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INTRODUCTION TO USES AND INTERPRETATION OF

PRINCIPAL COMPONENT ANALYSIS IN FOREST BIOLOGY

J. G. Isebrands and Thomas R. Crow

INTRODUCTION in this paper are: (i) reduction of the

number of variables by deletion of extra-

There is a definite need to acquaint neous variables; (2) ordination of variables

those interested in, yet unfamiliar with prin- as an aid to the interpretation of multi-

cipal component analysis (PCA), regarding variate data; ands(3) use of PCA in conjunc-

its terminology, underlying assumptions, prac- tion with regression analysis for the iden-

tical applications, and literature so that tification of biological variables for fur-

PCA might find more widespread and proper ther experimentation.

use in data analysis. Although most multi-

variate textbooks (e.g., Rao 1952, Kendall

1957, and Seal 1964) adequately cover the

theoretical aspects of PCA, examples of prac- PRINCIPAL COMPONENT ANALYSIS
tical applications with information concern-

ing the interpretation are lacking in the Historical Development
literature. Adding to the confusion for

the beginner is the proliferation of matrix Principal component analysis (PCA) is
notation and the lack of standardization certainly nothing new; mathematical statis-

among texts in both notation and terminology, ticians have studied it for years (Hotelling
1933, Rao 1952, Kendall 1957, Anderson 1964,

Our objective is to introduce PCA to Seal 1964). As research tools the initial

the forest biologist who has had an expo- development and application of multivariate

sure to introductory statistics, and likely techniques are rooted in the behavioral

applies ANOVA, correlation, and regression sciences. The classical example is Spearman's

routinely, but who has not made the jump (1904, 1927) attempt to prove his psycho-

to multivariate techniques. Our intent is logical theory that intellectual performances

to demonstrate through detailed examination are a function of a single general mental

of two applications the utility of princi- capacity. The origins of PCA can be traced

pal component analysis in helping solve re- to variance-maximizing solutions in psycho-

search problems in forest biology, logical and educational studies (Hotelling

1933). Recent emphasis given multivariate

It should be emphasized that PCA is techniques is associated with the avail-

normally not used to test a null-hypothesis ability of computers to process the exten-
or in the estimation and prediction of quan- sive calculations associated with the tech-

tities. Instead, it is an exploratory tech- niques. Almost every computer center now has

nique for assessing the dimensions of var- one or more multivariate packages (e.g., Dixon

iability and aiding in the generation of 1970).

hypotheses to be tested in conjunction with

other statistical techniques such as mul- In forest biology, applications of PCA

tiple regression (Pearce 1969). Among have been relatively few, although there has

the many potential uses of PCA in forest been a flux of recent publications. J. N. R.

biology, those which will receive emphasis Jeffers (1962, 1964, 1965, 1967, 1970, 1972)



has been the greatest proponent of the use of transformation; and, (4) the variance asso-

multivariate analysis. Jeffers and Black ciated with each component decreases in or-

(1963) applied PCA to 9 lodgepole pine prove- der--the first variate will account for the

nances using 19 variables; they concluded largest possible proportion of the total var-

that many fewer than 19 variables were needed iation, the second will acco_nt for the largest

to discriminate among provenances. Namkoong proportion of the remainder, and so forth°

(1967) also used PCA for an analysis of prove-

nance data in conjunction with regression. Bearing these properties in mind, a com-

parison of PCA to another popular multivariate

Gessel (1967) recommended the application technique, factor analysis, is appropriate.

of PCA to aid in the assessment of the many Within the literature, there is a great deal

factors that influence forest productivity, of conflicting terminology; as a result the

or yield. In an example, eighteen variables distinction between PCA and factor analysis

were tested against the productive capacity can be confusing. For example, where the

as measured by site index from a series of term "factor analysis" has been applied to

western hemlock (Tsuga heterophylla (Raft) all multivariate procedures dealing with the

Sarg.) stands in Washington State. Four un- reduction of dimensionality and identification

correlated components were found to have a of common factors, PCA is often presented as

major influence on the patterns of varia- a "factor analysis" technique. In other cases,

tion in productive capacity (Gessel 1967). such as the IBM Scientific Subroutine Package,

Others have also u_ilized PCA to assess pro- PCA is labeled as "principle component factor

duction relationships. Kinloch and Mayhead analysis."

(1967) investigated the use of PCA to help

assess the possibility of using ground veg- Two important distinctions exist between

etation as an indicator of productive po- PCA and factor analysis: 1

tential in forestry. Decourt et al. (1969)

used PCA and regression analysis with orth- (i) In factor analysis, p original
ogonalized variables to elucidate the rela- variates are reduced into m<p uncorre-

tionships between environmental factors and lated "factors" having an uncorrelated

production in Scotch pine (Pinus sylvestris residual component; in PCA, p correlated
L.). PCA was employed by Vallee and Lowry variates are transformed into p uncor-

(1972) to classify black spruce (Picea related variates, not all of which are

mariana (Mill.) B.S.P.) forest types and to necessarily significant.

help estimate site quality. Auclair and

Cottam (1973) employed PCA and multiple (2) Unlike PCA, factor analysis has the

regression analysis to assess the influence potential for rotating the orthogonal axes

of environmental factors on the radial growth that represent "factors" to new oblique posi-
of black cherry (Prunus serotina Ehrh.). tions so that theoretical postulations inher-

ent in a model can be tested.

In other forestry related areas, PCA has

been used in dendrochronology (Fritts et al. The first of these distinctions has to

1971, LaMarche and Fritts 1971), palynology do with property No. 3 above. An assumption

(Webb 1973, 1974a, 1974b), and geoecology basic to PCA is that the observed variation

(Newnham 1968). is caused by the effects that the underlying

(casual) factors have on each of the original

variates. PCA, therefore, is a closed model,

without regard to random error or variation

Basic Properties external to the system (Pearce and Holland

1960); thus, all variation in the original

variates is accounted for by the derived var-

Principal component analysis is an ana- iables. In factor analysis, however, only a

lytical procedure for tKansforming one set portion of the total variation is attributed

of variates into another set of component to the m<p transformed variates (this portion
I! 1'

variates having the following properties: is termed the communalities ) and the re-

(l) they are linear functions of the orig- maining variance is considered an error var-
inal variates; (2) they are orthogonal, i.e., iance.

independent of each other; (3) the total

variation among them is equal to the total

variation in the original variates, conse- i For details see Kendall (1957),

quently, information concerning differences Pearce and Holland (196@), Seal (1964),

among the observed variates is not lost in Cattell (1965), and Pearce (1965).
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Although the factor analysis model may under consideration and are denoted by _i' i =

seem more desirable for biological appli- 1 .o.p. The _i have the form

cations, the need to estimate communalities

poses a problem because it requires a priori

knowledge of the system. Initial estimates _i = ail Xl + ai2 x2 �aipXp
of communalities often are little better

than arbitrary guesses; thus, a series of it-

erations is necessary before the investigator
is Satisfied° As a result, the model is _ is defined as a column vector and is referred

developed to fit the data (Kendall 1957). In to as an "eigenvector" (or latent vector) hav-

PCA, however, the process is reversed: one ing coefficients a..o The coefficient subscripti
works from the data toward a hypothetical mo- i refers to the eig_nvector number and the i

del. Beginning with the observations, the subscript j refers to the original variable (x.)

investigator develops a model that reduces number, l

the dimensions of variation, which consequent-

ly aids in the biological interpretation Each eigenvector _o has a variance asso-

(Kendall 1957). ciated with it called a_ "eigenvalue" (or la-

tent root) and is denoted by hi, i = 1 .0. p.
It must be emphasized that the variates-

-principal components--derived using PCA may Geometrically, we have a data scatter of

not have any biological significance. Multi- n points in p dimensions and PCA is a rotation

variate techniques must not be considered as of axes such that the total variance of the
a mode for the automatic generation of hypo- projections of the points onto the first axis

these_ rather as an initial step in which is a maximum (i°e., first principal component).

complex data sets are simplified to make them The second axis (second principal component) is
more amenable to interpretation. Any hypoth- chosen orthogonal to the first and accounts for

esis developed using PCA that seems plausible as much as possible of the remaining variance.

can only be considered subjective until con- Each additional axis is also orthogonal and

firmed by existing biological knowledge or accounts for a maximum portion of the remain-

additional studies (Pearce 1965). ing variation (Seal 1964). The linear combi-

nations _i are the length of the projections
onto the new axis, and the directional cosines

Terminologyand Notation of the projections are the eigenvector coeffi-
cients a_=. The variance of the projection is

±j
It is not necessary for the user to under- the eigenvalue (hi) (Seal 1964, Krzanowski 1971).

stand all aspects of PCA derivation. He must,

however, have an overview of its terminology The algebraic and matrix derivation of

and notation if he is to effectively use PCA. the principal components, _i and their variance

is beyond the scope of this paper. However,

For example, suppose that x_ x2, xir .. it has been covered in detail in the liter-
Xp are random variables and that_ is a__ow ature (Hotelling 1933, Kendall 1957, Anderson
vector composed of the x's. From this pop- 1964, and Morrison 1967).

ulation, a sample of n independent observa-
tions can be drawn so that

t- ]
The following properties of PCA are of

Xll ...... Xlp importance for interpreting our examples. As

X = stated earlier, the variance of each principal

component (_i) is its eigenvalue (%i); fur-

LXnl ..... XnpJ thermore, the %i values sum t° the t°tal var-iance in the experiment. Therefore,

where X is an n x p data matrix of full rank 2 2 2 2

(i.e., independent rows and columns) (Mor_ison %1 + \2 + h3 + "'" + _p Ol + _3 + "°° + _P
1967)o The variance-covariance matrix of X is

defined equal to S and the Correlation matrix
of _ is R. This means that the total variation of the

derived variates equals the total variation of

The principal components are defined as the observed variates, thus information is

linear combinations of the original x i variables not lost by linear transformation.

3



In addition, the quantity variables to meet the assumptions - _s nor-

mally and independently distributed with mean

hi_ 0 and variance 023 (3) selection of eitherI00 the variance-covariance or the correlation

\ Z_ _ matrix and calculation of that matrix_ (4)
\-/ determination of eigenvalues (latent roots)

and eigenvectors of the variance-covariance

or correlation matrix; and (5) interpreta-

where Eh i = trace S (i. e., sum of diagonal tion of derived components°
elements of the correlation matrix)

gives the percentage of the total variance

explained by the ith principal component The first step, variable selection,

(table i). The cumulative percent of the is extremely important° These variables

total variance is also important because it should be quantitative characters, and

refers to that portion of the variance "ex- preferably be measured on a continuous

plained" by a particular eigenvector in ques- scale, although many discrete variables

tion plus all previous eigenvectors. (e.g., the number of teeth measured

along a leaf margin) adequately approximate

continuous variables (Jeffers 1964).

Table l.--Eigenvalues, and cumulative per- The second step requires deciding

centage of variation associated with the whether to transform data, which admit-

eigenvalues from principal component tedly can be a subjective decision

analysis of 4-year white spruce nursery (Jeffers 1964); in most statistical

measurements analyses, the assumption of normality

is often neglected. Tests of signifi-

cance are only meaningful for data
that are multivariate-normal in their

Eigenvalues : Cumulative percent distribution and transformations may be

(_) : of variation necessary if normality is not present

1 10.07 0.530 (Andrews, Gnanadesikan, and Warner 1971).
2 2.25 0.648 Furthermore, Bartlett's test can be used

3 1.63 0.734 for testing the homogeneity of _ariance.

4 1.08 0.791 However, Jeffers (1964) recommended the

5 1.05 0.846 use of transformations only when the data
6 0.56 0.875
7 0.50 0.902 severely violate the assumptions, because
8 0.49 0.928 transformations make the eventual inter-
9 0.31 0.945 pretation of PCA more difficult.
I0 0.29 0.950

ii 0.23 0.971 The third step callsfor another de-
12 0.18 0.981 cision whether to use the variance_covar -
13 0.13 0.988
14 0.09 0.992 iance matrix or the correlation matrix.
15 0.06 0.996 Normally, if all units are of the same

16 0.03 0.998 scale (e.g., all units of length), the
17 0.03 0.999 use of the variance-covariance matrix

18 0.01 0.999 is recommended. Use of the variance-
19 0.01 1.000

_ covariance matrix has the greatest statis-
tical appeal because the sampling theory

is less complex than the others (Anderson

1964). However, if the units are mixed

(e.g., length, volume, weight), normaliza-

0peratJona] Sequence tion is necessary and the correlation ma-
trix is used. The eigenvalues (variance)

The mathematical operations of PCA are impor- associated with an eigenvector from a

tant, but they represent only one aspect of correlation matrix is a standardized var-

the analysis. The entire spectrum of oper- iance. Throughout this paper the correl-
ational sequence follows: ation matrix is used.

(i) Selection of preliminary variables; The fourth step involves the linear

(2) if necessary, transformation of original transformation of p original variates into

4



p "artificial" variates. This is the math- large number of variables was considered

ematical equivalent of determining the necessary because of the preliminary

eigenvectors and related eigenva!ues of a nature of the study. Information derived

variance-covariance or of a correlation from the study was to be used to help det-

matrix (Jeffers 1964)_ Conceptually this ermine the usefulness of certain parameters

requires the extraction of common variables for possible selection indices. These

(i_e_, the eigenvectors) and their var- parameters would then be studied further

lances (ioeo_ eigenv_lues) from the variance- in subsequent experiments_ Portions of the
covariance or correlation matrix. A sim- data have been published (Nienstaedt 1968,

plistic development of the mathematical Nienstaedt and Teich 1971).

derivation of eigenvectors and eigenvalues

can be found in Pearce (1969); more com- The data consists of a 19 x 28

p!ete derivations can be found in any ma- matrix suitable for the use of PCA in dis-

trix algebra text. carding variables. Bartlett's test of

homogeneity indicated that the 19 var-

The fifth step involves the inter- iances are homogeneous at the 0.05 prob-

pretation of the derived components. First, ability level, and therefore, no trans-

a decision has to be made regarding the formations are necessary. We continue

number of components that have biolog- the discarding procedure by calculating

ical significance° There are various the 19 x 19 correlation matrix from the

criteria to aid in this decision; in gen- original data matrix and run PCA on it.

eral, the elimination of those vectors See table 1 for the 19 eigenvaiues (li)
that do not meet the criteria can be done and the cumulative percentage of the total

with conviction. Admittedly, some sub- variation "explained" by each.

jectivity is involved in this process, but

this is inherent in all statistical de- Next we choose an arbitrary value,

cisions. The next part of the interpre- called %o, which has associated with it at
tation process is the analysis of the ei- least the cumulative proportion of the to-

genvectors that are deemed significant, tal variance that one wishes to "explain"

in the analysis. This procedure is some-

However, one must be cautioned that what analogous to choosing the probability

even after this operational sequence, there level that one wishes to operate at in a

still remains the question whether a bio- routine analysis of variance. Therefore,

logical interpretation can be derived from it depends not only upon the experimental

the mathematical artifact. To interpret material, but also upon experience of the

derived variables, one must be able to re- scientist. Jeffers (1964) recommended

late them to observed variables. To do choosing %o = 1 for biological data. If
this there are several accepted ways which we choose %_ = 1 in this example, we would

,,O . ,,
are explained in the example beginning on expect to explaln approximately 85% of

P. 5. the total variation (table i) because

there are 5 eigenvalues greater than 1.0

and their cumulative percent of variation
[XAMPkE$ OF APPklCAIIONS is 84.6. The subset of %'s that are

greater than %o is of size Pl; thus, there

D_scardJn9 Variables are also Pl eigenvectors associated with

these Pl eigenvalues. In this example,
Among the PCA methods for reducing Pl = 5.

the dimension of a data set by discard-

ing variables, we have found the method

of retention outlined by Jolliffe (1972) In examining the eigenvalues after

most useful. The following example dem- PCA it may be necessary to distinguish be-

onstrates the use of this method, tween marginal eigenvalues (hi). Lawley
(1956) showed that the degree of differ-

In 1958 a range-wide study of white ence between eigenvalues can be measured

spruce seed sources consisting of 28 pro- by the ratio of the geometric mean of the

venances originating throughout North eigenvalues to the arithmetic mean, which

America from Alaska to New Brunswick is distributed as X2. This procedure was

(table 2) was established at our nursery outlined by Holland (1969).
near Rhinelander, Wisconsin. After 4 years'

growth, 19 variables were measured on The discarding procedure fs continued

trees from each provenance (table 3). The by associating one or more of the variables

5



Table 2o--Provenance values of the first 3 eigenvectors

used for ordination of the white spruce example

Source : : : : Eigenvector number
number :Location : Latitude : Longitude : _/ : 2 : 3

1 South Dakota 44-10 103-65 --1/0.86 -3.54 -2.30
2 Montana 46-48 109-31 -6.31 4.64 0.22
3 Manitoba 49-51 99-30 1.26 -3.98 2.39
4 New York 44-23 74-06 10.70 0.ii -0.81
5 Wisconsin 45-41 89-07 8.09 -3.52 0.74
6 Minnesota 47-33 94-09 9.03 1.38 0.44
7 Minnesota 47-33 94-10 9.45 -7.21 0.52
8 New Hampshire 44-51 71-26 8.17 3.36 -0.02
9 Alaska 65-21 144-30 -23.08 0.58 0.77
i0 Alaska 63-45 144-53 -13.10 -2.65 0.09
11 Alaska 66-35 145-11 -15.98 -2.08 -1.73
12 Maine 44-50 68-38 8.92 8.91 -I.00
13 Labrador 52-36 56-26 -6.66 5.46 3.00
14 Labrador 53-46 60-05 -5.00 3.21 2.36
15 New Brunswick 47-50 68-21 6.99 5.70 -4.75
16 Quebec 46-32 76-30 8.99 -0.01 0.13
17 Quebec 48-18 71-22 5.42 3.66 -0.52
18 Ontario 48-00 81-00 16.53 0.27 3.90
19 Ontario 45-4_ 76-51 12.38 -5.67 -0.20
20 Manitoba 54-39 101-36 -3.67 -3.16 -3.73
21 Saskatchewan 59-19 105-59 -8.50 -1.76 -1.70
22 Yukon 60-49 105-35 -18.51 -1.21 1.73
23 Minnesota 47-33 94-08 5.59 -2.83 -1.51

24 Michigan 44-30 83-45 4.46 -0.52 2.09
25 British Columbia 54-00 123-00 -2.80 0.96 -1.07
26 Manitoba 56-56 92-51 -16.12 0.62 -0.08
27 Ontario 52-15 81-40 -0.98 -0.47 1.24
28 Ontario 48-30 89-30 3.88 -0.25 -0.21

l_j Calculation procedure for each value:

J

Z { ((xij -xj) /sj). aij }
i

under consideration with each of the Pl (0.300): height (Xl) ; diameter (x2) ; branch

eigenvectors mentioned above (Spurrell 1963, length (x4) ; and bud length (x7). Therefore,
Beale et al. 1967, Namkoong 1967). This these variables are retained.

involves choosing the coefficient or co- Next consider eigenvector 2. The largest
efficients having the highest absolute coefficient in this vector is 0.410 and is

value in each eigenvector starting with associated with bud color (x6) ; therefore, bud
the first eigenvector. Table 3 shows co- color is retained. In eigenvector 3 the high-

efficients for the five _igenvectors (com- est coefficient is associated with number of

ponents) associated with the first five adaxial stomata (x13); in eigenvector 4 with

eigenvalues (%o = i; Pi = 5). The variables incidence of second flushing (x18); and in ei-

circled in table 3 should be retained. In genvector 5with needle color (Xll). These
our example, four coefficients in eigen- variables are also retained.

vector i, which accounmfor 53 percent of

the total variation, are candidates for hav- The sign of the largest coefficient

ing the highest absolute value in the vec- can be either positive or negative be-

tor because they are approximately equal cause the highest coefficient is chosen on

6



Table 3_--Variables measured from 4-year-old white spruce provenances

and the y_rst five eigenvectors from the principal component analysis

: Eigenvectors (Ai)
List of variables : 1 : 2 : 3 : 4 : 5

: : : : :

xI Height (in.) _ -0.057 0.053 -0.088 0.137
x2 Diameter (mm) _ 0.034 -0.013 -0.010 -0.051
x3 No. of branches in top whorl 0.236 0.002 0.087 -0.248 -0.431
x4 Branch length in top whorl (mm) _ 0.004 -0.032 0.009 0.177
x5 Bud shape 0.176 0.376 -0.195 -0.085 -0.065
x6 Bud color 0.164 _ 0.044 0.211 0.215
x7 Bud length (mm) _ 0-084 -0.048 -0.003 -0.126

x8 Needle length (mm) 0.195 -0 312 -0.271 -0.257 0.021
x9 Needle shape -0.232 -0 009 0.3].4 -0.234 -0.166
XlO Needle rigidity 0.286 -0 116 -0.014 -0.006 -0.-_6
Xll Needle color -0.045 0 268 0.255 -0.429 _0_58_
x12 Needle curvature 0.195 0 181 00.4__ 0.288 0.000
x13 Stomata (adaxial) -0.006 -0.269 _0_:665 0.025 -0.060

x14 Stomata (abaxial) 0.216 -0.367 0.190 -0.154 0.199
x15 Needle serrulation -0.235 -0.196 -0.197 0.029 0.349
x16 Branch surface -0.266 0.000 0.001 -0.008 -0.346
x17 Sterigmata length (mm) 0.225 -0.276 -0.089 -0.269 -0.018
x18 Second flushing 0°i01 -0.342 -0.031 _ 0.154
x19 Forking -0.273 -0.159 -0.061 -0.092 0.144

the basis of absolute value. Furthermore, further consideration appear to apply bio-

the variables associated with the eigen- logically. The first eigenvector can be con-

vectors cannot be ones that are already sidered a vector of size, because bud length

associated with an earlier vector. When at nursery age, height, diameter, and branch

this occurs, the second largest coeffi- length all are important indicators of growth.

cient is chosen. Questions have been This indicates that bud length and branch

raised about using this approach. How- length may be as important as the tradition-

ever, Brown, Douglas, and Wilson (1971) al measurements--height and diameter--for

showed that the coefficients of the ori- distinguishing nursery age provenances. The

ginal variables in the eigenvectors retention of bud color and needle color al-

are not affected by the intercorrelation so seems logical because both are impor-

of the x's; therefore, the largest coef- tant distinguishing characteristics of nur-

ficient approach is valid, sery-age white spruce. Needle color is par-

ticularly important in distinguishing the

western provenances where introgression

The 8 variables we have retained--height, with Engelmann spruce has occurred. Simil-

diameter, branch length, bud color, number arly, the retention of second flushing is

of adaxial stomata, needle color, and amount logical because it is an indicator of the

of second flushing--are those to be consi- latitude of the origin of white spruce,

dered in further experimentation. All oth- which can be related to the number of grow-

ers are discarded. This means that in our ing days. Second flushing is, therefore,

example, x3, x5, x8, x 9, Xl0,.x_2, x14, x15, an indicator of growth potential of white
x16 , x17 , and x19 are rejected [table 3). spruce.

In this particular example, we happen

to have hindsight as to the nature of the The retention of number of adaxial

variables. Furthermore, those retained for stomata indicates that needle anatomy

7



data may be useful. However, the utility components as axes (X-axis corresponds

of anatomical data as selection indices to the first eigenvector_ Y-axis to the
must be weighed against the time and ex- second eigenvector, etc.)_ the distance
pense of collecting such data. among these points is proportional to

the degree of dissimilarity in terms of

Ordinating Groups of Variables a set of variates (i.e._ properties, mea-
sured parameters, characters)+ Thus an

Ordination, the ordering of units ordination has occurred+ Furthermore_ if
within a multidimensional space, has had discrete subpopulations with some degree
widespread application in many other eco- of biological integrity can be defined, a

logical studies and has potential for ap- classification can be obtained+
plication in many other biological areas.
The use of ordination is consistent with Using the white spruce data we ob-
the desire to simplify and code a diver- tained a PCA ordination as demonstrated
sity Of information so the underlying pat- by Jeffers and Black (1963). For each

terns of variability within a large data original variate of a given provenance,
set can be more easily grasped, a standardized variable (which is the

difference from the mean of all provenances

When the entities (in this example, divided by the standard deviation) was

the 28 provenances of white spruce) are obtained and multiplied by the appro-
cast into this multidimensional hyperspace priate eigenvector coefficient found in
using the eigenvectors and associated table 3. Summation over all the variables

LEGEND Eigenvector 2

• 15.0 (bud color). Northern Latitudes (_55°N)

Alaska, Yukon Territory

Middle Latitudes <>50°N<55°N)

Labrador, Mallitoba, Br_tish Columbia, Ontario

.10,0
> Southern Latitudes (<50°N), Western Longitudes (>75°W)

South Dakota, Montana, Manitoba, Wisconsin, Minnesota, _ 12

Ontario, Michigan, Quebec

o Southern Latitudes (<50°N). Eastern Longitudes (-<75°W)

New York, New Hampshire, Maine, New Brunswick, Quebec a 13 ® 15
5.02

Eigenvector 1 +,_14 ® 17 • 8

(size)

-25,0 . 9 -20 0 26.,15.0 +10.0 -5.0 /_ 25 -} 6oo 5.0 16 10.0 4 15,0 :;) 18
I o I • I I× i i i I , A 24< ()

. 22 27

. tt .21
. lo

s\20 1 c_ 23

c> _ 3 _ 5

-5.0
c) 19

7

-10.0

-15.0

Figure l.--Ordination of white spruce provenances along two
axes corresponding to eigenvector 1 (size) and eigen-

vector 2 (bud color). The position of each point is de-
termined by the provenance values given in Table 2. The

number associated with each plotted point is the source
location number listed in Table 2. From a visual per-

spective, this figure can be considered a two-dimensional
"side view" of an ellipsoid in three-dimensional space.
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LEGEND Eigenvector 3

15.0 (need}e anatomy)
. Northern Latitudes (_-55°N)

Alaska, Yukon Territory

," Middle Latitudes (_50°N<55°N)

Labrador, Manitoba, British Columbia, Ontario
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Figure 2.--Ordination of white spruce provenances along eigenvectors

1 (size) and 3 (needle anatomy). This figure can be considered

a "top view" of the ellipsoid.

in the eigenvector then provides the to right in figure i, the first group of

numerical value for each provenance found points is made up of provenances from the

in table 2 and plotted in figures I, 2, highest latitudes and the northwestern

and 3. portions of the white spruce range; the

second group is from the middle latitudes,

The most striking characteristic of and those to the right of the second axis

the ordination of the white spruce data (eigenvector 2) are from the lower lati-

is the elongated form of the hypersolid, tudes and the southeastern portion of the

This confirms the importance of the first range. In terms of size the poorest per-

component (the size factor). This also formers are on the left in figure l, pro-

suggests that the underlying dimensions gressing in an orderly fashion along the

of variability can be represented by far first axis to the best performers on the

f_er tha_ 19 variables with little or right.
no loss of information.

The second component--bud coloration-

The ordination is largely dependent -is important in discriminating among the

on the first component--size--and the eastern seed sources. Note the vertical

order of points in figure 1 corresponds spread in the points of the right quadrants

to changes in latitude and corresponding (fig. I). The ordering of points suggests

elements such as length of growing sea- the possibility of clinal variation in bud

son, temperature regime, and photoperiod; coloration along the longitudes° The points

all affect the expression of the geno- in the upper right (++) quadrant in figure i

type (i.e., the phenotype) of a source and are seed sources from the eastern longitudes

thus affect performance as measured by within the southeastern portion of the white

size in a provenance study. From left spruce range; those in the lower right (+-)

9



LEGEND Eigenvector 3

, Northern Latitudes (_55°N) - 15.0 (needle anatomy)

Alaska, Yukon Territory

:, Middle Latitudes (_50°N<_55°N)

Labrador, Manitoba, British Columbia, Ontario

Southern Latitudes (<_50°N), Western Longitudes (_>75°W) -10.0

South Dakota, Montana, Manitoba, Wisconsin, Minnesota,

Ontario, Michigan, Quebec

• Southern Latitudes (<50°N), Eastern Longitudes (<_75°W)

New York, New Hampshire, Maine, New Brunswick, Quebec
• 5,0

18
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(bud color) o 3 24 _ 14
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Figure 3.--Ordination of white spruce provenances along eigenvectors
2 (bud color) and 3 (needle anatomy). This figure can be con-
sidered an "end view" of the ellipsoid.

quadrant are from the western longitudes As recognized by Nienstaedt and Teich
within this sub-group. (1971) and supported by the results of our

PCA, the demarcation of white spruce into
The third component--needle anatomy- two populations would appear to be an over-

-in figure 2 or 3 provides little discrim- simplification; however, the phytochemical
ination among points. This gives credence characters cited above were not included

to the fact that few orthogonal variables in this analysis and would no doubt add new
were measured, dimensions of discrimination if included.

In support of the hypothesis of separate
In a review of the systematics of populations, the response to the second

white spruce, Nienstaedt and Teich (1971) component, bud coloration, did differ in
cite evidence for the division of the spe- the western and eastern seed sources. How-

cies into eastern and western populations, ever, no east-west variation pattern is
Needle characteristics such as color and evident in the needle anatomy (specifi-
length were cited as major contributors to cally, the number of upper surface stomata),
the east-west variation pattern. The fact the third principal component.

that the present white spruce population
has evolved from populations that survived
both the Illinoian and Wisconsin glac$a_ The preliminary nature of the white

tions in widely separated refugia is also spruce study and the stated objective of
given as supporting evidence. Studies of measuring a large number of variables to

monterpenes in cortical samples (Wilkinson assess their value as selection indices
et al. 1971) and DNA content per cell presents an ideal situation for the appli-
(Miksche 1968) also support the contention cation of PCA. A comparison between the

of two distinct populations, results of our analyses and those based on
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analysis of variance (table 4) by Nienstaedt Principal component ordination is one

and Teich (1971) illustrates the value of of a multitude of ordination techniques,

PCA. Their analysis of variance shows but is not necessarily the most effective.

that all 19 characteristics except needle In the first comparison of principle com-

color and second flushing were significantly ponent ordination to other techniques that

different among provenances at the 0.01 numerically approximate multivariate analy-

level (table 4); thus, the ANOVA does not sis (e.g., Bray and Curtis 1957, Swan, Dix,

provide insight into the underlying dimen- and Wehrhahn 1969), PCA was found to be super-

sions of variability, nor does it provide ior (Austin and Orloci 1966, Orloci 1966).

guidance for the selection of variables But subsequent studies by other authors

suitable for emphasis in further studies, have obtained the contrary conclusion

(Bannister 1968, Austin and Noy-Meir 1971,

Gauch and Whittaker 1972, Whittaker and

Gauch 1972, Gauch 1973).

Table 4o--Analysis of variance of 19 char-

acteristics measured on nursery grown It is evident from these evaluations

white spruce representing 28 provenances that like any mathematical technique, or-

from the entire range of the species i/ dination is most effective when the user
is aware of the limitations as well as the

capabilities of the particular technique

(Gauch 1973). Ordination is a linear map-

ping technique and if the parameters under

: F study respond to an experimental stimulus

Variable : value in a nonlinear fashion (i.e., a non-mono-

Height (in.) 15.61" tonic performance or response), the rep-
Diameter (ram) 30.75* resentation of the parameter/stimulus re-
No. of branches 4.35* lation in a multidimensional space (or-

Branch length 10.63" dination) may be distorted. For example,

Shape of bud 2.77* in the ecological sphere, the response of

Bud color 5.67* vegetation to environmental gradients is
Length of buds 15.95"
Needle length 5.40* highly nonlinear. In such a case, if one
Cross section of needle 2.94* does not recognize the discrepancy between

Needle rigidity 2.55* the linear assumption of the ordination

Needle color n.s. methods and the nonlinear response by the

Needle curvature 2.42* biological system, evaluation of vegetation -_
No. of stomata upper 2.72*
No. of stomata below 4.59* al patterns as influenced by environmental
Needle serrulation 6.08* factors can lead to spurious conclusions.
Branch surface 8.05*

Sterigmata length 4.68*
Secondary bud flushing n.s.

Forking 3.78* MU] ti p] otti ng

i/ From Nienstaedt and Teich (1971) It is often desirable or necessary to
Significant at the 1 percent level visualize the results in as many dimensions

as possible, but plotting of multivariate

data is limited by human perception. To

circumvent this problem, contouring or the
addition of symbols can be used to extend

the number of axes on a two-dimensional plot.

However, such plots lack precision and

soon become difficult to interpret with the

It is noteworthy that the two non- additional clutter. Physical models or

significant variables in the ANOVA were 3-D plots from stereo equipment can be used

identified by PCA as important orthogonal for interpretation of multivariate data,

variables worthy of further consideration, but n-dimensional data still cannot be per-
Substantial variation is known to occur in ceived.
these two characteristics. It is also

possible that the strong interdependence To solve this problem, Andrews (1972)

of these variables resulted in a non-sig- suggested that one should map points into

nificant interpretation among provenances a function and then plot the function. A
in the non-orthogonal ANOVA. function can be infinite in its dimensions
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and still be easily visualized in two-di- Principal Components in Conjunction
mensional space. This allows interpretation With Regression Analysis
in more than three dimensions, The func-

tion proposed by Andrews (1972) follows: Many forest biologists often wish

i/_ to build a model to predict a depen-
f_(t) = _ + _2 sin t + _3cos t + _4sin 2t dent variable (Y) from a complex set

+ _5cos 2t of interrelated independent variables

(x's). When selecting their variables,

For each point the function is defined and they often are faced with a dilemma.

then plotted over the range o They not only want to include the var-
J iables that are most influential in

- _ < t < _ _i = El xijaij controlling the systems, but also
enough variables to obtain a reason-

able fit, so their models are useful

Thus a set of points is transformed into for predictive purposes (Draper and

a set of lines that has many appealing pro- Smith 1966). However, large numbers

perties, of variables increase the complexity

of a model tremendously (Goodall 1972).

For example, the functional mean cor- Therefore, they may wish to choose a

responds to the mean of the observations method of variable selection when

themselves: that is, if E is the mean of building a preliminary model.

n-multivariate observations, the function

corresponding to _ will appear as an av-

erage on the plots. Such a set of lines If adequate degrees of freedom

also preserves distances. If plotted func- are available, many would prefer to

tions are close together for all values perform preliminary analysis and mo-

of t, the corresponding points are close del building on one-half of the data

together in n-dimensional space and a band and then test the model on the other

of functions represents a cluster of data half to validate the model. However,

points. If a group of functions are close others feel that this is unnecessary

together for only one value of t, the cor- in preliminary experiments because da-

responding points are close in the direc- ta will be gathered subsequently to

tion defined by the corresponding projec- test the model and to update it. We

tion in one-dimensional space. Therefore_ chose the latter approach in the

even with _-dimensions groups of points following example.
can be identified.

Many methods are now available

This function also preserves var- for selecting variables to use in a

iances. Therefore, tests of signifi- regression equation: these include

cance and confidence intervals can be the all regressions approach, back-

constructed at particular values of ward elimination, forward selection,

t because the variance of f_(t) is stepwise regression, and several com-
known, bined techniques. Several of these

methods do not give satisfactory

The major advantage of multiplot- results when the intercorrelation

ting is not the establishment of var- between the x's is high (Draper and

iation patterns based on a single or- Smith 1966) o This is because under

thogonal character or even several conditions of normality, the higher

characters, but the discrimination the correlations between variables,

among populations based on the in- the less orthogonal the data will be

tegral of characters. For example, (Draper and Smith 1969). Furthermore,

Jeffers (1972) distinguishes a num- the selection methods don_t necessar-

ber of birch species by multiplotting ily help us select the best equation_

five components of 13 leaf characters, but usually they will allow us to find

In his example, several birch hybrids an acceptable one.
are evident from their intermediate

position on the plots. In addition, Another problem that must be con-

Andrews (1972) demonstrates how bio- sidered is that some of these meth-

logical data can be misinterpreted ods require repeated tests of signi-

when only two-dimensional point ficance; therefore, they are based on

plotting is used. conditional decisions (i.e., one test
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influenced by the previous test)° In In Kendall's procedure, PCA is run on

this case_ one may be operating at a the correlation matrix of the original set

different probability level than expect- of variables° Then the bi's are found by

ed_ Little consideration usually is solving equation (3). When solving for bl,
given to the consequences of such con- each eigenvector coefficient in eigenvector
ditional tests (Kennedy and Bancroft 1 is multiplied by the correlation coeffi-

1971)o cient of that x and Y and then summed for
the eigenvector. This value is then divi-

Principal component analysis also

can be used in conjunction with multiple ded by its eigenvalue (hi) (i.e., bI = _Y_I _).
regression to select variables for a iI

regression equation. Various approaches

have been reported by Kendall (1957), All eigenvectors having eigenvalues near

Ahamad (1967), Beale c¢ _. (1967), zero are neglected because they contribute

Jeffers (1967), Spurrell (1963), Cox little to the total variance. The total

(1968)_ and Decourt _$ _ (1969). variance is calculated for each bi by solving

Kendall used the standard multiple _2 = _i bb. i
regression model: i

(4)

+ b2 % + "' + bp_p + EY = b° + bl %1 2 "

(i) To evaluate the contribution of the

x's, Kendall substituted the bi's and the

{i's in terms of standardized x's into the
X !

in which he substituted _i s for s original equation (I), which produced an
where _i = ith principal component from equation of coefficients and standardized
the set of variables, x's. The bi's reflect both the sign and

sizes of each x variable's contribution.

This approach is most useful when the

By applying the principle of least number of variables is small. However,

squares, the estimates of the b's are the problem with this approach is that when

obtained by solving the set of normal the number of variables is large it is of-

equations. In this case the coeffi- ten difficult to interpret the results in
cients terms of the individual variables that are

embedded in the linear combination (eigen-

vectors)° There also is often some ques-

b i = [iY{i tion as to whether the dimension of the
2 problem is truly reduced because the com-E{.

l ponents have contributions from all the

x's. Therefore, we believe this approach

(2) should be used only when the experimenter

can assign biological meaning to certain

as in orthogonal polynomials (Anderson significant components (eigenvectors), or

and Houseman 1942). Furthermore, the when the number of variables is small.

reduction due to fitting the regression

on the %i's is bi ZY_i' which is also Cox (1968) advocated the use of PCA in
equal to libi 2. Solving this equality preliminary experiments to suggest regressor

for hi, we obtain variables. In his method the principal com-

ponents themselves are not used in the re-

gression equation as in Kendall's procedure.

bi= ZY_i Rather, Cox used simple combinations of var-

_i iables having physical meaning. We have
chosen Cox's approach to illustrate our

(3) second example.

which can be used in evaluating the In this example we have used the data

contribution of the original variables of Lars_n (1967). He measured 12 growth var-

as follows, iables on trees from I0 red pine seed sources
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grown under various conditions in control- table 6. Note the regression was signifi-

led growth rooms (table 5)° cant and the R2 = 0o98_ It should be em-

phasized, however, that Lars_n (1967) did
After a Bartlett's test indicated that not relate his variables to volume incre-

the data had homogeneity of variance, mul- ment as we have done, nor did he suggest

tiple regression analysis was run of the i0 this relationship. Rather, we have arbitrar-

independent variables upon volume increment, ily picked volume increment as the depend-

The ANOV table for regression is sho_ in ent variable for purposes of illustration.

Table 5.--Selected tree growth measurements and first

four eigenvectors of principal component analysis

from 1 0 red pine provenances grown in growth rooms k�

: Eigenvectors (Ai)
List of variables : 1 : 2 : 3 : 4

xI Height (cm) 0.351 -0.031 -0.381 -0.163
x2 Needle length, 1962 (cm) -0.310 -0.iii 0.370

x3 Needle weight, 1962 (gm) _ -0.020 0.045 -0.112
x4 Needle weight, 1961 (gm) (Q.38__) 0.040 0.065 -0.239
x5 Total ring width (mm) 0.319 0.368 0.250 0.254
x6 Earlywood width (mm) 0.371 0.053 0.268 0.213
x7 Latewood width (ram) 0.124 _ 0.054 0.145
x8 Latewood percent (%) -0.275 0.501 -0.234 -0.063
x9 Specific gravity -0.343 0.281 -0.263 -0.137
xlO Cell wall thickness (v) 0.199 -0.iii _ 0.647

Y1 Volume increment (mm3)

i/ Adapted from Larson (1967); in the original study, the author made
no attempt to relate the independent variables listed to volume
increment.

Table 6.--ANOV for regression oft0 selec-

ted red pine growth measurements (x 's)
on volume increment (Y) (R2=0.98)

Source df S.S_ M.S. F

Regression i0 1977630.25 197763.03 69.37*

Deviations 29 82673.52 2850.81

TOTAL 39 2060303.77

* Denotes significance at the 0.01 probability level. "
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Next, a principal component analysis was a regression equation that "explained" a

run on the i0 x I0 correlation matrix of the large portion of the total sums of squares.

independent variables (x's). The i0 eigen- Six of the eigenvalues were near zero (ei-

values (h_s) and the cummulative percentage genvalue 5 through i0) (table 7); therefore,
of the total variation associated with each these 6 variables were no doubt interrelat-

are shown in table 7. Kendall _957) has ed with 4 or 5 more important variables.
shown that when collinearities exist in the

x_s (i_e., some _'s near zero) no reliance The first four eigenvectors and their

can be put on the individual coefficients respective coefficients are shown in table

in regression equations which include all the 5. When h0 is chosen equal to 1.0, as in
variables_ Note that collinearities exist the white spruce example, these four eigen-

in our example since eigenvalues 5 through vectors "explain" 98.4 percent of the total

i0 are near zero (table 7). Consequently, variation in the independent variables;

for each eigenvalue near zero, one variable similarly, the first three eigenvectors

can be expressed in terms of the other var- "explain" 93.2 percent of the variation

iables, and, therefore, the number of var- (table 7).

iables can be reduced (Kendall 1957, Seal

1964). The first eigenvector from table 5

"explained" 64.5 percent of the total var-
iation in the independent variables (x's).

It has two coefficients that qualify for

Table 7.--Eigenvalues and cumulative per- the largest absolute value because they are

centage of variation associated with approximately the same equal magnitude,

the eigenvalues from principal compo- needle weight, 1962 (x3), and needle weight,

nent analysis of red pine provenance 1961 (x4) (circled in table 5). Similarly,
grown in the growth room in eigenvector 2, the coefficient having

the largest absolute value is latewood

width (x7). In both eigenvectors 3 and 4,
the largest coefficient is cell wall thick-

Eigenvalues : Cumulative percent ness (XlO).
: of variation

I. 6.45 0.645
2. 1.75 0.820 When one encounters a variable in an
3. i.ii 0.932 eigenvector with a coefficient of largest

4o 0.53 0.984 absolute value that has already been asso-

5. 0.09 0.993 ciated with a previous eigenvector, then

6. 0.04 0.998 the next largest coefficient in the eigen-
7. 0.02 0.999
8. 0.00 1.000 vector is chosen. Therefore, in eigenvec-
9. 0.00 1.000 tor 4, inasmuch as cell wall thickness is

i0. 0.00 1.000 already associated with eigenvector 3,

the next largest coefficient in eigenvector

4 is needle length (x2) ; therefore, needle
length is chosen.

Selection of the variables to retain The five variables chosen from the

for regression is done in the same manner first 4 eigenvectors are the ones to con-

as in our white spruce example, that is, sider for regression analysis. The ANOV

choosing the variables having the largest for regression of these five variables on

coefficient absolute value in the most sig- volume increment is shown in table 8. The
nificant eigenvectors, regression was significant and that R 2 =

0.92, and examination of the residuals in-

Several regression equations may be dicates a good fit. This indicated that 5
picked using this method which on the sur- independent variables "explained" nearly

face may appear to be very different. How- as much of the total variation in volume

ever, for predictive purposes the equations increment as did all i0 independent var-
often are equally effective (i.e., have a iables (table 6).

large R2 and a good fit) (Kendall 1957).

The examination of eigenvectors in

In our PCA run it seemed likely that search for the largest coefficient must be

at least six or seven variables might be done with caution especially when two var-

eliminated from the analysis and still have iables have a correlation coefficient (r)
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Table 8.--ANOV for regression of needle

length, needle weight (1962], needle

weight (1961), latewood width, and
cell wall thickness on volume incre-

ment (Y) (R2=O. 92)

Source df S.S. M.S. F

Regression 5 1902309.43 380461.89 81.9"

Deviations 34 157996.60 4646.95

TOTAL 29 2060306.03

* Denotes significance at the 0.01 probability level.

near _+ i. When this occurs, scientific Because cell wall thickness is diffi-

insight must be often used in favor of a cult and expensive to measure and is asso-

set of mathematical techniques, ciated with the third and fourth eigenvec-
tors, one might be tempted to look at a

regression of needle weight, latewood width,

For example, in our case, needle weight and needle length on volume increment and

for 1962 and needle weight for 1961 are leave out cell wall thickness. Table I0

highly correlated (near +- i); therefore, shows the ANOV for this regression. The

only one need be included in the analysis, regression was significant and R 2 = 0.90.
It appears that the variables chosen

Table 9.--ANOVfor regression of needle

length, needle weight (1962), late-
wood width and cell wall thickness

on volume increment (Y) (R2=0.91)

Source : df : S.S. : M.S. F

Regression 4 1868894.50 467223.62 85.4*

Deviations 35 191411.53 5468.90

TOTAL 39 2060306.03

* Denotes significance at the 0.01 probability level.

Needle weight for 1962 was retained because by this analysis "explain" a high portion

of ease of measurement and needle weight of the regression sums of squares for vol-

for 1961 was dropped. The ANOV for re- ume increment. Although needle Weight,

gression of the four other variables is needle length, and latewood width have some

shown in table 9. By droppin$ the variable indirect biological integrity as predic-
needle weight for "1961, the R_ was reduced tors of volume, the main purpose for in-

from 0.92 to 0.91; therefore, little was cluding this example was to illustrate the
lost. Examination of the residuals also various aspects of variable selection that

indicated a good fit. an experimenter may use for further ex-
perimentation.
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Table lO.--ANOVfor regression of needle

length_ needle weight (7962)_ and
latewood width on voll_e increment

(1) (F2=o.9o)

Source : df : S.S. : M.S. : F

Regression 3 1859829.03 619943.01 111.3"

Deviations 36 200477.00 5568.80

TOTAL 39 2060306.03

* Denotes significance at the 0.01 probability level.
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