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Abstract: Some growth and yield simulators applicable to central hardwood forests can be formu-
lated for use in mathematical programming models that are designed to optimize multi-stand,
multi-resource management problems. Once in the required format, growth equations serve as
model constraints, defining the dynamics of stand development brought about by harvesting
decisions. In large models representing forests with varying cover types equations from several
unique simulators can be combined to account for individual stand growth. The inclusion of
appropriate growth functions greatly enhances the validity and scope of management guidelines
generated by optimization routines. Although several growth models are available for Appalachian
hardwoods, few have been formulated to serve as inputs to such analytical models. Methods for

formulating nonlinear growth constraints for a two-stage matrix simulator used in certain Appala-
chian hardwood stands are demonstrated. A generalized growth constraint is presented that may
be indexed by size class, species group, and stand for sizable management problems, i_

INTRODUCTION i,

Forest growth and yield simulators play an important role in mathematical programming models _!
designed to optimize forest management. In general, optimization models numerically search for a _!i
best management strategy from among all feasible alternatives. In forest management models, !!
feasibility is defined by two types of mathematical constraints: landowner management objectives
and stand growth capabilities. Equations that represent management objectives simply place
limits on harvest decisions so that the optimization procedure considers only the cutting strategies
that achieve desired esthetics, wildlife habitat, and so on. Conversely, equations derived from an
appropriate stand growth model represent basic biological limits associated with the stand. This
type of constraint places upper and lower bounds on residual tree growth resulting from harvest
decisions.

Adams and Ek (1974) constructed a nonlinear programming (NLP) problem to solve for optimal
structure, stocking, and transition harvesting for uneven-aged northern hardwoods. Within their
model, tree growth and mortality over time were expressed as nonlinear functions of initial tree size
and total stand basal area at the beginning of each growth period. The model searched for the
optimal number of trees in each d.b.h, class at the beginning of a growth period such that the
value of periodic growth was maximized. Martin (1982) developed investment-efficient stocking
guides for uneven-aged northern hardwood stands using the same growth model and a WeibuU
distribution function to reduce the number of decision variables.

IU.S° Forest Service, Northeastern Forest Experiment Station, Timber and Watershed Laboratory,
P.O. Box 404, Parsons, WV 26287; and Virginia Polytechnic Institute, and State University, De-
partment of Forestry, Blacksburg, VA 24061.
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Buongiorno and Michte (1980) later used the same plot data (Adams and Ek 1974)to estate
survival, and growth probabilities for each diameter class, and to express growth capabilities in a
fixed coe_cient matrix. The matrix simply transformed an Initial tree list to a new llst 5 years
later, thereby accounting for tree growth and mortality. By employing a matrix of transition prob-
abilities, instead of norflinear functions, the management model could be constructed as a linear
programming (LP) problem. Although LP formulations are usually easier to solve, the fixed matrix

does not change in response to cutting decisions, thus limiting Its usefulness to problems Involving
narrow fluctuations in residual stocMng.

To date, several simulators are available for eastern hardwood timber types: SILVAH for Allegheny
hardwoods (Marquis and Ernst 1992), OAKSIM for even-aged upland oaks (Hilt 1985), NE-_GS
for mixed eastern hardwoods (Teck 1990), and FIBER for spruce-fir and northern hardwoods
(Solomon, Hosmer, and Hayslett 1987). Most available growth models were not designed to func-
tion as components of optimization models. Instead, they were developed to allow a user to input
stand data, simulate stand development, and project volume and value growth in response to a
specific cutting strategy. As a result, the structure of equations within the growth model that
represent Ingrowth, survival, diameter growth, and mortality oPten do not cop.fore1 to requirements
of algorithms used to solve mathematical programming problems.

This report demonstrates how equations from FIBER (Solomon, Hosmer, and Hayslett 1987)were
used to construct growth constraints within a nonlinear programming problem to optimize indi-
vidual stand management. FIBER was chosen because Its relatively simple s_cture is amenable
for use m nonlinear prograrmming problems. Methods discussed are intended to help users con-

struct similar models for forest management problems where FIBER Is an accurate growth projec-
tion system.

GENERAL MANAGEMENT MODEL

A general model Is described that can be used to optimize harvest schedules for a range of resource
objectives. Forest managers need detailed cutting prescriptions that account for the interaction of
s_e, species, and other product-value factors when planning harvests in individual stands. Cut-

ting guides broadly defined by target residual basal area or volume per acre do not adequately
describe how key economic factors such as s_e and species should be controlled to optimize
management. Therefore, a basic requirement for this type of timber-oriented optimization model is
that resulting prescriptions must define the number of trees to remove in each size class and
species group over time.

Halght (1987) presented a model for uneven-aged management that solved for optimal cut and
residual diameter distributions over a sequence of periodic harvests in a single stand. A more
general version of the model, presented later by Getz and Hatght (1989), is a discrete-time optimal
control formulation that defines harvest sequences In terms of the number of trees to cut and leave

in each s_e class. The state variable x_/._0 defines the number of trees per acre at the beginning
of time t, in size class/, in species group J, in stand k. The control variable tkl.k(0 represents the
number of trees per acre to harvest at time t, in size class/, in species group J, in stand k. The
control vector h(0 could be broken down into roundwood products such as pulpwood, sawtlmber,
or veneer. For this discussion, however, h(t) represents only the harvest of merchantable sawttm-
ber. commercial species 11.0 inches d.b.h, and larger.
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The Objective Fttr_ction

Optimization models include an objective function that simply measures the desirability of a
particular solution. The solution algorithm systematically adjusts the level of the decision vari-
ables until no other solution has a higher objective function value. In thls case, the objective
function maximizes the present value of all harvests starting with an initial forest x(O)=xo as de- i
fined in equation 1.

MDs X r r x (1)

The first term sums the product of price P_l.k times number of trees harvested h_j,k, and discounts
each harvest revenue to time t=O, where fi is equal to the discount factor 1/(1 +r) and r Is a positive
annual discount rate. MD, J, K, and T represent the maximum diameter class, number of species
groups, number of stands, and number of time periods, respectively. The second term is a fixed
costfck(t) associated with each harvest discounted to t=O. This general formulation can be ex-
panded to Include variable harvest cost, value of ending inventory, planting costs, and so on.

Stand Gro_h Constraints

Stand growth constraints take the general form of equations 2 and 3. The number of trees at the
beginning of the planning period x(0) is given as xo In equation 2. In subsequent time periods, the
initial number of trees x(t+l) is defined by two components given in equation 3. The first term
G(x(t), h(O) is a function that estimates growth of the residual stand from the previous period. The
second term F(x(0, h(0) is a function that estimates ingrowth into the smallest d.b.h, class from the
previous period.

x(O) = xo (2)

x(t G(x(t),h(t)) + F(x(t),h(t)) t= 0,1,2 .... ,T (3)

Growth and yield simulators applicable to central hardwood forests can be formulated for use in a
model of this type designed to optimize stand management. Transformed equations from the
simulator take the form of equations 2 and 3 and serve as model constraints which define the
dynamics of stand development brought about by harvesting decisions. In large models represent-
ing forests with varying cover types equations from several distinct simulators can be combined to
account for individual stand growth.
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Feasibility and Nonnegattvtty Constraints

Nonnegativity and feasibility constraints are defined by equations 4, 5, and 6.

h(t) _ 0 t=O,1,2 r
x(t) _ 0 .... ' 14)

xo- h(0) a 0 t=0 (5)

x(t)- h(t) _ 0 t=l,2 ..... T (6)

Equation 4 assures that all Initial stands and harvests are nonnegative, and equation 5 assures

that the initial harvest does not exceed stand stocking at time t=O, the initial stand state. Equation
6 assures that harvests do not exceed the Initial stand in any time period t. Management con-
s_aints to achieve specific objectives can be added to this group of equations to further define
feasibility.

FORMULATING GROWTH CONSTRAINTS

In this study, stand growth constraints corresponding to equation 3 were derived from FIBER, a
two-stage matrix stand growth simulator originally developed for spruce-fir and northern hardwood
types .in the Northeast (Solomon, Hosmer, and Hayslett 1987). Growth functions in FIBER were

developed from empirical studies to provide a mathematical framework tbr estimating growth
dynmnics that may result from management decisions. In generad, stand growth is projected _th
a stage structured model that transforms the residual stand vector x{t)-h(t) to a new _tlal stand
vector x{t+ 1) in the future using a transition matrix whose elements are nonlinear :functions of x(0
and h(0. These nonlinear growth functions estimate the probability that trees in the Initial stand
die, survive, and grow into a larger d.b.h, class, or survive without growing into a larger size cNss.

Basics of FIBER

Regression equations In FIBER employ initial basal area IBAk(t), residual basal area RBAk(t), diam-
eter class midpoint Di, proportion of total basal area comprising hardwood species in stand k,

PH_.(t), and proportion of total basal area comprising speciesj In stand k, PSj.k(t) at time t to predict
transition and mortality probabilities over a 5-year period. For example, uid,k(t), the probability of
a tree in d.b.h, class i. species J, stand k growing into d.b.h, class i+1 during a growth period
beginning at time t Is given by equation 7, where llu,j are estimated upgrowth coefficients for each
species group J.

u_a,k(t)= fl_j (lBAk(t), RBAk(t), PtI_(t), D_) (7)

Sinlilarly, a transition probability Is computed for aij, k(O, survival but no upgrowth in equation 8.

a,j_(t) = fl_j (IBXk(t)' RBAk(t), pHi(t) ' Ds) (8)
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Lj,_(0- _j (m_Ajt),PHjt>,es,g0) (9)

Mortality for the growth period is estimated Implicitly as 1-aqy,k(t)-uty, k(t). Ingrowth into the smallest
size class, in this case 6 inches d.b°h., is given by equation 9. Transition probabilities are then

placed into a matrix Gj,k(t) that is applied to a residual stand vector xj, k(tJ-hj, k(t) plus Ingrowth
defined bYf6j.k to generate a stand vector xj, k(t+5) by equation 10. Note that stand growth is
dependent on harvest decisions as they affect species composition and residual basal area in each
time period.

(lo)
5._(t oj,_(xj,_(0- hj,_tt))+Lj,_

In summary, FIBER performs the growth simulation in two stages. In the first stage, elements of
G(t) and F(t) are computed based on number of trees in each size class and species group before
and after a harvest in each stand° In the second stage, a linear operation Is performed according

to equation 10 to estimate a new initial stand structure x(t+5) 5 years in the future. At each 5-year
interval, the two-stage procedure is repeated so that growth is always a function of stand density
and species composition at the beginning of each time period.

FIBER in Nonline_" Prograrnnaing

For nonlinear programming problems, growth fm_ctions from FIBER are formulated as constraints
that place upper and lower bounds on productivity of the stand, one growth constraint for each
combination of diameter class/, species group j, and stand k. For example, the general constraint

for XlSd.k(t+5), the number of trees in the 18-inch d.b.h, class in species J, stand k, at time (t+5) ls
derived according to equation 1 1.

(11)
X,sj.k(t+5) = a,s,/_(t) (x,sj,k(t) - h_sj,k(t)) + u,6j.k(t) (x,6j,k(t) - h,6j_(t))

Coefficients alsd.k and u16j.k are probabilities for surviving residual trees at time period t remaining
in the 18-inch d.b.h, class or growing up from the 16-inch class, respectively, during the growth

period t to t+5. Equation 1 1 appears to be a linear operation, but transition probabilities are
functions of x(t) and h(t) in terms of initial and residual basal area as shown in equations 12 and

13. Similar to the first stage of FIBER, transition probabilities for each diameter class/, each
species group J, and each stand k are estimated by equations 12 and 13, plus Ingrowth by equa-
tion 14, where [3 is a vector of regression coefficients estimated from growth data. There are 13
sets of regression coefficients In FIBER, one set for each species group.

(12)
a,ja,(t) = 13o,,a+ [3,.aJBAk(t) + ]32,,_Ak(t ) + _3._jD_ + t34,_jJ_Hk(t)

+ ts_,p,_ �_,,ocea_A_'-tt>
..
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(i4)

./;,:=,:Jo:j+_,:.:mA_(O+32::H_(t)+/_.:,?Sj,_(r)

Measures of stand st_klng (RBA k, IBA k, PH k, and PSkl are functions of x(t) and h(t), computed as
inner products of basal area at the midpoint of each d.b.h, class bi and vectors x{t)and h{t) as
shown in equations 15-18. Diameter classes range from 6 Inches d.b.h, to MD, although 30 Inches
is the m_tmum recorrLmended d.b.h, for the FIBER growth model. In equations 15 and 16, IBAk(t}
and f_Ak(t} Include all species in a particular stand k, thus the subscriptj was dropped for sim-
plicity, tn equation 17, hd represents hardwood species.

18A_(t) = 0.196 x6_(t) + 0.349 xg,k(t) + .... + bMoxMo,_(t) (15)

RBA_(t) = O.196 (x_,k(t)-h6,_(t)) + ... + b,,_D,k (XMD,k(t)-h_lo,k(t)) (16)

0,196 X6,M:(t) + 0.349 X_:,,t._(t)+ ... + b_u; xvD,j_,a(t) I(17)

PHk(t) = RBAk(t)

0.196 x_j:,(O * 0,349 xsj,k(t) + .,. + bMz_ XMDj,k(I) (18)

P@_(t) = RBA_(t)

In _bmnulating explicit growth constraints, equations 15-18 are substituted Into equations 12-14,
and then for each diameter class, equations 12-14 are substituted Into a general form of equation
11. A complete general_ed growth constraint defined in equation 19 Is constructed for each size
class t. species group J, m each stand k. Basal area measured at the midpoint of each d.b.h, class
is represented by b_. Ingrowth defined in equation 14 Is added to the smallest d.b.h, class in each
time period L Note that much of the nonlinearity associated with the model Is attributed to
squared terms in:volving decision variables In the growth constraints.

In practice, equation 19 must be expanded for each species groupj and stand k included in the
analyses. In the general fbrm presented in equation 19, each initial stand variable x(0 and harvest
control variable h(t) is indexed only by i for d.b.h, class, which is appropriate in the special case
where there is only one stand containing a single species. In more practical applications, the NLP
would contain growth constraints to represent all diameter classes, species groups, and stands
included in the problem. FIBER can accommodate combinations of 13 species groups {Solomon,
Hosmer. and Haystett 1987).
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x:t+l)= (_o.o+ 3_,,[bd6(t)+ ."+ b:,,E,xM_,(t)]

+ _,o[b,(x,(O-h_(O)+ ... + bM_(x,,,(t)-hM_/O)t+ 5_,_D,

+ fi4,_[b_x¢_(t) + ... + bMSMD.:e(t)] / [bd(xd(:)-hd(t) ) + ... + b,,_(XMD(t)-hMD(t))]

+ fi¢,,[b6(xd(O-hd(t)) + ... + bM_(XMD(t)-hMo(:))]2 ) (xi(t)-h_(t))

+ ( rio,. + fl_,. [b_xd(0+ "- + bMS_gt)]

+ fla,, [bd(xeff)-h6(0) + "'" + b,_fD(XMo(O-hMD(:))]+ /23.,D_-,

+ /34,,[b_x¢_(t) + .o. + bMoXMz),:_(O]/ [bd(x6(t)-hd(t)) + ... + bMz)(x,_:o(t)-hMz)(t))]

+ fi6._ [b6(x6(t)-h6(t) ) + ... + bMo(XuD(t)-h,,z)(t))]'- ) (x,_,(t)-h,__(t)) (191

EXAMPLE PROBLEh_

The general management model was formulated as a sizable nonlinear programming problem and
coded in the General Algebraic Modeling System (GAMS), a FORTRAN-based equation generator
capable of representing complex models in compact form {Brooke, Kendrtck, and Meeraus 1988).
For problems with nonlinear constraints, the GAMS/MINOS optimizer employs a projected
Lagrangian algorithm (Robinson 1972). An example problem is presented to demonstrate the
performance of growth equations adapted from FIBER (Solomon, Hosmer, and Hayslett 1987).

The example problem simply required the NLP model to project individual stand growth to allow
comparisons with actual stand growth and predicted stand growth using the FIBER simulator
itself. Data were taken from a 55-year-old, second growth mixed hardwood stand on site Index 64
(base age 50) for northern red oak. A 100 percent inventory from this 12.5-acre control stand was
taken in 1964 and again in 1974 and 1984, allowing for comparison with 10- and 20-year growth
projections from both FIBER and the NLP model.

The NLP model contained the objective function {equation 1), feasibility constraInts (equations 4-6),
growth constraints (equation 19), stand constraints to define the Initial stand structure [equation
20), and management constraints to allow no periodic harvests {equation 21). Equation 20 simply
requires that the initial stand structure x(0) must equal the 2-inch stand structure from the ex-
ample stand x o at time t=O.

x(O)= xo (2o}

In order to project stand growth in the absence of harvests, the harvest control variable h(O was
constrained to be equal to zero for all time periods in equation 2 i.

(21)
h(O---0
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With these constraints tn place, the NLP problem simply dete_lnes the values for x(t), the initial
number of trees In each species and s_e class, for each tLme period from t=O to t=20 that satisfy

the growth constr_nts derived from FIBER, Because no ha_ests are allowed in this e_mple0 the
feasible region is reduced to a single point. The effect of the objective function has been nullified,
Growth of the Initial stand is determinkstic, and should be approximately equal to projections from
the FIBER soKware that u tfl_es the same regression coefficients°

A comparison of actual and projected stand structure and basal area stockAng is shown in Table 1.
Basal area projections from the nonlinear programming (NLP) formulation vaned less than 2

percent from direct FIBER projections, Projected stand development varied from observed stand
d_elopment less than 6 percent at 10 years and less than 8 percent at 20 years (Table 1). Direct
FIBER projections were obtained from a modified algorithm that provided a 2-inch stand structure
needed for this comparison (Marquis 1990). Discrepancies in stand structure projections are due
to conversions from 1-inch stand structures generated by FIBER to 2-inch stand structures,
Results indicated that modeling the gro_h simulator as a component of a nonlinear programming
problem provided adequate stand table projections to allow numerical evaluations of management
strategies.

Table 1.---Stand growth projections for a 55-year-old mixed hardwood stand on site index 64

10-year 20-year
Dbh Initial Actual N-LP FIBER Actual NLP FIBER

............. number of stems/acre-

6 77,1 57.1 52.7 42.7 45,5 40.6 30.6
8 38.6 40.1 50.0 53.5 31,5 45.8 45.9
10 20,7 25.3 31.2 30.5 25,7 37.7 41,2
12 0,2 14,3 16.7 16.5 17,8 24.0 23.4
14 7.7 9.1 9.8 9.4 13.0 13.9 12.8
16 6.1 7.6 7.1 7.0 9.0 8.7 8.1
18 4.6 4.9 5.4 5.8 7.0 6.3 6.2
20 3.1 3.3 3.9 3.9 3.6 4.6 4.6
22 1.8 2.7 2.4 2.4 3.0 3.0 3.0
24 1.7 1.7 1.7 1.7 2.0 1.9 1.9
26 1.4 1.1 1.4 1.4 1.7 1.4 1.4
208 0 1.0 0.4 0.4 1.1 0.6 0.6

......... ft 2/acre .......

Basal area 96.8 108,6 115.1 113.8 123.7 133.2 130.5

9th Central Hardwood Forest Conference
360



DISCUSSION

Formulating available stand-gro_xth models for use in mathematical progra_ing applications
allows for relatively thorough analyses o£management alternatives. Growth models typicaSy are
used to project the outcome of a spec£ic cutting strate£y,. Users may compare prgjections for a
range of strategies in an effo£ to find a _best ° coupe of action_ A major drawback of this approach
is that superior strategies may be omitted f_"om the analyses and thus overlooked. The mathemati-
cal prograrm-ning approach allows all feasible alternatives to be considered° even those with very
slight mathematical variation Kom others.

With nonlinear growth constraints from FIBER (Solomon, Hosmer, and Hayslett 1987), it is pos-
sible to construct multbstand, multi-resource management i_ormulations for forests where growth
projections are valid. This type of model can optimize even-aged or uneven-aged silviculture for
Individual stands using the appropriate combination of management constraints. In addition,
constraints such as minimum woodflow from an aggregate of stands may be imposed to assess the
impact forest-level objectives on opt:knum haz_cest strategies for individual stands within the multi-
stand problem.

Problem dimensions can increase rapidly When adding size classes, species groups, and time
periods in a multi-stand problem° Relatively large problems may be solved using GAMS/386 for
IBM-compatible personal computers equipped ;_ttth appropriate memory° The model presented in
this report was expanded to 12 size classes, 2 species groups, 3 stands, and 21 time periods

covering a 100-year planning horizon. Optimal solutions were obtained in less than 3 hours cpu
tlme on a 386-20 MHz processor.
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