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A SYNOPSIS OF ECOLOGICAL CLASSIFICATION NUMERICAL
METHODS

David T. Cleland and Carl W. Ramm1

Ecological classifications in various forms have been developed using relevees
(species lists ordered by sampling quadrants), tabular analyses, and more recently
by various multivariate numerical methods (see Host and Pregitzer 1991, Retuerto
and Carballeira 1991, Spies and Barnes 1985a, Gauch 1984, Mueller-Dombois
and Ellenberg 1974).  Braun-Blanquet's procedure of 1921 used tabular methods
in successive approximations to identify groups of species occurring in similar
samples, and to identify samples with similar species composition.  These early
tabular classification techniques were informal and inherently subjective
(Whittaker 1960, Mueller-Dombois and Ellenberg 1974), and thus the recognition
of differential species groups and groups of similar samples depended on the
individual investigator's understanding of species-species and species-
environmental relationships within a study area.

In the past few decades, more objective multivariate procedures have been applied
in ecological classification research (Digby and Kempton 1987).  Research
problems are often approached in an overall program using ordination for indirect
and direct gradient analyses, clustering to group samples and variables, and tabular
synthesis of results to corroborate patterns detected through ordination and
clustering (Gauch 1982).

In these procedures, explorative data analyses are used to detect intercorrelations
among variables, to check assumptions of data structure underlying particular
analyses and suggest appropriate transformations, and to identify sample outliers
using descriptive statistics and graphical displays of raw data.  Ordination is also
used in exploratory data analysis to detect patterns and outliers, and in multivariate
analysis to screen variables, reduce dimensionality, and summarize community
and environmental patterns (Gauch 1982).

Ordination is often followed by cluster analysis to identify (“recover”) natural
groups of samples and species.  Results of ordination and clustering may be
compared, and subsets of data may be interrogated to further elucidate
relationships.  Several complementary analysis techniques may be applied to the
same data set, with the analysis progressing by successive refinement.
Community patterns may be compared with environmental patterns to produce an
integrated interpretation of ordination and classification results.  The
communication of results is promoted, however, by employing a moderate number
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of commonly used, relatively standardized methods (Pielou 1984, Romesburg
1979).  Finally, hypothesis testing methods may be used a posteriori to assess
ecosystem-level differences in processes such as productivity (Host et al. 1988),
successional pathways (Host et al. 1987) and nutrient cycling (Zak et al. 1986,
1990).

Ordination

The goal of ordination is typically to place the field samples in a sequence such
that their order reveals any underlying environmental or ecological gradient(s).
Ordination, a primary tool for examining continuous change in ground-flora
distributions, is a matrix approximation technique used to summarize data in a
scatter diagram (Bray 1957), and reduce the dimensionality of a multivariate data
set (Causton 1988, Gauch 1982).  The reduction of dimensionality results from
finding the “best” sub-space projection of the original n points in p-dimensional
space to k dimensions (k<n, p). ( Morzuch and Ruark 1991, Krzanowski 1988).  In
ecological studies, ordination is also used to discover latent structure of vegetation
data due to species' responses to underlying environmental gradients (Prentice
1977).

Ordination uses spectral decomposition or singular value decomposition to build
new coordinates for the data.  The decomposition used in these methods is based
on an assumed underlying linear model (Morrison 1976).  Principal component
analysis (PCA; Morrison 1976), correspondence analysis (CA; Hill 1974,
Greenacre 1984, 1993), and detrended correspondence analysis (DCA; Hill and
Gauch 1980) are among the most commonly used ordination techniques in
modern ecological studies.  These are variance-maximization methods that involve
rotating the axes of a multidimensional cloud of points in multivariate space.  This
maximization of variance is equivalent to minimizing the variance of the
projection distances from the axis.  The first axis accounts for the majority of the
variance in the ordination.  A second axis is then found which is orthogonal to the
first axis and that accounts for the maximal remaining variance, and so on, for as
many axes as desired.

Geometrically, the general intentions of PCA, CA, and DCA are identical; a
multidimensional cloud of points is projected efficiently in fewer dimensions
which maximally account for the structure of a cloud of points in
multidimensional space (Oksanen and Huttunen 1989, Gauch 1982).  The
methods of projection differ, however, due to the selection of particular distance
measures, selection of the weights attributed to the points, and the positioning of
the origin (Greenacre 1984).  Centered PCA uses Euclidean distances, equal
weights for points, and location of the origin at the centroid; non-centered options
are also available.  CA and DCA use chi-squared distances, weights for sample or
species points proportional to the total for the species or sample, respectively, and
an origin at the centroid (Liebart et al. 1984).
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Principal Component Analysis

PCA may be used to reduce the dimensionality of a data set with a relatively large
number of correlated variables. PCA creates new uncorrelated variables that are
linear combinations of the original data (Newcomer 1984).  The new variables
retain almost all of the information content of the original data, but in a reduced
subspace (Morzuch and Ruark 1991, Jongman et al. 1987).  The first component
accounts for the majority of the generalized variance present in the original data
set; successive components account for decreasing proportions of the variance
while remaining uncorrelated with previous components.

The relative amount of the total variation explained by each principal component
is calculated by examining its variance (i.e., the eigen roots) relative to the overall
variability – the sum of the eigen values (Morrison 1976).  If a large proportion of
the overall variability in a data set is accounted for in the first few principal
components, these components can be used to summarize the variability of the
original data set (Morzuch and Ruark 1991).  In the end, however, PCA results
must be assessed in terms of ecological utility; mere percentage of variance
accounted for has not been found a reliable indicator of the quality of results
(Gauch 1982).

PCA requires continuous data as it operates on a variance-covariance matrix or
correlation matrix.  The correlation matrix is commonly used when variables have
dissimilar scales and ranges or have unequal variances (Padley 1989).  Data with
dissimilar scales and unequal variances will inevitably emphasize variables with
large means and variances, and such emphasis may be unwarranted.  The use of
the correlation matrix avoids rather than solving this problem, but is considered
satisfactory if all the variables used are of similar importance (Chatfield and
Collins 1980, Morrison 1976).

Examining the coefficients of the eigen vectors associated with each PC permits
identification of the variables that are most important to each PC.  The set of
variables so identified are commonly used in predictive models (Padley 1989,
Pregitzer and Barnes 1984). Important variables may also be identified by
examining the correlations, also called factor loadings or factor patterns, of the raw
variables with the PC's; factor loadings should correspond with factor weights.
Variables with high correlations are those most strongly associated with the
respective dimension being considered.

Correspondence Analysis

Correspondence analysis (CA) was developed to analyze counts or measures of
species abundance (Causton 1988, Host 1987).  CA works with an n by p matrix
of counts to produce an ordination of the p species and of the n samples.  Species
scores, when graphed, reflect the relative positions of individual species across all
samples in response to one or more environmental or temporal (e.g., disturbance)
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gradients (Hauser and Mucina 1981).  Sample scores can be used to produce
another ordination, with similar samples plotting close together and dissimilar
samples plotting far apart.  CA also provides information on the importance of
individual species and sample points, and the relationship of species and samples
to principal axes, termed coordinates, in a reduced subspace using a geometric
interpretation (Greenacre 1984).

A cross-tabulation is converted into a contingency table in CA by dividing profiles
of variable and sample frequencies by variable and sample totals.  These sets of
relative frequencies add up to a constant of one or 100, depending on whether the
data are proportions or percentages, respectively.  The geometry of such data has
special properties, conferred by properties of a reference circle with a radius of
one, that allow a geometric interpretation of the data structure.  Rather than simply
representing species in sample space, or samples in species space,  a vector going
from the origin to the sample points could represent samples or species (Greenacre
1993, 1984).  It is then possible to describe much of the information about sample
or species relationships in terms of the angles between pairs of vectors, because
the angles can be expressed by their cosines.  This has statistical meaning because
the cosine is identical to the correlation coefficient between the two samples or
species.  Cosines of angles between vectors for sample pairs are analogous to a
samples-by-samples dissimilarity matrix for which the dissimilarity measure used
is the correlation coefficient after subtraction from one (Greenacre 1993).

CA uses the chi-squared statistic as a measure of the discrepancy between the
observed frequencies in a contingency table and the expected frequencies.  A
scaled chi-squared distance metric can be used to evaluate how much row or
column profiles differ from their average profiles.  The chi-squared distance
function is similar to the Euclidean distance in physical space, except that each
squared difference between coordinates is divided by the corresponding element
of the average profile (Liebart et al. 1984).

In a CA, each row or column profile of relative frequencies has a unique weight
associated with it, called a mass, which is proportional to the column or row sum,
respectively, in the original cross-tabulation.  The average profile is the sum of
each profile weighted by that profile's mass.

The total variability, or inertia, is the chi-squared statistic divided by the grand
total of the table.  Total inertia can be decomposed into principal inertias
associated with each principal axis, into inertia associated with each row (and
column) of the data matrix, and into the partial contributions of each element to
each respective principal inertia (Greenacre 1993).

That component of inertia along a principal axis, called principal inertia, is the
inertia of the row points (or column points) projected onto the axis (Greenacre
1993, 1984).  Hence the first principal inertia is the total inertia of a set of
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projected points lying on the straight line along the first principal coordinate.
Second and higher axis principal inertias are determined using the same process.

Principal inertia can be further broken down into row and column components
along individual principal axes, termed partial contributions (Greenacre 1993,
1984).  These partial contributions to inertia for either sample or species sum to
one in each dimension, and are a measure of the contribution of each entity to the
inertia (variance represented) of that principal axis.

The relative contributions of each principal axis to a point's inertia are also
determined in CA.  In the geometric interpretation of these relative contributions,
the cosine of an angle between a given point in multidimensional space is
determined by projecting that point perpendicularly onto the principal axis.  A
vector is then extended to a point intersecting a circle in standard position with a
circle of radius one.  This point has a pair of coordinates that can be described by
cosine and sine functions; the cosine of the angle is equal to the ratio of the
derived vectors.  The square of this ratio is the contribution of the respective
principal axis to the sample or variable inertia.  Relative contributions are
equivalent to squared correlations between the profile points and the principal axes
(Greenacre 1993, 1984).

The decomposition of each principal inertia over the samples or rows is a measure
of the contributions of each principal coordinate to the inertia of these profiles.
This decomposition indicates which points are best explained by the combination
of axes forming subspaces by examining the squared cosines for each axis
(Greenacre 1993, 1984).

A particularly useful feature of CA is the geometric interpretation of the quality of
individual points in a given subspace (Greenacre 1984).  The squared cosines of
the angles between a point and each axis of a set of axes can be added across any
number of dimensions; the sum of squared cosines across all dimension sums to
one.  This sum of squared cosines, or quality, is a measure of how well points are
represented in a particular set of axes.  An examination of the quality of display of
each point helps to diagnose which points are far off the plane and whose positions
are thus inaccurate in the map.  The accuracy of display, or display quality, is the
percentage of inertia accounted for in a specific subspace (Greenacre 1993, 1984).

Points are often distributed along an arch in CA.  Some points, however, may be
interior, or even central to the arch, and other points may be on the periphery of
the arch.  Interior points indicate species with especially broad or undiscriminating
(weedy) distributions, and similarly, samples with a broad or mixed collection of
species.  Peripheral points indicate species with especially narrow distributions,
having strong indicator value, and suggest samples with a simple collection of
similar species (Gauch 1982).
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Detrended Correspondence Analysis

In vegetation analyses, the use of PCA and CA depends upon the assumption that
species abundance changes linearly along environmental gradients.  When
nonlinearities occur, CA produces an arch effect due to the compression of first
axis (Peet et al. 1987, Hill and Gauch 1980).  Moreover, a vegetation data matrix
generally consists of some measure of species presence or abundance arranged by
species and samples.  Since species are often absent from many sample plots, data
matrixes often contain a high proportion of zeros.  For reasons inherent to the
mathematics of the technique, these high proportions of zeros also tend to distort
the second and subsequent principle axes (Host and Pregitzer 1991).  If the data
matrix contains a high proportion of zeros, then PCA using the correlation matrix
should also be avoided.

Hill (1979) argues that the arch effect is a high-order dependence of the second
and higher dimensions on the first dimension, so that a given distance of
separation in the ordination does not carry a consistent meaning in terms of
implied differences between the samples or species.  If these derived orthogonal
and linearly independent axes are related by a quadratic or higher-order relation,
information on important secondary gradients in the data may be deferred to
higher axes.  The interpretation of results is thus made more difficult because
spurious axes must be distinguished from valid axes, and higher axes in higher
dimensions may have to be explored to detect meaningful gradients (Hill and
Gauch 1980).

This limitation of traditional ordination methods led to the development of DCA
(Hill 1979).  The detrending procedure aims to remove the quadratic dependence
of the second axis on the first axis while extracting a second axis.  In detrending,
the first axis is divided into segments, and within each segment, the sample scores
are readjusted to have a zero average.  The readjustment of scores results in a set
of detrended scores that are used to derive a new axis based on residual variation.

Wartenberg et al. (1987) are skeptical of the value of detrending.  They assert that
the archlike curvature is an inherent property of successive-replacement data that
results from the partial overlap in the distribution of species along a one-
dimensional environmental gradient.  They suggest that DCA can hide the real
data structure or even introduce new distortions.  Similarly, Greenacre (1984)
criticized detrending because the control over geometry is lost.  Okasen (1988)
found that when the two first eigenvalues of CA are close to each other, their order
can be reversed due to random variation in the data.  In DCA, the second axis is
detrended with respect to the first and therefore very variable configurations result
when the orientation of the first axis in the plane is changed.  This can lead to
situations where the detrended solutions are very unstable under random variation
and therefore can only be casually interpreted.  These findings suggest additional
limitations in the use of DCA.
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Van Groenewoud (1992) recommended that the only way to get reasonable results
using CA or DCA is to restrict the sampling mainly to one gradient, or pre-stratify
the samples before analysis to represent mainly one gradient at a time.
Concluding that all ordination methods are influenced by data curvature and
scaling, Greenacre (1993) recommends reporting the arch unscaled in two
dimensions.

Clustering

The objective of clustering procedures, commonly called classification, is to
identify naturally occurring groups based on all variables in a multivariate data set
(Host et al. 1993).  Both the process of classification and the choice among
classification techniques are more complex and more subjective than those of
ordination (Gauch 1982).  The utility of a given technique is therefore judged in
relation to others, and often several classification techniques are applied to the
same data sets with results compared afterwards.

The most commonly used classification methods in ecological land classification
include polythetic hierarchical agglomerative clustering and polythetic hierarchical
divisive clustering.  The term polythetic means that  information on all variables is
used to assign observations to a cluster, as opposed to earlier monothetic methods
that used single variables in a non-multivariate analysis (Gauch 1982).

Polythetic agglomerative clustering has two steps.  In ecological studies, the
species-by-species data matrix is first used to compute a samples-by-samples
dissimilarity matrix. The matrix may be constructed using any one of several
distance measures such as Euclidean distance or percent dissimilarity (Jongman et
al. 1987).  Second, an agglomeration procedure is applied successively to build up
a hierarchy of increasingly large clusters, starting with clusters consisting of a
single member, and agglomerating these hierarchically until finally a single cluster
contains all the species (Gauch 1982).

In agglomerative clustering methods, the groups that closest resemble each other
are joined or “linked” first.  The definition of closest, or dissimilarity, between
groups differs among methods; the linkage method selected determines the
dissimilarity, or distance between two clusters (Jongman et al. 1987).  The most
common linkage methods used in ecological studies include complete-linkage (or
furthest-neighbor), single-linkage (or nearest neighbor), average-linkage, and
Ward's method (or minimum-variance) clustering (Digby and Kempton 1987).
Flexible-beta linkage has also been found to recover underlying cluster structures
efficiently (Milligan and Cooper, 1988).

A methodological problem in applied clustering involves the decision of whether
or not to standardize the input variables prior to the computation of a Euclidean
distance or other dissimilarity measure (Milligan and Cooper, 1988, Stoddard
1979).  A number of transformations are commonly used, including logarithmic
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transformations, square-root transformations, exponential transformations, range
transformations, standardization to mean of zero and unit variance, and
transformation to an ordinal scale (Jongman et al. 1987).  Cooper (1988) found
that transformation by the range of a variable gave consistently superior recovery
of the underlying cluster structure.

Standard clustering algorithms can fail to identify clear cluster structure if that
structure is confined to a subset of variables (Fowlkes et al. 1988).  The inclusion
of unnecessary variables in cluster analysis can therefore mask cluster structure,
resulting in mixed assignments of observations.  Consequently, superfluous and
redundant variables are often screened through exploratory data analyses including
descriptive statistics and ordination, regression analysis, or other methods prior to
clustering.  Cluster analysis will also “recover” natural groups even if none exist.
If strong, distinct groups do exist then they should be recovered by a number of
different linkage methods.  If group membership changes with different linkage
methods, it indicates weak group structure.

The simplest polythetic divisive classification is subjective ordination space
partitioning (Hill 1977).  Sample points are positioned in low-dimensional
ordination space and partitions are placed subjectively by drawing lines through
sparse regions of the cloud of sample points.

Two-way indicator species analysis (TWINSPAN; Hills 1979) is another
polythetic divisive clustering technique.  TWINSPAN begins with all species or
samples (depending on the objectives) in a single cluster, and divides these into
smaller clusters by first ordinating data by CA.  Species characterizing the CA axis
extremes are emphasized to polarize the samples, and the samples are then divided
into two clusters by breaking the ordination axis near its middle.  This procedure is
repeated until each cluster has no more than a chosen minimum number of
members.  A corresponding species classification is produced, and the samples
and species hierarchical classifications are used together to produce an arranged
data matrix similar to a Braun-Blauquet table.

Van Groenewoud (1992) asserts that TWINSPAN does not perform a cluster
analysis, and thus does not discern spatial vegetative patterns.  He concludes that
the usefulness and reliability of TWINSPAN depends on how well CA extracts
axes that have ecological meaning, how well the CA axes are divided into
meaningful segments, and how closely species are associated with certain
segments of the multivariate coenoplane.
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