67 66 8 9 6 7

18 52 35 35 67 56 6 7 ii i0
19 32 19 20 51 45 3 3 10 9
20 26 19 19 24 35 1 0 6 7

' 21 14 ii Ii 36 26 1 0 2 3
, , ' 22 8 5 5 16 24 0 0 3 3

23 9 "5 7 18 8 0 0 4 2
, 24 6 3 4 7 11 1 0 2 2

• 25 3 3 2 8 7 0 1 0 1
; 26 6 3 2 2 7 1 2 2 2.

27 * 5 2 2 7 4 2 " 3 1 1
I. 28. 4 1 2 2 0 2 • 3 1 " 0

29 4 3 1 0 4 1 3 0 0|

'" " > 29 1 O. 0 6 3 1 1 0 0I ......
i ,

I " Totals 1,327 1,062 1,051 1,062 1,049 151 179 114 98
I
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Table 5. -- Observed and predicted survivor distributions at measurement
• • 19 using tolerance class model

(In number of trees)

d.b.h. - Composite •
class : distributions i Class l : Class 2 Final _istributions: Class _3 : C_ass 4 : Class 5 : Class 6

.(inches)_ ln_itial - _ - _red_cted_ _:Actua_:Predicted:Act_.._ed£_ted:Ac_ua_:Predicted_Actu_1_Predicted:Actu_edicted._Act_A-_1:_ed£cted

8 209 22 29 1 1 1 4 18 23 1 1 0 0 1 1
9 148 97 99 $ 7 13 12 75 76 2 2 0 0 2 2

10 139 116 110 3 6 17 18 85 83 7 1 0 0 4 2
11 131 116 111 12 9 21 27 76 66 3 4 0 0 4 5
12 111 94 90 7 4 24 22 54 50 8 10 0 0 1 4

.. 13 107 72 92 4 4 15 17 44 63 8 5 0 0 1 1
: 14 , 88 85 80 5 4 9 10 61 56 6 9 1 0 3 1 ;

15 86 " 74 76 3 7 16 13 47 49 .5 4 0 0 3 3
16 74 75 71 6 5 11 10 52 50 "3 2 0 " 0 3 3
17 64 67 68 5 2 9 13 46 45 4 :3 0 0 3 5
18 52 67 56 3 5 12 7 41 39 6 3 0 0 5 l
19 32 51 46 5 4 5 7 36 30 4 2 0 0 1 2
20 " 26 24 36 1 3 3 5 20 27 0 0 0 0 0 2
21 14 36 24 3 1 4 2 28 20 0 0 0 0 1 l
22 8 16 26 0 0 2 1 14 23 0 0 0 0 0 1
23 9 18 9 0 1 1 2 15 6 0 0 0 0 2 1
24 6 7 ' 11 0 1 1 1 6 9 0 0 0 0 0 0
25 3 8 6 1 0 0 2 7 5 0 0 0 0 0 0
26 6 2 7 0 0 0 1 2 6 0 0 0 0 0 1
27 5 7 4 0 0 0 0 6 4 0 0 0 0 1 1
28 4 2 0 0 0 0 0 2 0 0 0 0 0 0 0
29 ' 4 0 6 0 0 0 0 0 6 0 0 0 0 0 0

• 29 1 6 5 0 0 3 4 2 0 0 0 0 0 1 1

To.tals 1,327 1,062 1,062 64 04 167 178 737 736 57 46 1 0 36 38

Table L6_

Observed and predicted mortality small initial number of trees. This suggests that
and harvest at measurement 19 using tolerance the accuracy of predictions for several periods is

class model dependent upon good estimates of the transition
(In number of trees) probabilities which, in tram, are dependent upon

.... - •...... M.su,:_i_e_t "^ ................ sufficient data for all diameter classes. Also, l_-
Class, : Mortal:Lty.... " _'_r,,est_d ..... cause _even-ag_-- stands are el_aet_O.z_! by a

: Actual : Predicted : Actual : Predicted large number of trees in the lower diameter
permanent data from such stands1 0 1 o o cresses, plo_

2 16 7 13 9 will have a similar diameter distribution. This

3 31 44 50 38 situation will inherently lead to greater accuracy
• 4 9 19 2 4 in prediction in the lower classes.5 0 1 0 0

6 1 0 1 1

Totals 57 72 66 52 Prediction of diameter distributions with the
...... ' Markov model has both positive and negative

points. One disadvantage is that mo_ty and
, depends only upon the distribution now and not harvested trees are predicted as numbers of trees

uponpast distributions; and 12)the probability by original diameter class so that the actual
of a tree moving, for instance, from the 8-inch to diameter class of a tree when it dies or is hat-

., the 9-inch class in any specific period must r_ vested is not known. Another disadvantage is
main the same regardless of stand conditions, the difficulty of introducing ingrowth into the

process. The only way to allow for ingrowth is to
The larger discrepancies for predictions be- inventory trees in diameter classes below the

yond one period may be attributable to not saris- lower limit for which predictions are impo_t.
fyiug the stationarity assumption. To examine For example, ff predictions with ingrowth are
this possibility, the 19 years of remeasurement desired for sawtimber trees in the 12-inch diam-
data were used to determine transition probabfli- eter classes and above, trees in the 8-, 9-, 10-, and
ties between, the various states over time. These l 1-inch diameter classes at the initial measur_

• probabilities were fairly constant for diameter ment can be considered as possible ingrowth into
classes with a large initial number of trees, but the 12-inch and larger classes during the predic-
this was not true for diameter classes with a tion peH0ds. To include h_growth in edl diameter
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classes 8 inches and above, trees in roughly the LITERATURE CITED
4-, 5-, 6-, and7-inch diameter classes would have
be inventoried. A third disadvantage is the lack
of flexibility in the length of prediction periods. Brunet, Harold D., and John W. Moser, Jr.
If the two inventory measurements used for the 1973. A Markov chain approach to prediction of
prediction are, for example, 5 years apart, pre- diameter distributions in uneven-aged forest
dictions of stand conditions can only be made for stands. Carl J. For. Res. 3(3): 409-41Z
subsequent multiples of 5 years. Lastly, at least

two measurements from permanent plots are rw Cassel_ Robert F., and John W. Moser, Jr.
quired as data for predictions. This prediction' 1974. A programmed Markov model for predict-
method is not applicable for areas not under a
continuous forest inventory system, ing diameter distribution and species composi-

tion in uneven-aged forests. Purdue Univ. Agric.
, Exp. St_ Res. BuK 915, 43 p. West Lafayette,

Ease of application is a major benefit of the Ind/an_
Markov model. Accurate predictions of numbers
of survivor, dead, and harvested trees, and the
distribution of surviving trees depend only upon Phillips, D. T., A. Ravindran, and J. J. Sol-
conventional continuous forest inventory data berg. 1976. Operations research principles and
and a knowledge of elementary matrix op_ra- practices. 585 p. John Wiley and Sons, Inc., New
tions. York
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AN ACCURATE WAY TO SELECT SAMPLE PLOTS
ON AERIAL PHOTOS USING GROUND CONTROL

Alexander Vasilevsky, Mensurationist,
-.

and Burton L. Essex, Principal.Resource Analyst,
North Central Forest Experiment Station,

St. Paul, Minnesota

Most forest inventories begin with the classi- of the predominant land class would have been
fication of points selected from individual aerial overestimated. A similar test done by the Pacific

pho_graphs. The information develo_d from Northwest Forest and Range Experiment Sta-
this procedure is subject to several sources of tion in Oregon and Washington had similer
error. Photo cover type classification of a sample results (Pope et aL 1972).
point can be in error due to the quality and age
of the photos or to the skin of the photo inter-

preter. These errors can be adjusted by field PROCEDURES USED AT
checking a portion of the photo points. A source
of error that cannot be corrected by field check- OTHER STATIONS
ing Occurs when end lap (overlap), sidelap, crab,
and tilt distort the photo coverage of the land The PNW selects plot locations on maps, then
area. This results in some areas being sampled transfers these plot locations to aerial photos
more intensively than others, using a radial line plotter or stereopotter. This

procedure is considered too expensive by many
The normal forest aerial photography con- inventory foresters.

tracts specifies 60 percent endlap and 30 percent
sidelap in line of flight. However, the contractor The Southern Forest Experiment Station
usually delivers more coverage of the area to be locates sample plots on the most recent conven-
sure that these requirements are met. This type tional aerial photographs and establishes them
of bias is recognized by aerial photo interpreters, on the ground. Then assigns geographic coor-

_ but usually ignored in the hope that the errors dinates to the nearest mile for each plot using a•

win be compensating. Contract specifications for coordinatograph with a 7½-minute quadrangle.
aerial photos also require a specific scale -- the The cost of this method is considered rather high
deviation from specified flight altitudes shah not also.

exceed 300 feet for the purchaser to accept the
photos. The Southern Region establishes forest sur-

vey field plots on maps by a systematic grid.
We tested photo intensity during the forest Then transfers these locations to aerial photos

survey in Iowa where photographing conditions and establishes a cluster of photo plots on each
were good -- differences in elevation were rood- photo containing a field plot.
erate and each township had many roads lying
north-s0uth and east_west. In spite of these ideal The Northeastern Region locates samples
conditions, photo overlap was 0.66 percent great, directly on individual conventional photos. Then
er than specified, which represented 237,000 arranges samples systematically using three

acres. This means that in sampling individual photo plots per photo print and randomly
photos, without regard to overlap variation, area chooses ground plots by photo class.
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A new way was needed to use these photos The township mosaic assembly corresponds
that would estimate forest area accurately. For- closely to township area on the ground. To avoid
est Survey at the North Central Station ap- too many of the plots falling on roads (north-

. proached the problem with the objectives to: (1) south and east-west), the grid is turned 5 de-
select plot locations on aerial photos that would grees to the left. In the eastern part of the
avoid bias due to uneven photo intensity, (2) United States where land area is not divided by
deterrn_!_ehow to select the proper grid scale to the township and range system, other controls of
represent the land area sampled, and (3) keep land area could be used such as geological sur-
costs down. The method we developed is des- vey contour maps (U.S.G.S. quads).
cribed below.

RESULTS AND DISCUSSION

, NORTH CENTRAL
PROCEDURE The assembled mosaic system allows us to

locate plots systematically on the aerial photos,
A township mosaic is assembled from individ- which minimizes the bias due to photography in

Ual conventional photos for each township in our photo plot sampling. We still cannot entirely
Regi'on instead of using single individual _on- eliminate small differences of relief and some dis-
Ventional photos. Next, township boundaries are tortion on the edge of the photos, but we do
transferred from maps of plat books to the eliminate costs of the map-ground transfer
mosaic (thus providing the gound control of the process and believe that our statistical results
area). This compensates for overlap, sidelap, are realistic.
crab (apparent sidewise motion of an airplane
headed into a cross-wind), and tilt (departure
from the vertical position of the camera). The LITERATURE CITED

, time spent to assemble one township is ½ to 1
hour. Then a systematic grid of plots is placed Pope, Robert B., Bijan Payandeh, and David
:0ver the township mosiac. Therefore, sample P. Paine. 1972. Photo plot bias. U.S. Dep. Agric.
plots are uniformly spaced and an equal number For. Serv. Res. Pap. PNW-145, 8 p. Pac. North-
Ofplots is represented in each township, west For. & Range Exp. Str_, Portland, Orego_

Cost, Boel D. 1976. Accuracy and cost of
In our Region differences in relief are not great several methods for geographically locating

and contracting companies usually deliver Forest Survey sample plots. U.S. Dep. Agric.
photos in the prescribed range, but the sc_e of For. Serv. Res. Note SE-234, 4 p. Southeast.
photos varies. To compensate for this, we have For. Exp. Sty, Asheville, North Carolin_
many sets of grids with variations of scale from Bickford, C. Alle_ 1952. The sampling design
1..:15,000 to 1"42,000. The appropriate grid is used in the Forest Survey of the Northeast. J.
selected to match the scale of the photo mosaic. For. 50:290_293.
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ESTIMATING D.B.H. FROM STUMP DIMENSIONS
.

Gerhard Raile, Research Forester,
North Central Forest Experiment Station,

St. Paul, Minneso
..

A means of estimating diameter at breast inventories in Michigan, Wisconsin, and Minne-
height (d.b.h.) from stump measurements has sota. Measurements were taken from random
several applications: (1) the volume removed in samples of felled trees at logging operations in
cases of timber tresspass can be calculated using these States. Along with the d.b.h, for each tree,
local volume tables, (2) diameter distributions the diameter outside bark (d.o.b.) was measured
andbasal areas for sample plots or stan'ds can be to the nearest 0.1 inch at half-foot intervals from
calculated if trees have been cut and the data 0.5 to 2.5 feet above the ground (table 1). If an
were not previously recorded or were lost, and abnormality, such as a bulge or fork, occured at
(3) removals from a large forest area can be cal- the measurement height, the measurement was
cutated. The equations presented here were not taken.
developed as part of the 1977 Minnesota forest
inventory. The d.b.h, estimated by these equa-

• tions was used as an input to other volume equa-
tions to make an estimate of the timber removed
from Minnesota's forests.

Previous studies of d.b.h, and stump diameter Table 1. -- D.b.K regression coefficients for tree
relations in other regions of the country have species of the Lahe States ....
included few tree species of interest in the north- Spectes group : Trees : 0bservat|ons : O.b.h ran qe :• • A+I.0
central States or have not been done in a form " _ " _

easily adaptable to forest inventory computer Whtteptne 34 138 9.4-33.0 1.07035Red ptne 98 392 3.4-22.6 1.05462

processing. Several of these studies were pub- Oackptne 474 1918 4.9-19.4 1.04608Whtte spruce 51 117 5.0-18.4 1.01082
Black spruce 124 426 5.0-13.3 1.02679lished only as tables or charts (Rapraeger 1941, Balsamftr 189 532 4.2-15.6 1.01367

Cunnhzgham et al. 1947), while others were Tamarack 7 14 7.2-9.2 1.01752
Northern

' based on a linear relation from a fixed stump white-cedar 97 194 5.2-17.2 .95610
Other softwoods ...... 11.04608

height (Bones 1960, 1961). Stump height was Whtteoak 34 137 10.6-22.9 1.04427

used as a variable by Curtis and Arney (1977) Red_northernptn oak 107 425 6.3-30.6 1.05658

for estimating d.b.h, of second-growth Douglas- Htckory ...... 21.os6s8Yellow btrch 22 47 13.2-23.8 1.10481
fir in the Pacific Northwest. McClure (1968) used Hardmaple 89 239 5.7-24.2 1.05199

Soft maple 27 114 8.0-24.2 1.05199
stump height in a model similar to the model Ash 31 218 7.4-24.7 1.05559
Used in our study but his equations and tables Balsampoplar,Stgtooth aspen 187 582 5.0-17.8 1.07897

cover species found in the southeast. Paper btrch 189 795 5.0-13.8 1.05155Ouaktng aspen 738 2706 5.0-20.5 1.06439
Basswood 25 99 9.8-26.7 1.07428

. Elm 48 174 7.0-30.5 1.06734
• Select hardwoods 4 20 8.1-11.7 1.10929

METHODS Other hardwoods ...... 31.06439
Noncommercial

spectes ...... 31.06439

We collected data from 2,575 trees. These data TOTAL 2,575 9,287 3.4-33.0 --

z Used the value for :lack' ptne.were collected as part of forest product utiliza- 2Usedthevalueforredoak.
tion studies conducted in conjunction with forest 3Used thevalueforquaktnq aspen.
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RESULTS HARDWOODS
Oaks Quercus alba

Bemuse the best estimate of d.b.h, is obtained Quercus bicolor

by measuring stump diameter at the highest Quercus macrocarpa
point on a given- stump and stump heights vary Red oak Quercus rubra
so greatly, stump height was chosen as an ind_ Northern pin oak Quercus eUipsoidalis
pendent variable along with d.o.b. Plotting the Hickories Carya cordiformis
ratios of d.b,h, to d.o.b, suggests a model of the Carya ovata
form: Yellow birch Betula alleghaniensis

Hard maples A cer nigrum
i d.b.h. Acer saccharum
i

d.o.b. -A + B. In (H) +C. d.o.b.. H Soft maples Acer rubrum var.rubrum

l Acer saccharinumwhere, A,B, & C =regression .parameters, and Ashes Fraxinus americana

i -H = stump height at which d.o.b, was measured. Fraxinus nigra|

Fraxinus pennsylvanica
,l _Theh, we modified the equation as follows to Balsam poplar Populus balsamifera

make it usable for stump heights ranging from 0 Paper birch Betula papyrifera var.
• to 4,5 feet, because the natural logarithm of'zero papyrifera

is undefined. Bigtooth aspen Populus grandidentata
Quaking aspen Populus tremuloides

d.b.h. American basswood Tilia americana
=1 + A + B. (ln(H + 1.0)- In • 5.5) Elms Ulmus americana

d.o.b. + C" d.o.b. • (H-4.5) Ulmus rubra
Ulmus thomassii

• Select hardwoods Juglans cinerea

where, A = the regression coefficient for a given Juglans nigra
species group, B + C ffiregression coefficients, Prunus serotina
H = stump height in feet, d.o.b. = stump diam- Other hardwoods Acer negundo
eter Outside bark in inches at H, and d.b.h, ffi Betula nigra
diameter at breast height in inches. Celtis occidentalis

• Populus deltoides

This modified regression model was fit using Noncommercial species
multiple linear regression with species groups as
a dummy variable. The species included in each The R2 for the regression is 0.64616 and the
species groupare listed below, standard error of estimate is 0.5955. The A + 1

species coefficients are given in table 1. The
• coefficientsB and C equal0.1273and 0.001641,

Common name Scientific name respectively.

SOFTWOODS Figure 1 illustrates the advantages of this
E astern white pine Pinus strobus model, _,which increases the taper in the lower
Red pine Pinus resinosa section of the stump for large trees. For ex-

Jack pine Pinus banksiana amples, the data for northern whitecedar, bal-
White spruce Picea glauca sam poplar and bigtooth aspen, and ash have
Black spruce Picea mariana been put in table form {tables 2, 3, and 4 ). These
Balsam fir A bies balsamea var. tables may be used to find the estimated d.b.h.'s

balsamea for these trees when the stump height and stump
Tamarack " Larix laricina d.o.b, are known. When the stump diameter is in

Northern white-cedar Thuja occidentalis other than 1-inch increments, interpolate to esti-
' Other softwoods Juniperus virginiana mate d.b.h. A graph could be used in the field as

all other softwoods a quick method of estimating d.b.h. (fig.2).
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Table 2. -- Estimated d, b. h. for northern whit_
z_ + cedar from stump height and d, o. b.

" 3o- (Ininches)

_ 24-

5 38 40 42 43
6 4.5 4.8 5.0 5.1

:_ 18- 7 52 55 57 60

8 5.9 6.3 6.5 6.89 6.6 7.0 7,3 7.6
12- D.B.H.(INCHF._) 10 7.3 7.7 8,1 8.4

11 79 84 88 92
_-. A 10 ....12 8.5 9.1 9.6 10.0

6 - + 20 13 9.2 9.8 10.3 10.7
14 9.8 10.5 11.0 11.5
15 10.4 11.1 11.7 12.3

o I I 16 1i.0 11.8 12.4 13.0
0 6 12 18 24 30 36 17 11.5 12.4 13.1 13.8

18 12.1 13.0 13.8 14.5
STUMP DOB (INCHES) 19 12.7 13.6 14.5 15.2

Figure I -- The relation of stump height and 20 13.2 14.2 15.1 15.9
• 21 13.7 14.8 15.8 16.6

stumpd.o.b, forlO-and20-inchd, b.h, redpine. 22 14.2 15.4 16.4 17.4
23 14.7 16.0 17.1 18.0
24 15.2 16.5 17.7 18.7
25 15.7 17.1 18.3 19.4
26 16.1 17.6 18.9 20.1
27 16.6 18.2 19.5 20.7
28 17.0 18.7 20.1 21,4
29 17.4 19.2 20.7 22,0
30 17.8 19,7 21.2 22.7
31 18.2 20.1 21.8 23.3
32 18,6 20.6 22.3 23,9
33 18.9 21.0 22.9 24.5
34 19.3 21.5 23.4 25,1
35 19.6 21,9 23.9 25.7

30 36 20.0 22.3 24.4 26.3

25 - STUMP HEIGHT (FEET)
X

0.5 +

i _ 20- +1.0 Z_
(n x 1.5

•

_ 15-

_ 10-

)

• , , I

0 5 10 15 20 25 30

STUMP DOB (INCHES)

Figure 2. -- D. b.h. for red pine as a function of
stump cLo. b. _,
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Table 3.- Estimated d, b.K for bigtooth aspen Table 4. -- Estimated d b. h, for ash from stump
and balsam poplar from stump height and d, o.b. height and d, o. b.

" (In inches) (In inches)

--SE_-p : - Stum h--_-f_-['1r_T) _ Stump: Stump _elght (feet)
d,o.b _. :__.0_,5._ 2-.0- d.o,b, • 0.5 : 1.0 : 1.5 : 2.0

5 4.4 4.6 4.8 4.9 5 4.3 4.5 4.7 4.8
6 5.2 5.5 5.7 5.9 6 5.1 5.4 5.6 5.7
7 6.1 6.4 6.6 6.8 7 5.9 6.2 6.4 6.6
8 6.9 7.2 7.5 7.8 8 6.7 7.0 7.3 7.6
9 7.7 8.1 8.4 8.7 9 7.5 7.9 8.2 8.5

10 8.5 8.9 9.3 9.6 10 8.2 8.7 9.1 9.4
11 9.3 9.8 10.2 10.5 11 9.0 9.5 9.9 10.3
12 10.0 10.6 11.0 11.4 12 9.7 10.3 10.8 11.2
13 10.8 11.4 11.9 12.3 13 10.5 11.1 11.6 12.0
1,4 11.5 12.2 1,2.7 13.2 14 11.2 11.8 12.4 12.9
15 12.2 13.0 13.6 14.1 15 11.9 12.6 13.2 13.8
16 12.9 13.7 14.4 15.0 16 12,6 13.4 14.0 14.6
17 13.6 14.5 15.2 15.8 17 13.2 14.1 14,8 15.4
18 14.3 15.2 16.0 16.7 18 13.9 14.8 15.6 16.3
19 15.0 16.0 16.8 17.6 19 14.5 15.5 16.4 17.1
20 15.6 16.7 17,6 18.4 ' 20 15.2 16.2 17.1 17.9
21 16.3 17.4 18.4 19.2 21 15.8 16.9 17.9 18.7
22 16.9 18.1 19.1 20.1 22 16.4 17.6 18.6 19.5
23 17.5 18.8 19.9 20.9 23 17.0 18.3 19.4 20.3
24 18.1 19.5 20.7 21.7 24 17.6 18.9 20.1 21.1
25 18.7 2.0.2 21.4 22.5 25 18.2 19.6 20.8 21.9
26 19.3 20.8 22.1 23.3 26 18.7 20.2 21.5 22.7
27 19.9 21.5 22.8 24.1 27 19.3 20.8 22.2 23.4
28 20.4 22.1 23,5 24.8 28 19.8 21.4 22.9 24.2
29 21.0 22.7 24.2 25.6 29 20.3 22.0 23.6 24.9
30 21.5 23.3 24.9 26.4 30 20.8 22.6 24.2 25.7
31 22.0 23.9 25.6 27.1 31 21.3 23.2 24.9 26.4
32 22.5 24.5 26.3 27.9 32 21.8 23.8 25.5 27.1
33 23.0 25.1 26.9 28.6 33 22.2 24.3 26.2 27.8
34 23.5 25.7 27.6 29.3 34 22.7 24.9 26.8 28.5
35 23.9 26.2 28.2 30.0 35 23.1 25.4 27.4 29.2
36 24.4 26.8 28.8 30.7 36 23.5 25.9 28.0 29.9

. . ,1,
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